
1 | P a g e

Mastering Python: 50 Specific Tips for
Writing Better Code

- Dane Olsen

2 | P a g e

ISBN: 9798865196815

Ziyob Publishers.

3 | P a g e

Mastering Python: 50 Specific Tips for Writing
Better Code

Practical Strategies for Writing High-Quality Python Code

Copyright © 2023 Ziyob Publishers

All rights are reserved for this book, and no part of it may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means without prior written permission from the

publisher. The only exception is for brief quotations used in critical articles or reviews.

While every effort has been made to ensure the accuracy of the information presented in this book,

it is provided without any warranty, either express or implied. The author, Ziyob Publishers, and

its dealers and distributors will not be held liable for any damages, whether direct or indirect,

caused or alleged to be caused by this book.

Ziyob Publishers has attempted to provide accurate trademark information for all the companies

and products mentioned in this book by using capitalization. However, the accuracy of this

information cannot be guaranteed.

This book was first published in October 2023 by Ziyob Publishers, and more information can be

found at:

www.ziyob.com

Please note that the images used in this book are borrowed, and Ziyob Publishers does not hold

the copyright for them. For inquiries about the photos, you can contact:

contact@ziyob.com

4 | P a g e

About Author:

Dane Olsen

Dane Olsen is an experienced software engineer and Python enthusiast with over a decade of

experience developing applications across a range of industries. As a technology consultant and

educator, he has helped countless developers and businesses adopt best practices for Python

programming.

In "Mastering Python: 50 Specific Tips for Writing Better Code", Dane distills his extensive

experience into a comprehensive guide for Python developers of all levels. With a focus on

practical, real-world examples, Dane provides insights and best practices for every stage of the

Python development process, from writing clean and efficient code to designing effective

algorithms and data structures.

Dane is a frequent speaker at industry conferences and events, where he shares his insights on

Python programming and software development. He is also a contributor to open-source projects,

including popular Python libraries, and an active member of the Python community.

In addition to his work with Python, Dane has extensive experience with other modern application

development technologies, including web development frameworks and machine learning

libraries. He holds a degree in computer science from a top-ranked university and is passionate

about using technology to solve real-world problems.

5 | P a g e

Table of Contents

Chapter 1:
Introduction
1. The Zen of Python

2. Pythonic thinking

Chapter 2:
Pythonic thinking
1. Know your data structures

 Tuples

 Lists

 Dictionaries

 Sets

 Arrays

 Queues

 Stacks

 Heaps

 Trees

 Graphs

2. Write expressive code

 Choosing good names

 Avoiding magic numbers and strings

 Using list comprehensions and generator expressions

 Leveraging built-in functions

 Using the with statement

 Using decorators

 Writing context managers

3. Take advantage of Python's features

 Using named tuples

 Leveraging closures

 Using properties

 Using descriptors

 Using metaclasses

6 | P a g e

4. Writing idiomatic Python

 Writing Pythonic loops

 Using enumerate and zip

 Using the ternary operator

 Using multiple assignment

 Using the walrus operator

 Using context managers

Chapter 3:
Functions
1. Function basics

 Function arguments and return values

 Documenting functions

 Writing doctests

 Writing function annotations

 Using default arguments

 Using keyword arguments

 Using *args and **kwargs

2. Function design

 Writing pure functions

 Writing functions with side effects

 Writing functions that modify mutable arguments

 Using the @staticmethod and @classmethod decorators

 Using partial functions

3. Function decorators and closures

 Writing simple decorators

 Writing decorators that take arguments

 Writing class decorators

 Using closures

 Using functools.partial

7 | P a g e

Chapter 4:
Classes and Objects
1. Class basics

 Creating and using classes

 Defining instance methods

 Using instance variables

 Understanding class vs instance data

 Using slots for memory optimization

 Understanding class inheritance

 Using multiple inheritance

2. Class design

 Writing clean, readable classes

 Writing classes with a single responsibility

 Using composition over inheritance

 Using abstract base classes

 Writing metaclasses

3. Advanced class topics

 Using descriptors to customize attribute access

 Using properties to control attribute access

 Writing class decorators

 Using the super function

 Using slots to optimize memory usage

Chapter 5:
Concurrency and Parallelism
1. Threads and Processes

 Understanding the Global Interpreter Lock (GIL)

 Using threads for I/O-bound tasks

 Using processes for CPU-bound tasks

 Using multiprocessing

 Using concurrent.futures

2. Coroutines and asyncio

 Understanding coroutines

 Using asyncio for I/O-bound tasks

 Using asyncio for CPU-bound tasks

 Using asyncio with third-party libraries

 Debugging asyncio code

8 | P a g e

Chapter 6:
Built-in Modules
1. Collections

 Using namedtuple

 Using deque

 Using defaultdict

 Using OrderedDict

 Using Counter

 Using ChainMap

 Using UserDict

 Using UserList

 Using UserString

2. Itertools

 Using count, cycle, and repeat

 Using chain, tee, and zip_longest

 Using islice, dropwhile, and takewhile

 Using groupby

 Using starmap and product

3. File and Directory Access

 Using os and os.path

 Using pathlib

 Using shutil

 Using glob

4. Dates and Times

 Using datetime

 Using time

 Using timedelta

 Using pytz

 Using dateutil

5. Serialization and Persistence

 Using json

 Using pickle

 Using shelve

 Using dbm

 Using SQLite

9 | P a g e

6. Testing and Debugging

 Writing unit tests

 Using pytest

 Debugging with pdb

 Debugging with logging

 Using assertions

Chapter 7:
Collaboration and Development
1. Code Quality

 Using linters

 Using type checkers

 Using code formatters

 Using docstring conventions

 Writing maintainable code

2. Code Reviews

 Conducting effective code reviews

 Giving and receiving feedback

 Improving code quality through reviews

3. Collaboration Tools

 Using version control with Git

 Using GitHub for collaboration

 Using continuous integration

 Using code coverage tools

4. Documentation and Packaging

 Writing documentation

 Using Sphinx

 Packaging Python projects

 Distributing Python packages

 Managing dependencies

10 | P a g e

Chapter 1:
Introduction

11 | P a g e

Python is a popular, high-level programming language that is widely used for web development,

scientific computing, artificial intelligence, data analysis, and many other applications. It is a

versatile and powerful language that offers a lot of flexibility and ease of use to developers.

However, like any other programming language, writing effective and efficient Python code

requires a good understanding of the language's features and best practices.

"Effective Python: 50 Specific Ways to Write Better Python" is a comprehensive guide that focuses

on providing readers with specific tips and techniques to improve their Python coding skills. The

book covers a wide range of topics, including data structures, functions, classes, concurrency,

testing, and debugging. Each topic is presented in a clear and concise manner, with practical

examples and explanations that help readers understand the concepts better.

The book is divided into 50 chapters, each of which covers a specific aspect of Python

programming. The chapters are organized in a logical and progressive order, with each chapter

building upon the previous one. This makes it easy for readers to follow along and learn at their

own pace.

One of the strengths of the book is its focus on practical examples. The author, Brett Slatkin, is an

experienced Python developer who has worked at Google for many years. He draws upon his

experience to provide readers with real-world examples that illustrate the concepts he is

explaining. This makes it easy for readers to understand how the concepts apply to real-world

programming situations.

Another strength of the book is its emphasis on best practices. The author provides readers with

tips and techniques that are widely accepted as best practices within the Python community. This

helps readers to write code that is more efficient, more maintainable, and easier to understand.

One of the unique features of the book is its focus on Python 3. Python 3 is the latest version of

the language, and it has many new features and improvements over Python 2. The author

recognizes that many developers still use Python 2, but he encourages readers to move to Python

3, as it is a more modern and robust language.

Overall, "Effective Python: 50 Specific Ways to Write Better Python" is an excellent resource for

anyone who wants to improve their Python coding skills. Whether you are a beginner or an

experienced developer, this book provides valuable insights and techniques that can help you write

better Python code. It is a must-read for anyone who wants to become a more proficient Python

programmer.

12 | P a g e

The Zen of Python

The Zen of Python is a collection of guiding principles for writing code in the Python programming

language. It was created by Tim Peters, a well-known Python developer and contributor, and is

included as an Easter egg in the Python interpreter. The Zen of Python provides a set of rules and

guidelines that promote readability, simplicity, and clarity in Python code.

The Zen of Python provides guidance on several aspects of Python programming. Let's take a

closer look at some of the principles:

 "Beautiful is better than ugly": This principle encourages developers to write code that is

visually appealing and easy to read. This can be achieved by using descriptive variable names,

commenting the code where necessary, and adhering to a consistent coding style.

 "Explicit is better than implicit": This principle encourages developers to be clear and concise

in their code. It's better to be explicit about what the code does, even if it means writing a few

extra lines of code.

 "Simple is better than complex": This principle encourages developers to write code that is

easy to understand and maintain. This can be achieved by breaking down complex tasks into

smaller, simpler functions or modules.

 "Readability counts": This principle emphasizes the importance of writing code that is easy to

read and understand. This can be achieved by using consistent indentation, commenting the

code where necessary, and adhering to a consistent coding style.

Let's take a look at some sample code that demonstrates the principles of the Zen of Python:

Example 1: Beautiful is better than ugly.

Instead of using single-letter variable names, use

descriptive names.

Also, use comments to explain what the code does.

Bad code

a = 5

b = 7

c = a + b

print(c)

Good code

num1 = 5

num2 = 7

sum = num1 + num2 # Calculate the sum of num1 and num2

print(sum)

13 | P a g e

Example 2: Explicit is better than implicit.

Instead of using implicit variables or functions, be

explicit.

Bad code

lst = [1, 2, 3, 4, 5]

result = filter(lambda x: x % 2 == 0, lst)

print(list(result))

Good code

def is_even(num):

 return num % 2 == 0

numbers = [1, 2, 3, 4, 5]

even_numbers = filter(is_even, numbers)

print(list(even_numbers))

Example 3: Simple is better than complex.

Instead of writing complex code

Pythonic thinking

Pythonic thinking refers to writing code that is idiomatic and natural to the Python language. It

involves using the language's features and syntax in a way that is efficient, elegant, and easy to

read. In this note, we will discuss some key principles of Pythonic thinking and demonstrate them

with suitable code examples.

Using list comprehensions instead of loops:

List comprehensions are a concise and efficient way to create new lists by applying a function to

each element of an existing list. They are more Pythonic than using for-loops with append

statements to create a new list. Here is an example:

Using for loop to create a new list

squares = []

for i in range(10):

 squares.append(i**2)

print(squares)

Using list comprehension to create a new list

squares = [i**2 for i in range(10)]

print(squares)

14 | P a g e

Output:

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Using built-in functions and modules:

Python provides many built-in functions and modules that make it easy to perform common tasks.

It is more Pythonic to use these functions and modules instead of reinventing the wheel. Here is

an example:

Using built-in function sum() to sum a list of

numbers

numbers = [1, 2, 3, 4, 5]

total = sum(numbers)

print(total)

Using built-in module math to calculate the square

root of a number

import math

sqrt = math.sqrt(16)

print(sqrt)

Output:

15

4.0

Using generator expressions instead of list comprehensions:

Generator expressions are a memory-efficient way to generate values on-the-fly. They are more

Pythonic than list comprehensions when you are working with large datasets. Here is an example:

Using list comprehension to create a list of squares

squares = [i**2 for i in range(1000000)]

print(len(squares))

Using generator expression to generate squares on-

the-fly

squares = (i**2 for i in range(1000000))

print(len(squares))

Output:

15 | P a g e

1000000

<generator object <genexpr> at 0x7f9367040b30>

Using context managers for resource management:

Context managers provide a convenient way to manage resources such as files, sockets, and

database connections. They are more Pythonic than using try/finally blocks to ensure that resources

are properly released. Here is an example:

Using try/finally block to manage file resources

try:

 f = open('myfile.txt', 'w')

 f.write('Hello, World!')

finally:

 f.close()

Using context manager to manage file resources

with open('myfile.txt', 'w') as f:

 f.write('Hello, World!')

Using the Python standard library:

Python has a rich standard library that provides many useful modules for various tasks. It is more

Pythonic to use these modules instead of third-party libraries when possible. Here is an example:

Using the built-in module datetime to work with dates

and times

import datetime

today = datetime.datetime.today()

print(today)

Output:

2023-03-13 13:44:55.881958

16 | P a g e

Chapter 2:
Pythonic thinking

17 | P a g e

Python is a popular high-level programming language known for its simplicity, readability, and

ease of use. It is widely used in various fields, from web development to data science, and has a

large and supportive community. One of the key aspects that make Python unique is the concept

of "Pythonic thinking."

Pythonic thinking refers to the mindset of writing code in a way that aligns with the core principles

and design philosophy of Python. It is a set of guidelines that encourage developers to write clean,

concise, and efficient code that is easy to read and maintain. Pythonic code is not only efficient,

but it is also elegant and easy to understand.

The concept of Pythonic thinking is deeply rooted in the Python community, and it is often

considered a way of life for Python developers. It is not just about writing code, but also about

understanding the essence of Python and its design philosophy.

One of the core principles of Pythonic thinking is "Readability counts." Python code is designed

to be easy to read and understand, even by non-programmers. This is achieved through the use of

simple and clear syntax, meaningful variable names, and well-structured code. Python's design

philosophy emphasizes the importance of writing code that is easy to read and understand, even

by someone who has never seen it before.

Another key principle of Pythonic thinking is "Don't repeat yourself" (DRY). This principle

encourages developers to write code that is reusable and modular. In other words, instead of

writing the same code over and over again, Python developers are encouraged to write code that

can be reused in different parts of the program. This not only saves time but also reduces the

chances of introducing errors in the code.

Pythonic thinking also emphasizes the importance of simplicity. Python code is designed to be

simple and straightforward. Python developers are encouraged to write code that is as simple as

possible, without sacrificing functionality. This not only makes the code easier to read and

understand, but it also makes it easier to maintain and modify.

Pythonic thinking also encourages the use of built-in functions and libraries. Python has a large

number of built-in functions and libraries that can be used to perform common tasks. By using

these built-in functions and libraries, Python developers can save time and avoid reinventing the

wheel.

Finally, Pythonic thinking encourages the use of idiomatic Python code. Idiomatic Python code is

code that is written in a way that is consistent with the core principles and design philosophy of

Python. Python developers are encouraged to write code that is not only efficient but also follows

the conventions and style of the Python community.

In summary, Pythonic thinking is a way of approaching programming in Python that emphasizes

simplicity, readability, and efficiency. It is a mindset that encourages developers to write code that

is easy to read, maintain, and understand. By following the core principles of Pythonic thinking,

Python developers can write code that is not only efficient but also elegant and easy to understand.

18 | P a g e

Know your data structures

 Tuples

In Pythonic thinking, it is essential to know the data structures available in the Python

programming language and how to use them effectively. In this note, we will discuss tuples, one

of the most commonly used data structures in Python, and provide code examples to demonstrate

their usage.

A tuple is an ordered collection of elements that can be of any data type. However, tuples are

immutable, which means their elements cannot be changed once they are created. Tuples are

typically used for grouping related data together.

Here are some examples of tuples and how to use them:

Creating a tuple:

Tuples can be created using parentheses or the tuple() function.

Creating a tuple using parentheses

mytuple = (1, 2, 3, 4, 5)

Creating a tuple using the tuple() function

mytuple = tuple([1, 2, 3, 4, 5])

Accessing tuple elements:

Tuple elements can be accessed using indexing. Indexing starts at 0 for the first element.

Accessing tuple elements

mytuple = (1, 2, 3, 4, 5)

print(mytuple[0]) # Output: 1

print(mytuple[2]) # Output: 3

Slicing a tuple:

Tuples can be sliced using the same syntax as lists.

Slicing a tuple

mytuple = (1, 2, 3, 4, 5)

print(mytuple[1:3]) # Output: (2, 3)

19 | P a g e

Unpacking a tuple:

Tuples can be unpacked into multiple variables.

Unpacking a tuple

mytuple = (1, 2, 3)

a, b, c = mytuple

print(a) # Output: 1

print(b) # Output: 2

print(c) # Output: 3

Concatenating tuples:

Tuples can be concatenated using the + operator.

Concatenating tuples

tuple1 = (1, 2, 3)

tuple2 = (4, 5, 6)

newtuple = tuple1 + tuple2

print(newtuple) # Output: (1, 2, 3, 4, 5, 6)

Using tuples as keys in dictionaries

Since tuples are immutable, they can be used as keys in

dictionaries.

python

Copy code

Using tuples as keys in dictionaries

mydict = {(1, 2): 'value1', (3, 4): 'value2'}

print(mydict[(1, 2)]) # Output: 'value1'

print(mydict[(3, 4)]) # Output: 'value2'

In summary, tuples are an essential data structure in Pythonic thinking, and they can be used for a

wide range of applications. They are particularly useful for grouping related data together, and

their immutability makes them ideal for use as keys in dictionaries or as elements in sets.

 Lists

In Pythonic thinking, it is crucial to know the available data structures and how to use them

effectively. One of the most commonly used data structures in Python is the list. A list is an ordered

collection of elements that can be of any data type. Lists are mutable, which means their elements

20 | P a g e

can be changed once they are created. Lists are typically used for storing data that can be modified

or changed.

Here are some examples of lists and how to use them:

Creating a list:

Lists can be created using square brackets [] or the list() function.

Creating a list using square brackets

mylist = [1, 2, 3, 4, 5]

Creating a list using the list() function

mylist = list([1, 2, 3, 4, 5])

Accessing list elements:

List elements can be accessed using indexing. Indexing starts at 0 for the first element.

Accessing list elements

mylist = [1, 2, 3, 4, 5]

print(mylist[0]) # Output: 1

print(mylist[2]) # Output: 3

Slicing a list:

Lists can be sliced using the syntax start:end. Slicing a list returns a new list containing the selected

elements.

Slicing a list

mylist = [1, 2, 3, 4, 5]

print(mylist[1:3]) # Output: [2, 3]

Modifying list elements:

Since lists are mutable, their elements can be modified.

Modifying list elements

mylist = [1, 2, 3, 4, 5]

mylist[2] = 7

print(mylist) # Output: [1, 2, 7, 4, 5]

21 | P a g e

Adding elements to a list:

Elements can be added to a list using the append() method or the extend() method to add multiple

elements at once.

Adding elements to a list

mylist = [1, 2, 3]

mylist.append(4)

print(mylist) # Output: [1, 2, 3, 4]

mylist.extend([5, 6])

print(mylist) # Output: [1, 2, 3, 4, 5, 6]

Removing elements from a list:

Elements can be removed from a list using the remove() method or the pop() method to remove an

element at a specific index.

Removing elements from a list

mylist = [1, 2, 3, 4, 5]

mylist.remove(3)

print(mylist) # Output: [1, 2, 4, 5]

mylist.pop(2)

print(mylist) # Output: [1, 2, 5]

Sorting a list:

Lists can be sorted using the sort() method or the sorted() function.

Sorting a list

mylist = [4, 2, 3, 1, 5]

mylist.sort()

print(mylist) # Output: [1, 2, 3, 4, 5]

sortedlist = sorted(mylist, reverse=True)

print(sortedlist) # Output: [5, 4, 3, 2, 1]

22 | P a g e

 Dictionaries

In Pythonic thinking, it is essential to know the available data structures and how to use them

effectively. One of the most commonly used data structures in Python is the dictionary. A

dictionary is an unordered collection of key-value pairs, where each key is unique. Dictionaries

are mutable, which means their elements can be changed once they are created. Dictionaries are

typically used for storing data that can be looked up using a key.

Here are some examples of dictionaries and how to use them:

Creating a dictionary:

Dictionaries can be created using curly braces {} or the dict() function.

Creating a dictionary using curly braces

mydict = {'apple': 1, 'banana': 2, 'orange': 3}

Creating a dictionary using the dict() function

mydict = dict(apple=1, banana=2, orange=3)

Accessing dictionary elements:

Dictionary elements can be accessed using the key. If the key does not exist, a KeyError will be

raised.

Accessing dictionary elements

mydict = {'apple': 1, 'banana': 2, 'orange': 3}

print(mydict['apple']) # Output: 1

print(mydict['watermelon']) # Raises KeyError:

'watermelon'

Modifying dictionary elements:

Since dictionaries are mutable, their elements can be modified.

Modifying dictionary elements

mydict = {'apple': 1, 'banana': 2, 'orange': 3}

mydict['orange'] = 4

print(mydict) # Output: {'apple': 1, 'banana': 2,

'orange': 4}

23 | P a g e

Adding elements to a dictionary:

Elements can be added to a dictionary using the key-value syntax.

Adding elements to a dictionary

mydict = {'apple': 1, 'banana': 2}

mydict['orange'] = 3

print(mydict) # Output: {'apple': 1, 'banana': 2,

'orange': 3}

Removing elements from a dictionary:

Elements can be removed from a dictionary using the del keyword or the pop() method to remove

an element using its key.

Removing elements from a dictionary

mydict = {'apple': 1, 'banana': 2, 'orange': 3}

del mydict['orange']

print(mydict) # Output: {'apple': 1, 'banana': 2}

mydict.pop('banana')

print(mydict) # Output: {'apple': 1}

Checking if a key exists in a dictionary:

To check if a key exists in a dictionary, you can use the in keyword.

Checking if a key exists in a dictionary

mydict = {'apple': 1, 'banana': 2, 'orange': 3}

print('banana' in mydict) # Output: True

print('watermelon' in mydict) # Output: False

Iterating over a dictionary:

To iterate over a dictionary, you can use the items() method to get the key-value pairs or the keys()

method to get the keys.

Iterating over a dictionary

mydict = {'apple': 1, 'banana': 2, 'orange': 3}

for key, value in mydict.items():

24 | P a g e

 print(key, value)

for key in mydict.keys():

 print(key)

for value in mydict.values():

 print(value)

 Sets

In Pythonic thinking, it is important to know the available data structures and how to use them

effectively. One of the commonly used data structures in Python is the set. A set is an unordered

collection of unique elements. Sets are mutable, which means their elements can be changed once

they are created. Sets are typically used for operations that require finding the intersection, union,

or difference between two collections.

Here are some examples of sets and how to use them:

Creating a set:

Sets can be created using curly braces {} or the set() function.

Creating a set using curly braces

myset = {1, 2, 3, 4}

Creating a set using the set() function

myset = set([1, 2, 3, 4])

Accessing set elements:

Set elements can be accessed using a for loop or the in keyword.

Accessing set elements

myset = {1, 2, 3, 4}

for element in myset:

 print(element)

print(1 in myset) # Output: True

print(5 in myset) # Output: False

25 | P a g e

Modifying set elements:

Since sets are mutable, their elements can be modified.

Modifying set elements

myset = {1, 2, 3, 4}

myset.add(5)

print(myset) # Output: {1, 2, 3, 4, 5}

myset.remove(4)

print(myset) # Output: {1, 2, 3, 5}

Combining sets:

Sets can be combined using union(), intersection(), and difference() methods.

Combining sets

set1 = {1, 2, 3, 4}

set2 = {3, 4, 5, 6}

union_set = set1.union(set2)

print(union_set) # Output: {1, 2, 3, 4, 5, 6}

intersection_set = set1.intersection(set2)

print(intersection_set) # Output: {3, 4}

difference_set = set1.difference(set2)

print(difference_set) # Output: {1, 2}

Checking if a set is a subset or superset:

To check if a set is a subset or superset of another set, you can use the issubset() and issuperset()

methods.

Checking if a set is a subset or superset

set1 = {1, 2, 3}

set2 = {1, 2, 3, 4, 5}

print(set1.issubset(set2)) # Output: True

print(set2.issuperset(set1)) # Output: True

26 | P a g e

Removing duplicate elements:

Sets can be used to remove duplicate elements from a list.

Removing duplicate elements from a list

mylist = [1, 2, 2, 3, 3, 4, 5, 5]

myset = set(mylist)

print(myset) # Output: {1, 2, 3, 4, 5}

In summary, sets are a useful data structure in Python for operations that require finding the

intersection, union, or difference between two collections.

 Arrays

In Pythonic thinking, it is important to know the available data structures and how to use them

effectively. One of the commonly used data structures in Python is the array. An array is a

collection of elements of the same data type, arranged in contiguous memory locations. Arrays are

typically used for operations that require efficient element-wise computations, such as linear

algebra operations.

Here are some examples of arrays and how to use them:

Creating an array:

Arrays can be created using the array() function from the array module.

import array as arr

Creating an array of integers

myarr = arr.array('i', [1, 2, 3, 4, 5])

Creating an array of floats

myarr = arr.array('f', [1.0, 2.0, 3.0, 4.0, 5.0])

Accessing array elements:

Array elements can be accessed using indexing, just like in a list.

Accessing array elements

myarr = arr.array('i', [1, 2, 3, 4, 5])

print(myarr[0]) # Output: 1

print(myarr[4]) # Output: 5

27 | P a g e

Modifying array elements:

Array elements can be modified by assigning new values to their corresponding indices.

Modifying array elements

myarr = arr.array('i', [1, 2, 3, 4, 5])

myarr[0] = 10

print(myarr) # Output: array('i', [10, 2, 3, 4, 5])

Performing element-wise computations:

Arrays can be used to perform element-wise computations efficiently using NumPy, a powerful

Python library for scientific computing.

import numpy as np

Performing element-wise computations

myarr = arr.array('f', [1.0, 2.0, 3.0, 4.0, 5.0])

myarr = np.square(myarr)

print(myarr) # Output: array([1., 4., 9., 16.,

25.], dtype=float32)

Converting arrays to lists:

Arrays can be converted to lists using the tolist() method.

Converting arrays to lists

myarr = arr.array('i', [1, 2, 3, 4, 5])

mylist = myarr.tolist()

print(mylist) # Output: [1, 2, 3, 4, 5]

In summary, arrays are a useful data structure in Python for operations that require efficient

element-wise computations, such as linear algebra operations. They can be created using the

array() function from the array module, accessed and modified using indexing, and converted to

lists using the tolist() method. To perform more advanced computations with arrays, NumPy is a

powerful library that is widely used in scientific computing.

28 | P a g e

 Queues

Queues are a fundamental data structure in computer science that are used to store a collection of

elements in a first-in, first-out (FIFO) order. They are commonly used in algorithms for tasks such

as breadth-first search, job scheduling, and message passing. In Python, queues can be

implemented using the built-in deque class from the collections module or using the queue module.

Here are some examples of using queues in Python:

Creating a queue:

To create a queue in Python, we can use the deque class from the collections module or the Queue

class from the queue module.

from collections import deque

or

from queue import Queue

Creating a queue using deque

myqueue = deque()

Creating a queue using Queue

myqueue = Queue()

Adding elements to a queue:

We can add elements to a queue using the append() method of the deque class or the put() method

of the Queue class.

Adding elements to a queue

myqueue = deque()

myqueue.append(1)

myqueue.append(2)

myqueue.append(3)

or

myqueue = Queue()

myqueue.put(1)

myqueue.put(2)

myqueue.put(3)

29 | P a g e

Removing elements from a queue:

We can remove elements from a queue using the popleft() method of the deque class or the get()

method of the Queue class.

Removing elements from a queue

myqueue = deque([1, 2, 3])

myqueue.popleft() # Output: 1

or

myqueue = Queue()

myqueue.put(1)

myqueue.put(2)

myqueue.put(3)

myqueue.get() # Output: 1

Checking the size of a queue:

We can check the size of a queue using the len() function.

Checking the size of a queue

myqueue = deque([1, 2, 3])

print(len(myqueue)) # Output: 3

In summary, queues are a useful data structure in Python for tasks that require a collection of

elements to be processed in a first-in, first-out order. They can be implemented using the built-in

deque class from the collections module or using the Queue class from the queue module. To add

elements to a queue, we can use the append() method of the deque class or the put() method of the

Queue class. To remove elements from a queue, we can use the popleft() method of the deque class

or the get() method of the Queue class. Finally, we can check the size of a queue using the len()

function.

 Stacks

Stacks are a fundamental data structure in computer science that are used to store a collection of

elements in a last-in, first-out (LIFO) order. They are commonly used in algorithms for tasks such

as expression evaluation, function call management, and undo/redo operations. In Python, stacks

can be implemented using the built-in list class.

30 | P a g e

Here are some examples of using stacks in Python:

Creating a stack:

To create a stack in Python, we can use an empty list.

Creating a stack

mystack = []

Adding elements to a stack:

We can add elements to a stack using the append() method of the list class.

Adding elements to a stack

mystack = []

mystack.append(1)

mystack.append(2)

mystack.append(3)

Removing elements from a stack:

We can remove elements from a stack using the pop() method of the list class.

Removing elements from a stack

mystack = [1, 2, 3]

mystack.pop() # Output: 3

mystack.pop() # Output: 2

Checking the size of a stack:

We can check the size of a stack using the len() function.

Checking the size of a stack

mystack = [1, 2, 3]

print(len(mystack)) # Output: 3

In summary, stacks are a useful data structure in Python for tasks that require a collection of

elements to be processed in a last-in, first-out order. They can be implemented using an empty list.

To add elements to a stack, we can use the append() method of the list class. To remove elements

from a stack, we can use the pop() method of the list class. Finally, we can check the size of a stack

using the len() function.

31 | P a g e

 Heaps

Heaps are a fundamental data structure in computer science that are used to efficiently maintain

the minimum (or maximum) element in a collection of elements. In Python, heaps can be

implemented using the built-in heapq module.

Here are some examples of using heaps in Python:

Creating a heap:

To create a heap in Python, we can use the heapify() function of the heapq module to convert a list

into a heap.

import heapq

Creating a heap

myheap = [3, 1, 4, 1, 5, 9, 2, 6, 5]

heapq.heapify(myheap)

Alternatively, we can use the heappush() function of the heapq module to add elements to an empty

heap.

import heapq

Creating a heap

myheap = []

heapq.heappush(myheap, 3)

heapq.heappush(myheap, 1)

heapq.heappush(myheap, 4)

heapq.heappush(myheap, 1)

heapq.heappush(myheap, 5)

heapq.heappush(myheap, 9)

heapq.heappush(myheap, 2)

heapq.heappush(myheap, 6)

heapq.heappush(myheap, 5)

Getting the minimum element from a heap:

To get the minimum element from a heap, we can use the heappop() function of the heapq module.

import heapq

Getting the minimum element from a heap

32 | P a g e

myheap = [3, 1, 4, 1, 5, 9, 2, 6, 5]

heapq.heapify(myheap)

print(heapq.heappop(myheap)) # Output: 1

print(heapq.heappop(myheap)) # Output: 1

Adding elements to a heap:

We can add elements to a heap using the heappush() function of the heapq module.

import heapq

Adding elements to a heap

myheap = [3, 1, 4, 1, 5, 9, 2, 6, 5]

heapq.heapify(myheap)

heapq.heappush(myheap, 0)

heapq.heappush(myheap, 7)

print(myheap) # Output: [0, 1, 2, 3, 5, 9, 4, 6, 5, 7]

Checking the size of a heap:

We can check the size of a heap using the len() function.

import heapq

Checking the size of a heap

myheap = [3, 1, 4, 1, 5, 9, 2, 6, 5]

heapq.heapify(myheap)

print(len(myheap)) # Output: 9

In summary, heaps are a useful data structure in Python for efficiently maintaining the minimum

(or maximum) element in a collection of elements. They can be implemented using the heapq

module. To create a heap, we can use the heapify() function of the heapq module to convert a list

into a heap, or we can use the heappush() function to add elements to an empty heap. To get the

minimum element from a heap, we can use the heappop() function. Finally, we can check the size

of a heap using the len() function.

33 | P a g e

 Trees

Trees are a fundamental data structure in computer science that are used to represent hierarchical

relationships between elements. In Python, trees can be implemented using classes and objects.

Here is an example of using trees in Python:

Creating a tree:

To create a tree in Python, we can define a class for the nodes of the tree, and use objects of this

class to represent the nodes.

class Node:

 def __init__(self, data):

 self.data = data

 self.left = None

 self.right = None

Creating a tree

root = Node(1)

root.left = Node(2)

root.right = Node(3)

root.left.left = Node(4)

root.left.right = Node(5)

Traversing a tree:

To traverse a tree in Python, we can use recursive functions to visit each node in the tree in a

specific order. Here are three common ways to traverse a tree:

Inorder traversal: Visit the left subtree, then the current node, then the right subtree.

def inorder(node):

 if node is not None:

 inorder(node.left)

 print(node.data)

 inorder(node.right)

Inorder traversal of the tree

inorder(root)

Preorder traversal: Visit the current node, then the left subtree, then the right subtree.

34 | P a g e

def preorder(node):

 if node is not None:

 print(node.data)

 preorder(node.left)

 preorder(node.right)

Preorder traversal of the tree

preorder(root)

Postorder traversal: Visit the left subtree, then the right subtree, then the current node.

def postorder(node):

 if node is not None:

 postorder(node.left)

 postorder(node.right)

 print(node.data)

Postorder traversal of the tree

postorder(root)

Finding elements in a tree:

To find an element in a tree in Python, we can use a recursive function to traverse the tree and

search for the element.

def find(node, data):

 if node is None:

 return False

 elif node.data == data:

 return True

 elif data < node.data:

 return find(node.left, data)

 else:

 return find(node.right, data)

Finding elements in the tree

print(find(root, 2)) # Output: True

print(find(root, 6)) # Output: False

In summary, trees are a useful data structure in Python for representing hierarchical relationships

between elements. They can be implemented using classes and objects. To traverse a tree, we can

use recursive functions to visit each node in the tree in a specific order. To find an element in a

tree, we can use a recursive function to traverse the tree and search for

35 | P a g e

the element.

 Graphs

Graphs are an important data structure in computer science that are used to represent relationships

between objects. A graph consists of a set of vertices (or nodes) and a set of edges that connect

pairs of vertices. In Python, graphs can be implemented using classes and objects.

Here is an example of using graphs in Python:

Creating a graph:

To create a graph in Python, we can define a class for the nodes of the graph, and use objects of

this class to represent the nodes. Each node can have a list of neighbors that represents the edges

connecting it to other nodes.

class Node:

 def __init__(self, data):

 self.data = data

 self.neighbors = []

Creating a graph

A = Node('A')

B = Node('B')

C = Node('C')

D = Node('D')

E = Node('E')

F = Node('F')

G = Node('G')

H = Node('H')

A.neighbors = [B, C, D]

B.neighbors = [A, E]

C.neighbors = [A, F]

D.neighbors = [A, G, H]

E.neighbors = [B]

F.neighbors = [C]

G.neighbors = [D, H]

H.neighbors = [D, G]

Traversing a graph:

To traverse a graph in Python, we can use a recursive function to visit each node in the graph in a

specific order. Here are two common ways to traverse a graph:

36 | P a g e

Depth-first search (DFS): Visit the current node, then recursively visit each of its neighbors.

def dfs(node, visited):

 visited.add(node)

 print(node.data)

 for neighbor in node.neighbors:

 if neighbor not in visited:

 dfs(neighbor, visited)

DFS traversal of the graph

visited = set()

dfs(A, visited)

Breadth-first search (BFS): Visit all nodes at a given distance from the starting node, then all nodes

at the next distance, and so on.

def bfs(node):

 visited = set()

 queue = [node]

 visited.add(node)

 while queue:

 curr_node = queue.pop(0)

 print(curr_node.data)

 for neighbor in curr_node.neighbors:

 if neighbor not in visited:

 visited.add(neighbor)

 queue.append(neighbor)

BFS traversal of the graph

bfs(A)

Finding paths in a graph:

To find a path between two nodes in a graph in Python, we can use a recursive function to traverse

the graph and search for the path. We can use either DFS or BFS to perform the traversal.

def find_path(start_node, end_node, visited, path):

 visited.add(start_node)

 path.append(start_node)

 if start_node == end_node:

 return path

 for neighbor in start_node.neighbors:

 if neighbor not in visited:

37 | P a g e

 result = find_path(neighbor, end_node,

visited, path)

 if result:

 return result

 path.pop()

Finding a path in the graph

visited = set()

path = []

result = find_path(A, H, visited, path)

if result:

 print('Path found:', [node.data for node in

result])

else:

 print('Path not found')

In summary, graphs are a versatile data structure in Python for representing relationships between

objects. They can be implemented using classes and objects. To traverse a graph, we can use either

DFS or BFS to visit each node in the graph in a specific order. To find a path between two nodes

in a graph, we can use a recursive function to traverse the graph and search for the path.

Write expressive code

 Choosing good names

In Pythonic thinking, writing expressive and readable code is important for maintaining code

quality and making it easier for others to understand and work with. One key aspect of this is

choosing good variable and function names that are descriptive and meaningful. In this note, we

will explore some best practices for choosing good names in Python, along with some examples

of suitable code.

Use descriptive names: Names should be clear and descriptive, making it easier for other

developers to understand what they represent. For example, instead of naming a variable "data",

consider naming it "user_data" or "sales_data".

Follow naming conventions: Python has some established naming conventions that are widely

used, such as using lowercase letters for variables and using underscores to separate words in a

name. Following these conventions can make your code more readable and easier to understand

for other developers.

Avoid abbreviations: While it may be tempting to use abbreviations to save space, it can actually

make your code harder to understand. For example, instead of using "usr" for "user", use the full

word "user".

38 | P a g e

Be consistent: Consistency in naming conventions is important for maintaining readability and

making your code easy to understand. If you choose to use a certain naming convention, make sure

to apply it consistently throughout your code.

Use meaningful function names: Function names should be descriptive and indicate what the

function does. For example, if a function calculates the average of a set of numbers, consider

naming it "calculate_average" instead of just "average".

Use comments sparingly: While comments can be helpful for providing context to code, they

should not be relied upon to make up for poorly named variables or functions. Instead, focus on

choosing descriptive names that communicate the purpose of the code.

Here is an example of code that follows these best practices for choosing good names:

calculate the average of a list of numbers

def calculate_average(numbers_list):

 sum = 0

 for number in numbers_list:

 sum += number

 return sum / len(numbers_list)

get user data from database

def get_user_data(user_id):

 query = "SELECT * FROM users WHERE id = %s"

 result = execute_query(query, user_id)

 return result

generate a random password for a user

def generate_password():

 alphabet = "abcdefghijklmnopqrstuvwxyz0123456789"

 password = ""

 for i in range(8):

 password += random.choice(alphabet)

 return password

In summary, choosing good names is an important aspect of writing expressive and readable code

in Python. By following best practices such as using descriptive names, following naming

conventions, avoiding abbreviations, being consistent, using meaningful function names, and

using comments sparingly, you can create code that is easy for other developers to understand and

work with.

 Avoiding magic numbers and strings

39 | P a g e

When writing code, it is important to avoid the use of magic numbers and strings. Magic numbers

and strings are hard-coded values that appear throughout your code and have no clear meaning or

explanation. These values can make your code difficult to understand and maintain, and can lead

to errors and bugs. In this note, we will explore some best practices for avoiding magic numbers

and strings in Python, along with some examples of suitable code.

Define constants: Instead of using hard-coded values throughout your code, define constants to

hold these values. This makes it easier to change these values in the future, and makes your code

more self-documenting. For example:

define a constant for the number of days in a week

DAYS_IN_WEEK = 7

use the constant instead of a hard-coded value

for i in range(DAYS_IN_WEEK):

 ...

Use named variables: Instead of using hard-coded strings throughout your code, define variables

to hold these values. This makes your code more self-documenting and helps prevent typos. For

example:

define variables for column names

NAME_COLUMN = "name"

AGE_COLUMN = "age"

use the variables instead of hard-coded strings

if column == NAME_COLUMN:

 ...

Use enums: Enums are a type of constant that represent a fixed set of values. They are especially

useful when working with a limited set of options, and make your code more self-documenting.

For example:

define an enum for days of the week

from enum import Enum

class Weekday(Enum):

 MONDAY = 1

 TUESDAY = 2

 WEDNESDAY = 3

 THURSDAY = 4

 FRIDAY = 5

 SATURDAY = 6

 SUNDAY = 7

40 | P a g e

use the enum instead of a hard-coded value

day = Weekday.MONDAY

if day == Weekday.SATURDAY:

 ...

Use configuration files: Instead of hard-coding values in your code, you can store them in

configuration files. This makes it easier to change these values without modifying your code, and

makes your code more modular. For example:

load configuration from a file

import configparser

config = configparser.ConfigParser()

config.read("config.ini")

use the configuration values in your code

if config.getboolean("debug", "enabled"):

 ...

In summary, avoiding magic numbers and strings is an important aspect of writing expressive and

maintainable code in Python. By defining constants, using named variables, using enums, and

using configuration files, you can make your code more self-documenting and easier to understand

and maintain.

 Using list comprehensions and generator expressions

List comprehensions and generator expressions are powerful features in Python that allow you to

create new lists and generators from existing ones in a concise and expressive way. In this note,

we will explore how to use list comprehensions and generator expressions to write expressive code

in Python, along with some examples of suitable code.

List comprehensions: List comprehensions allow you to create new lists by iterating over an

existing list and applying a function or conditional statement to each element. The resulting list is

created in a single line of code, making it concise and expressive. For example:

create a list of squared numbers

numbers = [1, 2, 3, 4, 5]

squares = [x ** 2 for x in numbers]

create a list of even numbers

evens = [x for x in numbers if x % 2 == 0]

41 | P a g e

Generator expressions: Generator expressions are similar to list comprehensions, but instead of

creating a new list, they create a generator that yields each element as needed. This can be more

memory-efficient than creating a new list, especially for large datasets. For example:

create a generator of squared numbers

numbers = [1, 2, 3, 4, 5]

squares = (x ** 2 for x in numbers)

create a generator of even numbers

evens = (x for x in numbers if x % 2 == 0)

Nested list comprehensions: Nested list comprehensions allow you to create more complex lists

by iterating over multiple lists and applying a function or conditional statement to each element.

This can be useful for creating matrices or performing more complex calculations. For example:

create a matrix of zeros

rows = 3

cols = 3

matrix = [[0 for j in range(cols)] for i in

range(rows)]

create a list of all pairs of numbers from two lists

list1 = [1, 2, 3]

list2 = [4, 5, 6]

pairs = [(x, y) for x in list1 for y in list2]

In summary, list comprehensions and generator expressions are powerful features in Python that

allow you to create new lists and generators from existing ones in a concise and expressive way.

By using these features, you can write more expressive and efficient code in Python.

 Leveraging built-in functions

Python has a vast collection of built-in functions that can perform a wide variety of operations.

Leveraging these functions can help you write more expressive code that is concise and easy to

read. In this note, we will explore some of the built-in functions that you can use to write more

expressive code, along with suitable codes.

map(): The map() function applies a function to each element of an iterable and returns a new

iterable with the results. This can be a useful way to apply a function to every element of a list

without using a loop. For example:

create a list of squared numbers using map()

numbers = [1, 2, 3, 4, 5]

squared = list(map(lambda x: x**2, numbers))

42 | P a g e

filter(): The filter() function returns an iterable containing the elements from an iterable that satisfy

a given condition. This can be a useful way to filter a list based on a condition without using a

loop. For example:

create a list of even numbers using filter()

numbers = [1, 2, 3, 4, 5]

even_numbers = list(filter(lambda x: x % 2 == 0,

numbers))

reduce(): The reduce() function applies a function to the first two elements of an iterable, then

applies the same function to the result and the next element, and so on, until all elements have been

processed. This can be a useful way to aggregate a list of values without using a loop. For example:

calculate the sum of a list using reduce()

from functools import reduce

numbers = [1, 2, 3, 4, 5]

total = reduce(lambda x, y: x + y, numbers)

zip(): The zip() function takes multiple iterables and returns an iterable of tuples containing the

elements from each iterable at corresponding positions. This can be a useful way to combine

multiple lists into a single list without using a loop. For example:

create a list of tuples using zip()

names = ["Alice", "Bob", "Charlie"]

ages = [25, 30, 35]

people = list(zip(names, ages))

enumerate(): The enumerate() function takes an iterable and returns an iterable of tuples containing

the index and element of each item. This can be a useful way to iterate over a list while keeping

track of the index without using a loop counter. For example:

iterate over a list using enumerate()

fruits = ["apple", "banana", "orange"]

for index, fruit in enumerate(fruits):

print(f"{index}: {fruit}")

In summary, leveraging built-in functions can help you write more expressive code in Python by

providing a concise and easy-to-read way to perform common operations. By using these

functions, you can avoid writing repetitive or verbose code, leading to more efficient and

maintainable code.

43 | P a g e

 Using the with statement

Python is a programming language that provides a lot of built-in tools and constructs to help

developers write more expressive and maintainable code. One such construct is the with statement,

which allows for the automatic management of resources such as file handles, database

connections, and network sockets. In this article, we will explore the with statement and see how

it can help us write more expressive and robust code.

The with statement is used to define a block of code that will be executed in the context of a

resource, such as a file or a network connection. The most common use case for with is to manage

file handles. Consider the following code snippet that opens a file, reads its contents, and then

closes the file:

file = open('example.txt', 'r')

contents = file.read()

file.close()

This code works fine, but there are a few issues with it. First, if an exception is raised while reading

the file, the close method will not be called, and the file handle will remain open, potentially

causing a resource leak. Second, the code is not very expressive - it is not immediately clear what

the purpose of the code is.

Now, let's rewrite the code using the with statement:

with open('example.txt', 'r') as file:

 contents = file.read()

This code is much more expressive - it is clear that we are reading the contents of a file. In addition,

the with statement automatically takes care of closing the file handle, even if an exception is raised

while reading the file. This ensures that we don't leak resources and that our code is more robust.

The with statement can also be used with other resources, such as database connections and

network sockets. Here is an example of using with to manage a database connection:

import sqlite3

with sqlite3.connect('example.db') as conn:

 cursor = conn.cursor()

 cursor.execute('SELECT * FROM customers')

 results = cursor.fetchall()

In this code, the with statement is used to create a database connection, which is automatically

closed when the block of code inside the with statement completes. This ensures that we don't leak

database connections and that our code is more robust.

44 | P a g e

The with statement is a powerful tool that can help us write more expressive and robust code. By

using with to manage resources such as file handles, database connections, and network sockets,

we can ensure that our code is more maintainable and less error-prone.

 Using decorators

Python provides a feature called decorators, which allows programmers to modify the behavior of

a function or class without changing its source code. Decorators are a powerful tool for writing

expressive code and can be used to simplify complex tasks.

In Python, a decorator is a callable object that takes another function or class as its argument and

returns a new function or class. This new function or class can then be used in place of the original

function or class.

Here's an example of a decorator that logs the time taken by a function to execute:

import time

def timing_decorator(func):

 def wrapper(*args, **kwargs):

 start_time = time.time()

 result = func(*args, **kwargs)

 end_time = time.time()

 print(f"{func.__name__} took {end_time -

start_time} seconds to run.")

 return result

 return wrapper

@timing_decorator

def long_running_function():

 # simulate a long running function

 time.sleep(2)

long_running_function()

In this example, the timing_decorator function takes a function as an argument, creates a new

function called wrapper, and returns it. The wrapper function uses the time module to measure the

time taken by the original function to execute and prints it to the console.

The @timing_decorator syntax is a shorthand way of applying the decorator to the

long_running_function function. It is equivalent to calling long_running_function =

timing_decorator(long_running_function).

Decorators can also be used to add functionality to a class. Here's an example of a decorator that

adds a log method to a class:

45 | P a g e

def add_logging(cls):

 def log(self, message):

 print(f"{cls.__name__}: {message}")

 cls.log = log

 return cls

@add_logging

class MyClass:

 pass

obj = MyClass()

obj.log("Hello, world!")

In this example, the add_logging function takes a class as an argument, defines a new log method

that prints a message to the console, adds the log method to the class, and returns the class. The

@add_logging syntax is a shorthand way of applying the decorator to the MyClass class.

Decorators are a powerful tool for writing expressive code in Python. They allow programmers to

modify the behavior of a function or class without changing its source code and can be used to

simplify complex tasks.

 Writing context managers

When writing code in Python, it's important to consider not only its functionality but also its

readability and maintainability. One way to achieve this is by using context managers. Context

managers are objects that help manage resources, such as files, locks, and network connections,

by defining the setup and teardown logic for the resource.

A context manager is implemented as a class that defines the methods __enter__() and __exit__():

 __enter__() is called at the beginning of a with block and returns the resource that will be

managed.

 __exit__() is called at the end of the with block and handles any cleanup logic that needs

to be performed.

Here's an example of a simple context manager that opens and closes a file:

class File:

 def __init__(self, filename, mode):

 self.filename = filename

 self.mode = mode

 def __enter__(self):

 self.file = open(self.filename, self.mode)

 return self.file

46 | P a g e

 def __exit__(self, exc_type, exc_value, traceback):

 self.file.close()

with File('example.txt', 'w') as f:

 f.write('Hello, world!')

In this example, the File class defines the __enter__() and __exit__() methods to open and close a

file. The with statement is used to automatically call these methods and ensure that the file is

properly closed when the block is exited.

Context managers can also be used to manage resources other than files, such as network

connections or database transactions. Here's an example of a context manager that wraps a database

transaction:

import sqlite3

class Transaction:

 def __init__(self, db):

 self.db = db

 def __enter__(self):

 self.conn = sqlite3.connect(self.db)

 self.cursor = self.conn.cursor()

 return self.cursor

 def __exit__(self, exc_type, exc_value, traceback):

 if exc_type is None:

 self.conn.commit()

 else:

 self.conn.rollback()

 self.cursor.close()

 self.conn.close()

with Transaction('example.db') as cursor:

 cursor.execute('CREATE TABLE IF NOT EXISTS users

(id INTEGER PRIMARY KEY, name TEXT)')

In this example, the Transaction class defines the __enter__() and __exit__() methods to open and

close a database connection and transaction. The with statement is used to automatically call these

methods and ensure that the transaction is properly committed or rolled back when the block is

exited.

In summary, context managers are a powerful tool for managing resources in Python. They provide

a clean and readable way to ensure that resources are properly setup and cleaned up, which can

lead to more maintainable and bug-free code.

47 | P a g e

Take advantage of Python's features

 Using named tuples

Python's named tuples are a convenient and efficient way of creating lightweight, immutable

objects with named fields. They are essentially a subclass of tuples that have named fields, making

them more readable and self-documenting. Named tuples are commonly used to represent data

structures in Python, and they can be used to replace dictionary objects in some scenarios where

the key is always a string.

In this note, we will discuss how to take advantage of Python's named tuples feature, including its

syntax and how it can be used to enhance code readability.

Syntax

The syntax for defining a named tuple in Python is straightforward. Here is an example:

from collections import namedtuple

Define a named tuple called 'Person' with three

fields: 'name', 'age', and 'gender'

Person = namedtuple('Person', ['name', 'age',

'gender'])

Create an instance of the named tuple

person1 = Person(name='Alice', age=25, gender='female')

In the example above, we first import the namedtuple class from the collections module. Then we

define a named tuple called 'Person' with three fields: 'name', 'age', and 'gender'. The first argument

to the namedtuple function is the name of the tuple, and the second argument is a list of field

names. We can then create an instance of the named tuple by passing in the field values as keyword

arguments.

Code Example

Here is an example that demonstrates how named tuples can be used to improve the readability of

code:

from collections import namedtuple

Define a named tuple called 'Point' with two fields:

'x' and 'y'

Point = namedtuple('Point', ['x', 'y'])

Define a function that calculates the distance

between two points

48 | P a g e

def distance(p1, p2):

 dx = p1.x - p2.x

 dy = p1.y - p2.y

 return (dx**2 + dy**2) ** 0.5

Create two points

p1 = Point(x=1, y=2)

p2 = Point(x=4, y=6)

Calculate the distance between the two points

d = distance(p1, p2)

print(f"The distance between {p1} and {p2} is

{d:.2f}.")

In the example above, we define a named tuple called 'Point' with two fields: 'x' and 'y'. We then

define a function called 'distance' that takes two Point objects as arguments and calculates the

distance between them using the Pythagorean theorem. Finally, we create two Point objects and

use them to call the distance function, which returns the distance between the two points. The

result is then printed using an f-string that makes use of the Point objects' str method.

Python's named tuples are a powerful and useful feature that can greatly enhance the readability

and organization of code. By using named tuples, developers can create lightweight and self-

documenting objects with named fields, making the code more readable and less error-prone.

 Leveraging closures

Python's closures are a powerful and useful feature that allows developers to create functions that

can access and manipulate variables from the enclosing scope. Closures are essentially functions

that remember the values of the variables in their lexical scope, even when the outer function has

returned.

In this note, we will discuss how to take advantage of Python's closures feature, including its syntax

and how it can be used to enhance code modularity and reusability.

Syntax

The syntax for defining a closure in Python is straightforward. Here is an example:

def outer_function(x):

 def inner_function(y):

 return x + y

 return inner_function

Create a closure by calling the outer function

closure = outer_function(10)

49 | P a g e

Call the closure

result = closure(5)

In the example above, we define a function called 'outer_function' that takes an argument 'x' and

returns another function called 'inner_function'. The inner function takes an argument 'y' and

returns the sum of 'x' and 'y'. When we call 'outer_function', it returns 'inner_function', which we

assign to a variable called 'closure'. We can then call the closure by passing in an argument 'y' and

storing the result in a variable called 'result'.

Code Example

Here is an example that demonstrates how closures can be used to improve code modularity and

reusability:

def make_multiplier(x):

 def multiplier(y):

 return x * y

 return multiplier

Create two closures using the make_multiplier

function

double = make_multiplier(2)

triple = make_multiplier(3)

Use the closures to multiply some numbers

print(double(5)) # Output: 10

print(triple(5)) # Output: 15

In the example above, we define a function called 'make_multiplier' that takes an argument 'x' and

returns another function called 'multiplier'. The inner function takes an argument 'y' and returns

the product of 'x' and 'y'. We then create two closures using the 'make_multiplier' function, one

that doubles the input and one that triples the input. We can then use these closures to multiply

some numbers.

Python's closures are a powerful and flexible feature that allows developers to create functions that

can access and manipulate variables from the enclosing scope. By using closures, developers can

create reusable and modular code that can be easily customized to suit different use cases. Closures

are an important tool in the Python programmer's toolbox, and should be used judiciously to

enhance code readability, modularity, and reusability.

 Using properties

Python's properties are a useful feature that allow developers to define methods that look like

simple attributes, while still providing the functionality of a method. Properties can be used to

validate or sanitize input, calculate derived values, or trigger side effects, all while providing a

clean and intuitive interface for accessing and modifying object state.

50 | P a g e

In this note, we will discuss how to take advantage of Python's properties feature, including its

syntax and how it can be used to enhance code readability and maintainability.

Syntax

The syntax for defining a property in Python is straightforward. Here is an example:

class Rectangle:

 def __init__(self, width, height):

 self._width = width

 self._height = height

 @property

 def width(self):

 return self._width

 @width.setter

 def width(self, value):

 if value <= 0:

 raise ValueError("Width must be positive")

 self._width = value

 @property

 def height(self):

 return self._height

 @height.setter

 def height(self, value):

 if value <= 0:

 raise ValueError("Height must be positive")

 self._height = value

 @property

 def area(self):

 return self._width * self._height

In the example above, we define a class called 'Rectangle' that has two private instance variables

'_width' and '_height'. We then define three properties using the '@property' decorator: 'width',

'height', and 'area'. Each property has a getter method, which simply returns the value of the

corresponding instance variable. We also define two setter methods for 'width' and 'height', which

validate that the new value is positive before setting the corresponding instance variable. Finally,

we define a 'area' property that calculates the area of the rectangle by multiplying 'width' and

'height'.

51 | P a g e

Code Example

Here is an example that demonstrates how properties can be used to enhance code readability and

maintainability:

class Temperature:

 def __init__(self, celsius):

 self._celsius = celsius

 @property

 def celsius(self):

 return self._celsius

 @celsius.setter

 def celsius(self, value):

 if value < -273.15:

 raise ValueError("Temperature cannot be

below absolute zero")

 self._celsius = value

 @property

 def fahrenheit(self):

 return self._celsius * 9 / 5 + 32

 @fahrenheit.setter

 def fahrenheit(self, value):

 self._celsius = (value - 32) * 5 / 9

In the example above, we define a class called 'Temperature' that has a private instance variable

'_celsius'. We define two properties using the '@property' decorator: 'celsius' and 'fahrenheit'. The

'celsius' property has a getter method that simply returns the value of '_celsius', and a setter method

that validates that the new value is not below absolute zero (-273.15 Celsius). The 'fahrenheit'

property has a getter method that calculates the Fahrenheit equivalent of the current Celsius

temperature, and a setter method that sets the Celsius temperature based on the Fahrenheit input.

Python's properties are a useful and powerful feature that can be used to enhance code readability

and maintainability. By defining methods that look like simple attributes, developers can provide

clean and intuitive interfaces for accessing and modifying object state, while still providing the

flexibility and functionality of a method. Properties are an important tool in the Python

programmer's toolbox, and should be used judiciously to enhance code readability and

maintainability.

 Using descriptors

Python's descriptors are a powerful feature that allows for the creation of objects that behave like

variables, but with custom behavior when they are accessed or assigned. They provide a way to

52 | P a g e

add custom behavior to attributes in classes, allowing for increased flexibility and extensibility in

Python code.

In this note, we will discuss how to take advantage of Python's descriptors feature, including its

syntax and how it can be used to enhance code functionality.

Syntax

The syntax for defining a descriptor in Python is straightforward. Here is an example:

class Descriptor:

 def __get__(self, instance, owner):

 print("Getting the attribute")

 return instance._value

 def __set__(self, instance, value):

 print("Setting the attribute")

 instance._value = value

class MyClass:

 def __init__(self, value):

 self._value = value

 x = Descriptor()

In the example above, we define a class called 'Descriptor' that has two special methods: 'get' and

'set'. These methods are called by the interpreter when an attribute is accessed or assigned in an

instance of the class that uses the descriptor. We then define a class called 'MyClass' that has an

instance variable '_value' and a descriptor called 'x'. When the 'x' attribute is accessed or assigned,

the corresponding 'get' and 'set' methods of the descriptor are called.

Code Example

Here is an example that demonstrates how descriptors can be used to enhance code functionality:

class PositiveNumber:

 def __get__(self, instance, owner):

 return instance._value

 def __set__(self, instance, value):

 if value < 0:

 raise ValueError("Value must be positive")

 instance._value = value

class MyClass:

 x = PositiveNumber()

53 | P a g e

 def __init__(self, x):

 self.x = x

In the example above, we define a descriptor called 'PositiveNumber' that ensures that any value

assigned to the attribute it is used on must be positive. We then define a class called 'MyClass' that

uses the 'PositiveNumber' descriptor on the 'x' attribute. When an instance of 'MyClass' is created,

it initializes the 'x' attribute to the value passed in to the constructor, but if that value is negative,

a 'ValueError' is raised.

 Using metaclasses

Metaclasses are a powerful feature of Python that allow you to modify the behavior of a class when

it is defined. Metaclasses can be used to customize the way classes are constructed, add or modify

class attributes, and perform other advanced operations.

To take advantage of Python's metaclass feature, we can create our own custom metaclasses that

define how classes are created and behave. Let's take a look at an example:

class MyMeta(type):

 def __new__(cls, name, bases, attrs):

 print("Creating class:", name)

 return super().__new__(cls, name, bases, attrs)

class MyClass(metaclass=MyMeta):

 pass

In this example, we define a custom metaclass MyMeta that will be used to create the class

MyClass. The __new__ method of the metaclass is called when MyClass is defined, and it prints

a message indicating that the class is being created.

To use the custom metaclass, we pass it as the metaclass argument when defining the class, as

shown in the MyClass definition.

Now, let's look at another example that demonstrates the ability of metaclasses to modify class

attributes:

class MyMeta(type):

 def __new__(cls, name, bases, attrs):

 attrs['my_attribute'] = 42

 return super().__new__(cls, name, bases, attrs)

class MyClass(metaclass=MyMeta):

 pass

print(MyClass.my_attribute) # Output: 42

54 | P a g e

In this example, the MyMeta metaclass adds an attribute my_attribute to the class MyClass. When

we access this attribute on an instance of MyClass, we get the value 42.

These are just a few examples of how you can use metaclasses in Python. With metaclasses, you

have the power to customize the behavior of classes in many different ways, so feel free to

experiment and see what you can do!

Writing idiomatic Python

 Writing Pythonic loops

Python is a powerful and versatile programming language, known for its readability and

expressiveness. One of the key features that makes Python stand out is its ability to write clean,

concise and Pythonic code. In this note, we'll focus on writing Pythonic loops, which are loops

that are written in a way that is idiomatic to the Python language. We'll cover some common

scenarios and best practices for writing Pythonic loops.

Looping through a list:

A common scenario in Python is to loop through a list of items. Here's an example of a non-

Pythonic way of doing this:

my_list = [1, 2, 3, 4, 5]

for i in range(len(my_list)):

 print(my_list[i])

In this code, we're using the range function to generate a sequence of integers that correspond to

the indices of the list. We then use the index to access each item in the list. While this code works,

it's not very Pythonic. A better way to write this code would be:

my_list = [1, 2, 3, 4, 5]

for item in my_list:

 print(item)

In this code, we're directly iterating over the items in the list using a for loop. This is the Pythonic

way of looping through a list.

Looping through a dictionary:

Another common scenario is to loop through a dictionary. Here's an example of a non-Pythonic

way of doing this:

my_dict = {'a': 1, 'b': 2, 'c': 3}

55 | P a g e

for key in my_dict:

 value = my_dict[key]

 print(key, value)

In this code, we're iterating over the keys in the dictionary and then using the key to access the

corresponding value. While this code works, it's not very Pythonic. A better way to write this code

would be:

my_dict = {'a': 1, 'b': 2, 'c': 3}

for key, value in my_dict.items():

 print(key, value)

In this code, we're using the items method of the dictionary to directly iterate over the key-value

pairs. This is the Pythonic way of looping through a dictionary.

Looping with a condition:

Sometimes, we want to loop through a list or dictionary and only process items that meet a certain

condition. Here's an example of a non-Pythonic way of doing this:

my_list = [1, 2, 3, 4, 5]

for i in range(len(my_list)):

 if my_list[i] > 2:

 print(my_list[i])

In this code, we're using the range function to generate a sequence of integers that correspond to

the indices of the list. We then use the index to access each item in the list and check if it meets a

condition. While this code works, it's not very Pythonic. A better way to write this code would be:

my_list = [1, 2, 3, 4, 5]

for item in my_list:

 if item > 2:

 print(item)

In this code, we're directly iterating over the items in the list using a for loop and checking the

condition using an if statement. This is the Pythonic way of looping with a condition.

 Using enumerate and zip

Python provides two built-in functions, enumerate and zip, that are very useful for looping over

sequences and iterating over multiple sequences at the same time. In this note, we'll focus on how

to use enumerate and zip effectively in your Python code.

Using enumerate:

56 | P a g e

The enumerate function is used to iterate over a sequence and keep track of the index of the current

item. Here's an example of how to use enumerate:

my_list = ['apple', 'banana', 'orange']

for i, item in enumerate(my_list):

 print(i, item)

In this code, we're using enumerate to loop through the my_list sequence and keep track of the

index and the current item. The output of this code would be:

0 apple

1 banana

2 orange

This is a very common pattern in Python code, especially when you need to access the index of

the current item.

Using zip:

The zip function is used to iterate over multiple sequences at the same time, combining their

corresponding items into tuples. Here's an example of how to use zip:

list_a = [1, 2, 3]

list_b = ['a', 'b', 'c']

for item_a, item_b in zip(list_a, list_b):

 print(item_a, item_b)

In this code, we're using zip to loop through both list_a and list_b at the same time, combining

their corresponding items into tuples. The output of this code would be:

1 a

2 b

3 c

This is a very useful feature of Python when you need to iterate over multiple sequences and

process their corresponding items at the same time.

Using enumerate and zip together:

One powerful pattern in Python is to use enumerate and zip together to iterate over a sequence and

its corresponding indices at the same time. Here's an example of how to use enumerate and zip

together:

my_list = ['apple', 'banana', 'orange']

for i, item in enumerate(zip(my_list,

range(len(my_list)))):

57 | P a g e

 print(i, item[0], item[1])

In this code, we're using enumerate and zip together to loop through my_list and its corresponding

indices. The zip function is used to combine my_list with a sequence of integers that correspond

to the indices of the list. The output of this code would be:

0 apple 0

1 banana 1

2 orange 2

This is a powerful pattern in Python that allows you to iterate over a sequence and its corresponding

indices at the same time, without having to generate the sequence of integers using range.

Enumerate and zip are powerful built-in functions in Python that can make your code more concise

and readable. They are especially useful when you need to access the index of the current item in

a sequence, or when you need to iterate over multiple sequences at the same time.

 Using the ternary operator

The ternary operator in Python is a powerful tool that allows you to write concise, readable code.

It is a shorthand way to write an if-else statement and is often used to make code more readable

by reducing the amount of boilerplate code. In this note, we'll discuss how to write idiomatic

Python using the ternary operator.

Basic syntax:

The syntax of the ternary operator is as follows:

<expression_if_true> if <condition> else

<expression_if_false>

Here, <condition> is the boolean expression that you

want to evaluate, and <expression_if_true> and

<expression_if_false> are the expressions that will be

returned if the condition is true or false,

respectively.

Writing idiomatic Python:

In Python, it's important to write code that is easy to read and understand. When using the ternary

operator, it's important to use it in a way that is clear and concise.

One way to use the ternary operator in a clear and concise way is to use it to assign a value to a

variable. For example:

x = 10

y = 20

58 | P a g e

max_num = x if x > y else y

In this code, we're using the ternary operator to assign the maximum value of x and y to the

max_num variable. This code is concise and easy to read.

Another way to use the ternary operator in a clear and concise way is to use it to conditionally

execute code. For example:

x = 10

y = 20

result = x * 2 if x > y else y * 2

In this code, we're using the ternary operator to conditionally execute the x * 2 expression if x is

greater than y, and the y * 2 expression if y is greater than or equal to x. This code is also concise

and easy to read.

Examples of idiomatic Python:

Here are some examples of using the ternary operator in idiomatic Python code:

Example 1: Check if a value is in a list

my_list = [1, 2, 3, 4, 5]

if 6 in my_list:

 index = my_list.index(6)

else:

 index = -1

This code can be written more idiomatically using the

ternary operator:

index = my_list.index(6) if 6 in my_list else -1

Example 2: Set a variable to a default value if it is

None

my_var = None

if my_var is None:

 my_var = "default_value"

This code can be written more idiomatically using the

ternary operator:

my_var = my_var if my_var is not None else

"default_value"

59 | P a g e

Example 3: Check if a variable is empty

my_var = ""

if len(my_var) == 0:

 is_empty = True

else:

 is_empty = False

This code can be written more idiomatically using the

ternary operator:

is_empty = True if len(my_var) == 0 else False

In each of these examples, we're using the ternary operator to write more concise and readable

code.

Using the ternary operator in Python can help you write concise and readable code. When using

the ternary operator, it's important to use it in a way that is clear and concise. By following the

examples in this note, you can learn how to write idiomatic Python using the ternary operator.

 Using multiple assignment

Multiple assignment is a powerful feature in Python that allows you to assign multiple variables

at once. It can make your code more readable and concise by reducing the amount of boilerplate

code. In this note, we'll discuss how to write idiomatic Python using multiple assignment.

Basic syntax:

The syntax for multiple assignment in Python is as follows:

a, b = 10, 20

In this code, we're assigning the values 10 and 20 to the variables a and b, respectively. This code

is equivalent to writing:

a = 10

b = 20

Using multiple assignment can help you reduce the amount of code you need to write and make

your code more readable.

Writing idiomatic Python:

When using multiple assignment in Python, it's important to use it in a way that is clear and concise.

Here are some tips for writing idiomatic Python using multiple assignment:

60 | P a g e

Use tuple packing and unpacking: Python allows you to pack multiple values into a tuple and then

unpack them into variables using multiple assignment. For example:

my_tuple = (10, 20, 30)

a, b, c = my_tuple

In this code, we're packing the values 10, 20, and 30 into the my_tuple tuple, and then unpacking

them into the variables a, b, and c, respectively. This code is equivalent to writing:

my_tuple = (10, 20, 30)

a = my_tuple[0]

b = my_tuple[1]

c = my_tuple[2]

Using tuple packing and unpacking can make your code more concise and readable.

Use multiple assignment with functions that return multiple values: Many functions in Python

return multiple values as tuples. For example, the divmod() function returns the quotient and

remainder of a division operation as a tuple. You can use multiple assignment to assign these

values to separate variables. For example:

quotient, remainder = divmod(10, 3)

In this code, we're using multiple assignment to assign the quotient and remainder of the division

operation 10 / 3 to the variables quotient and remainder, respectively.

Use multiple assignment to swap variable values: In Python, you can swap the values of two

variables using multiple assignment. For example:

a, b = b, a

In this code, we're swapping the values of a and b. This code is equivalent to writing:

temp = a

a = b

b = temp

Using multiple assignment to swap variable values can make your code more concise and readable.

Examples of idiomatic Python:

Here are some examples of using multiple assignment in idiomatic Python code:

Example 1: Unpack a tuple returned by a function

def get_numbers():

61 | P a g e

 return 10, 20, 30

a, b, c = get_numbers()

Example 2: Swap variable values

x, y = 10, 20

x, y = y, x

Example 3: Assign default values to multiple

variables

x, y = None, None

x = x or 10

y = y or 20

In each of these examples, we're using multiple assignment to write more concise and readable

code.

 Using the walrus operator

The walrus operator, also known as the assignment expression, is a new feature introduced in

Python 3.8 that allows you to assign values to variables as part of an expression. It can be used to

write more concise and readable code in certain situations. In this note, we'll discuss how to write

idiomatic Python using the walrus operator.

Basic syntax:

The syntax for the walrus operator in Python is as follows:

variable := expression

In this code, we're assigning the result of the expression to the variable using the walrus operator.

The := symbol is the walrus operator.

Writing idiomatic Python:

When using the walrus operator in Python, it's important to use it in a way that is clear and concise.

Here are some tips for writing idiomatic Python using the walrus operator:

Use it in list comprehensions: The walrus operator can be useful in list comprehensions when you

want to filter the list based on a condition and then use the filtered list in the same expression. For

example:

numbers = [1, 2, 3, 4, 5]

62 | P a g e

squares = [x ** 2 for x in numbers if (y := x ** 2) >

10]

In this code, we're using the walrus operator to assign the result of x ** 2 to the variable y, and

then using y in the same expression to filter the list based on the condition y > 10.

Use it to simplify if-else statements: The walrus operator can also be used to simplify if-else

statements when you need to assign a value to a variable based on a condition. For example:

name = input("What is your name? ")

greeting = f"Hello, {name}" if (name := name.strip())

else "Hello, Stranger"

In this code, we're using the walrus operator to assign the result of name.strip() to the variable

name, and then using name in the same expression to determine the value of the greeting variable

based on whether or not name is empty after stripping.

 Using context managers

Python context managers provide a convenient way to manage resources and ensure proper clean-

up, even in the presence of exceptions or other errors. In this note, we will discuss how to use

context managers in Python to write more idiomatic and readable code.

A context manager is an object that defines the methods __enter__ and __exit__. The __enter__

method is called when the context manager is entered, and the __exit__ method is called when the

context manager is exited. The with statement is used to invoke the context manager.

Here's an example of using a context manager to open a file:

with open("example.txt", "r") as f:

 contents = f.read()

In this example, the open function returns a file object, which is used as a context manager in the

with statement. The __enter__ method of the file object is called when the with statement is

executed, and the file is opened for reading. The __exit__ method of the file object is called when

the with block is exited, and the file is closed.

Here's another example of using a context manager to lock a resource:

import threading

lock = threading.Lock()

with lock:

 # do some thread-safe operation here

63 | P a g e

In this example, the threading.Lock object is used as a context manager in the with statement. The

__enter__ method of the lock is called when the with statement is executed, and the lock is

acquired. The __exit__ method of the lock is called when the with block is exited, and the lock is

released.

Now, let's look at some tips for writing more idiomatic Python code using context managers:

 Use the with statement whenever possible to ensure proper clean-up of resources.

 Use context managers provided by the standard library whenever possible, such as open,

threading.Lock, contextlib.suppress, etc.

 Use the contextlib.ContextDecorator class to create context managers that can be used as

function decorators.

 Use the contextlib.ExitStack class to manage multiple context managers.

Here's an example of using contextlib.ContextDecorator to create a context manager that measures

the time taken by a function:

import contextlib

import time

@contextlib.ContextDecorator

def timeit(func):

 start = time.time()

 yield

 end = time.time()

 print(f"{func.__name__} took {end - start}

seconds")

In this example, the timeit function is a context manager that measures the time taken by a function.

The function is passed as an argument to the timeit function, and the yield statement is used to

indicate the point where the function should be executed. When the with block is exited, the time

taken by the function is printed to the console.

Finally, here's an example of using contextlib.ExitStack to manage multiple context managers:

import contextlib

class DatabaseConnection:

 def __init__(self, database_url):

 self.database_url = database_url

64 | P a g e

 def connect(self):

 # connect to database here

 pass

 def disconnect(self):

 # disconnect from database here

 pass

class HttpConnection:

 def __init__(self, http_url):

 self.http_url = http_url

 def connect(self):

 # connect to http server here

 pass

 def disconnect(self):

 # disconnect from http server here

 pass

65 | P a g e

Chapter 3:
Functions

66 | P a g e

Functions are an essential part of programming and are used in almost every programming

language. Functions are a set of instructions that perform a specific task or set of tasks. They help

in organizing the code and make it easier to read, understand, and maintain. In Python, functions

are defined using the "def" keyword and are an integral part of the language.

Python functions are powerful and flexible, allowing developers to perform complex operations

with ease. They can be used to encapsulate code, which makes it reusable and reduces the amount

of code that needs to be written. This, in turn, reduces the chances of introducing errors in the code.

Functions in Python can be simple or complex, depending on the task they perform. Simple

functions perform a single task, while complex functions perform a set of tasks. Regardless of their

complexity, Python functions are easy to define, use, and understand.

One of the key features of Python functions is that they can be called multiple times from different

parts of the code. This makes it easy to reuse code and avoid repetition. Functions in Python can

also take parameters, which allows them to be customized based on the needs of the program.

Python functions can also return values, which makes it possible to use them in complex

operations. The return statement is used to return a value from a function. The returned value can

be used in other parts of the program, making it possible to perform complex operations with ease.

Python also has built-in functions that can be used without defining them. These functions are part

of the Python standard library and can be used to perform common tasks. Some examples of built-

in functions include print(), len(), and input().

In Python, functions can also be defined inside other functions. These are called nested functions

and are used when a function performs a specific task that is used only in the context of the main

function. Nested functions make it easy to organize code and make it more readable.

Another important feature of functions in Python is recursion. Recursion is a technique where a

function calls itself, either directly or indirectly. This technique is used when a function needs to

perform a specific task repeatedly.

In summary, functions are an essential part of programming in Python. They are used to perform

a specific task or set of tasks and help in organizing the code, making it easier to read, understand,

and maintain. Python functions are powerful and flexible, allowing developers to perform complex

operations with ease. They can be called multiple times from different parts of the code, take

parameters, return values, and can be defined inside other functions. By mastering functions in

Python, developers can write code that is more efficient, flexible, and reusable.

67 | P a g e

Function basics

 Function arguments and return values

In Python, function arguments and return values are an essential part of the language, allowing for

the creation of reusable code that can be easily called with different inputs and produce different

outputs. In this note, we will discuss function arguments and return values in Python, including

their types and how they can be used.

Function Arguments in Python:

In Python, there are four types of function arguments:

 Positional Arguments

 Keyword Arguments

 Default Arguments

 Variable-length Arguments

Positional Arguments:

Positional arguments are the most basic type of function argument. These are the arguments that

are passed to a function in the order they are defined in the function definition.

def add_numbers(x, y):

 return x + y

result = add_numbers(3, 5)

print(result) # Output: 8

In the example above, x and y are the two positional arguments passed to the add_numbers

function. The order of the arguments is important, so if we were to switch the order of the

arguments, we would get a different result.

Keyword Arguments:

Keyword arguments are a way to pass arguments to a function using their parameter names. This

allows us to pass arguments in any order, as long as we specify the parameter names.

def subtract_numbers(x, y):

 return x - y

result = subtract_numbers(x=10, y=3)

68 | P a g e

print(result) # Output: 7

In the example above, we are using keyword arguments to pass x and y to the subtract_numbers

function. We can also mix positional and keyword arguments in the same function call:

result = subtract_numbers(10, y=3)

print(result) # Output: 7

Default Arguments:

Default arguments are a way to specify a default value for a function parameter. If the argument is

not passed when the function is called, the default value is used instead.

def greet(name, greeting="Hello"):

 print(f"{greeting}, {name}!")

greet("John") # Output: Hello, John!

greet("Mary", "Hi") # Output: Hi, Mary!

In the example above, we are using a default argument to specify the default greeting if one is not

provided. If we pass a greeting argument, it will override the default value.

Variable-length Arguments:

Variable-length arguments allow a function to accept an arbitrary number of arguments. There are

two types of variable-length arguments in Python:

*args: This allows a function to accept an arbitrary number of positional arguments.

**kwargs: This allows a function to accept an arbitrary number of keyword arguments.

def multiply_numbers(*args):

 result = 1

 for arg in args:

 result *= arg

 return result

result = multiply_numbers(2, 3, 4)

print(result) # Output: 24

def print_values(**kwargs):

 for key, value in kwargs.items():

 print(f"{key} = {value}")

print_values(name="John", age=30, city="New York")

Output:

69 | P a g e

name = John

age = 30

city = New York

In the example above, we are using *args to accept an arbitrary number of positional arguments in

the multiply_numbers function, and **kwargs to accept an arbitrary number of keyword arguments

in the print_values function.

 Documenting functions

Documenting functions in Python is an important aspect of writing clean and maintainable code.

A well-documented function helps other developers understand its purpose, inputs, outputs, and

any potential side effects. In this note, we will discuss how to document functions in Python,

including the use of docstrings and annotations.

Docstrings in Python:

Docstrings are a way to document functions, modules, and classes in Python. A docstring is a

string that appears as the first statement in a module, function, or class definition. Docstrings can

be accessed using the built-in help() function or by typing the function name followed by a question

mark in an interactive Python session.

There are two types of docstrings in Python: one-line docstrings and multi-line docstrings. One-

line docstrings are used for simple functions and consist of a single line of text enclosed in triple

quotes.

def add_numbers(x, y):

 """Add two numbers and return the result."""

 return x + y

Multi-line docstrings are used for more complex functions and consist of a brief summary followed

by a more detailed description of the function's purpose, inputs, outputs, and any side effects.

Multi-line docstrings are enclosed in triple quotes and can span multiple lines.

def greet(name):

 """

 Greet the given name.

This function takes a name as input and prints a greeting message to the console.

It does not return any value.

 Args:

 name (str): The name to greet.

 Returns:

70 | P a g e

 None

 """

 print(f"Hello, {name}!")

Annotations in Python:

Function annotations are another way to document functions in Python. Annotations are optional

metadata that can be added to function arguments and return values using the colon syntax.

def add_numbers(x: int, y: int) -> int:

 """Add two integers and return the result."""

 return x + y

In the example above, we are using annotations to specify that the x and y arguments should be

integers, and that the function should return an integer.

Annotations can also be used to specify default argument values and variable-length arguments.

def greet(name: str = "World", *args: str, **kwargs:

str) -> None:

 """

Greet the given name and print any additional arguments and keyword arguments.

This function takes a name as input and prints a greeting message to the console.

It can also take additional positional and keyword arguments, which will be printed.

 Args:

 name (str): The name to greet. Defaults to

"World".

 args (str): Additional positional arguments.

 kwargs (str): Additional keyword arguments.

 Returns:

 None

 """

 print(f"Hello, {name}!")

 if args:

 print("Additional arguments:")

 for arg in args:

 print(f"- {arg}")

 if kwargs:

 print("Additional keyword arguments:")

 for key, value in kwargs.items():

 print(f"- {key}: {value}")

71 | P a g e

In the example above, we are using annotations to specify that the name argument should be a

string with a default value of "World", and that *args should be an arbitrary number of positional

string arguments, and **kwargs should be an arbitrary number of keyword string arguments.

Documenting functions in Python is an essential part of writing clean and maintainable code.

Docstrings and annotations are powerful tools that can help other developers understand the

purpose, inputs, outputs, and any potential side effects of a function. By following best practices

for function documentation, we can make our code more accessible and easier to maintain.

 Writing doctests

Writing doctests in Python is a way to test functions by embedding test cases in their docstrings.

This can help ensure that the function works as intended and also serves as a form of

documentation. In this note, we will discuss how to write doctests in Python, including the syntax

and best practices.

Syntax:

Doctests are written in the docstring of a function and consist of a series of input/output pairs. Each

input/output pair consists of a prompt, a function call, and the expected output. The prompt is a

string that describes the test case and the function call is the expression to be evaluated.

Here is an example of a simple function with a doctest:

def add_numbers(x, y):

 """

 Add two numbers and return the result.

 >>> add_numbers(2, 3)

 5

 >>> add_numbers(-1, 1)

 0

 """

 return x + y

In the example above, we have defined a function add_numbers that takes two numbers and returns

their sum. We have also included two doctests in the function's docstring. The first doctest checks

that add_numbers(2, 3) returns 5 and the second doctest checks that add_numbers(-1, 1) returns 0.

Running Doctests:

Doctests can be run using the built-in doctest module in Python. To run doctests for a module,

simply call doctest.testmod() at the bottom of the module.

import doctest

72 | P a g e

def add_numbers(x, y):

 """

 Add two numbers and return the result.

 >>> add_numbers(2, 3)

 5

 >>> add_numbers(-1, 1)

 0

 """

 return x + y

if __name__ == '__main__':

 doctest.testmod()

In the example above, we have imported the doctest module and called doctest.testmod() at the

bottom of the module to run the doctests. When the module is executed, the testmod() function

will search for doctests in the module's docstrings and execute them. If all tests pass, nothing will

be printed to the console. If a test fails, an error message will be printed to the console.

Best Practices:

When writing doctests in Python, it is important to follow best practices to ensure that the tests are

effective and maintainable. Here are some tips:

 Write doctests for all functions and methods.

 Include only one input/output pair per test case.

 Use descriptive prompts that describe the input and expected output.

 Avoid using variables in prompts that are not defined in the function.

 Use assert statements for more complex test cases.

 Use triple quotes for multi-line prompts and output.

Writing doctests in Python is an effective way to test functions and document their behavior. By

following best practices and including doctests for all functions, we can ensure that our code is

more reliable and maintainable.

 Writing function annotations

Function annotations in Python are used to specify the expected data types of function arguments

and return values. These annotations are not enforced by the interpreter, but they can be used by

other tools such as linters, type checkers, and IDEs to provide better code completion, type

checking, and documentation.

To write function annotations in Python, you can use the colon syntax to indicate the expected data

type. For example, to specify that the function add expects two integers as arguments and returns

an integer, you can write:

73 | P a g e

def add(x: int, y: int) -> int:

 return x + y

In this example, the int before the argument name and after the -> arrow indicate that x and y

should be integers, and that the return value should also be an integer.

You can use any data type as a function annotation, including built-in types like int, float, str, bool,

and None, as well as user-defined types and even generic types from the typing module.

Here are some more examples:

def greet(name: str) -> str:

 return f"Hello, {name}!"

def divide(x: float, y: float) -> float:

 return x / y

def repeat_string(s: str, n: int) -> str:

 return s * n

def process_data(data: List[Dict[str, Any]]) ->

Dict[str, Any]:

 # process data and return result

In this last example, we use the List and Dict types from the typing module to specify that the data

argument should be a list of dictionaries with string keys and values of any type, and that the return

value should be a dictionary with string keys and values of any type.

It's worth noting that function annotations are optional in Python, and they do not affect the

behavior of the function in any way. However, they can be very useful for providing

documentation and improving code quality, especially when working on larger projects with

multiple developers.

In addition to function annotations, you can also use type hints to specify the expected types of

variables and attributes. For example:

name: str = "Alice"

age: int = 30

class Person:

 def __init__(self, name: str, age: int):

 self.name = name

 self.age = age

p = Person("Bob", 25)

74 | P a g e

In this example, we use type hints to specify that the name variable should be a string and the age

variable should be an integer, and we use the same annotations in the Person class constructor to

specify the expected types of the name and age attributes.

Overall, using function annotations and type hints can help make your code more readable,

maintainable, and reliable. While they are not required in Python, they are a powerful tool for

improving code quality and reducing errors.

 Using default arguments

In Python, you can define default arguments for function parameters. Default arguments are values

that are automatically assigned to a parameter if no argument is provided for that parameter. This

allows you to write functions that are more flexible and can handle different scenarios with

minimal changes to the code.

To use default arguments in Python, you simply need to provide a default value for a parameter

when defining the function. For example, consider the following function that adds two numbers:

def add(x, y):

 return x + y

This function works fine when you call it with two arguments:

>>> add(2, 3)

5

But what if you want to use the same function to add only one number to a fixed value? You could

modify the function to take a default value for y:

def add(x, y=0):

 return x + y

Now, if you call add with only one argument, it will add that argument to 0 (the default value of

y):

>>> add(2)

2

And if you call add with two arguments, it will add them together as before:

>>> add(2, 3)

5

You can also use default arguments to make a function more flexible by allowing the user to

customize some behavior without having to modify the function code. For example, consider the

following function that prints a message:

75 | P a g e

def greet(name, greeting="Hello"):

 print(f"{greeting}, {name}!")

This function takes a name argument and a greeting argument that defaults to "Hello". If you call

the function with only a name argument, it will print "Hello, {name}!":

>>> greet("Alice")

Hello, Alice!

But you can also provide a custom greeting:

>>> greet("Bob", "Good morning")

Good morning, Bob!

Using default arguments in Python can help you write more flexible and reusable functions, and

make your code easier to read and maintain. However, you should be careful when using mutable

objects (such as lists or dictionaries) as default arguments, as their values can be modified across

multiple calls to the same function, leading to unexpected behavior.

 Using keyword arguments

In Python, you can use keyword arguments to pass arguments to a function in any order you like.

Keyword arguments are a way to specify which argument corresponds to which parameter by using

the parameter name as a keyword when calling the function.

To use keyword arguments in Python, you simply need to provide the argument name and its

corresponding value when calling the function. For example, consider the following function that

takes two arguments:

def greet(name, greeting):

print(f"{greeting}, {name}!")

To call this function with positional arguments, you need to provide the arguments in the correct

order:

>>> greet("Alice", "Hello")

Hello, Alice!

But you can also call this function with keyword arguments, specifying the argument names

explicitly:

>>> greet(name="Bob", greeting="Good morning")

Good morning, Bob!

76 | P a g e

When using keyword arguments, you can provide the arguments in any order you like:

>>> greet(greeting="Hi", name="Charlie")

Hi, Charlie!

Using keyword arguments can be especially useful when calling functions that have many

parameters or when you want to provide default values for some of the parameters. For example,

consider the following function that takes three arguments, with the third argument having a

default value:

def divide(x, y, precision=2):

 result = x / y

 return round(result, precision)

If you call this function with only two arguments, it will use the default value for precision:

>>> divide(10, 3)

3.33

But you can also provide a custom value for precision by using a keyword argument:

>>> divide(10, 3, precision=4)

3.3333

Keyword arguments can help make your code more readable and easier to maintain, especially

when working with functions that have many parameters or complex argument lists. By using

keyword arguments, you can make it clear which argument corresponds to which parameter, and

you can provide default values for some of the parameters without having to modify the function

code.

 Using *args and **kwargs

In Python, you can use *args and **kwargs to define functions that can accept an arbitrary number

of arguments and keyword arguments, respectively. These features can be particularly useful when

you don't know ahead of time how many arguments you will need to pass to a function, or when

you want to provide a flexible API that can handle a variety of use cases.

*args is used to pass a variable number of positional arguments to a function. When you use *args

in a function definition, it tells Python to collect any remaining positional arguments into a tuple.

For example:

def my_function(*args):

 for arg in args:

 print(arg)

77 | P a g e

In this example, the function my_function() accepts any number of positional arguments and prints

each argument to the console. You can call the function with any number of arguments:

my_function(1, 2, 3) # prints 1 2 3

my_function('a', 'b', 'c', 'd') # prints a b c d

my_function() # prints nothing

**kwargs is used to pass a variable number of keyword arguments to a function. When you use

**kwargs in a function definition, it tells Python to collect any remaining keyword arguments into

a dictionary. For example:

def my_function(**kwargs):

 for key, value in kwargs.items():

 print(f"{key}: {value}")

In this example, the function my_function() accepts any number of keyword arguments and prints

each argument key-value pair to the console. You can call the function with any number of

keyword arguments:

my_function(name="Alice", age=25) # prints name: Alice

age: 25

my_function(city="Boston", state="MA", country="USA") #

prints city: Boston state: MA country: USA

my_function() # prints nothing

You can also use *args and **kwargs together to create functions that can accept both positional

and keyword arguments:

def my_function(*args, **kwargs):

for arg in args:

 print(arg)

 for key, value in kwargs.items():

 print(f"{key}: {value}")

In this example, the function my_function() accepts both positional and keyword arguments and

prints each argument to the console. You can call the function with any combination of positional

and keyword arguments:

my_function(1, 2, 3, name="Alice", age=25) # prints 1 2

3 name: Alice age: 25

my_function('a', 'b', city="Boston", state="MA",

country="USA") # prints a b city: Boston state: MA

country: USA

my_function(name="Bob") # prints name: Bob

78 | P a g e

my_function() # prints nothing

In summary, using *args and **kwargs in Python can help you create functions that are more

flexible and can handle a wider range of inputs. These features can be especially useful when you

don't know ahead of time how many arguments you will need to pass to a function, or when you

want to provide a flexible API that can handle a variety of use cases.

Function design

 Writing pure functions

Python functions can be classified into two categories: pure functions and impure functions. Pure

functions are functions that don't cause side effects and always produce the same output for the

same input. Pure functions are predictable, easy to test, and don't rely on any external state. In this

note, we'll discuss how to write pure functions in Python and provide some sample code to

illustrate the concept.

Avoid modifying global state:

A pure function should not modify any global state or modify any variables outside of its scope.

This includes modifying global variables or objects that are passed by reference to the function.

Impure function that modifies a global variable

count = 0

def impure_add_one():

 global count

 count += 1

Pure function that doesn't modify any global state

def pure_add_one(num):

 return num + 1

Avoid modifying input parameters:

A pure function should not modify its input parameters. This means that the function should create

a new object or copy the input object if it needs to modify it.

79 | P a g e

Impure function that modifies an input parameter

def impure_append_list(item, lst):

 lst.append(item)

Pure function that creates a new list and doesn't

modify the input

def pure_append_list(item, lst):

 return lst + [item]

Avoid relying on external state:

A pure function should not rely on any external state that could change its behavior. This includes

reading from global variables or accessing data from external sources like files or databases.

Impure function that relies on external state

def impure_get_current_time():

 return datetime.datetime.now()

Pure function that takes a time parameter and doesn't

rely on external state

def pure_format_time(time):

 return time.strftime("%Y-%m-%d %H:%M:%S")

Return a value:

A pure function should always return a value. This value should be determined solely by the input

parameters and not by any external state.

Impure function that prints a value instead of

returning it

def impure_print_hello(name):

 print("Hello, " + name)

Pure function that returns a greeting string

def pure_get_greeting(name):

80 | P a g e

 return "Hello, " + name

Here's an example of a pure function that calculates the area of a rectangle:

def calculate_area(length, width):

 return length * width

This function takes two input parameters (length and width) and returns their product (the area of

the rectangle). It doesn't modify any input parameters, global state, or rely on any external state.

In summary, writing pure functions in Python requires avoiding modifying global state, input

parameters, or relying on external state. By following these principles, we can create functions that

are predictable, easy to test, and don't have any unintended side effects.

 Writing functions with side effects

In Python, functions with side effects are those that modify state outside of their own scope. These

side effects can take many forms, such as modifying global variables, changing the state of an

object, or interacting with external systems like databases or files. While pure functions are often

preferred in functional programming, there are cases where side effects are necessary to achieve a

specific functionality. In this note, we'll discuss how to write functions with side effects in Python

and provide some sample code to illustrate the concept.

Use global variables with care:

Global variables are variables that are declared outside of any function and are accessible from

any part of the program. Functions that modify global variables can be useful, but they can also

introduce unexpected behavior and make code hard to maintain.

Global variable

count = 0

Function that modifies the global variable

def increment_count():

 global count

 count += 1

increment_count()

81 | P a g e

print(count) # Output: 1

In this example, we have a global variable count and a function increment_count that modifies it.

When we call increment_count, the value of count is incremented by 1. However, using global

variables can make it difficult to track where changes are made and can introduce bugs when

different parts of the program modify the same variable.

Modify object state with methods:

Object-oriented programming in Python allows us to modify object state with methods. A method

is a function that is associated with a specific object or class and can modify its internal state.

class BankAccount:

 def __init__(self, balance):

 self.balance = balance

 def deposit(self, amount):

 self.balance += amount

 def withdraw(self, amount):

 self.balance -= amount

account = BankAccount(100)

account.deposit(50)

print(account.balance) # Output: 150

account.withdraw(25)

print(account.balance) # Output: 125

In this example, we have a class BankAccount that has methods deposit and withdraw that modify

the balance attribute. When we create an instance of BankAccount, we can deposit or withdraw

funds by calling the respective methods. This allows us to encapsulate the state of the object and

provides a clean interface for interacting with it.

Interact with external systems using libraries:

Sometimes we need to interact with external systems like databases, files, or web services to

achieve a specific functionality. In Python, we can use libraries and modules to abstract away the

details of these interactions and provide a clean interface for our functions.

82 | P a g e

import requests

def fetch_data(url):

 response = requests.get(url)

 return response.content

In this example, we have a function fetch_data that uses the requests library to make an HTTP

request to a given URL and return the response content. By using a library, we can hide the

complexity of making network requests and provide a simple function for our code to interact with.

In summary, functions with side effects in Python can be useful for achieving specific

functionality, but care should be taken to minimize their impact on the rest of the program. By

using global variables with care, modifying object state with methods, and interacting with external

systems using libraries, we can write functions that are easier to reason about and maintain.

 Writing functions that modify mutable arguments

In Python, mutable arguments are those that can be modified in place, such as lists, dictionaries,

and sets. When we pass a mutable argument to a function, the function can modify it and these

modifications persist outside of the function's scope. However, modifying mutable arguments can

introduce unexpected behavior and make code hard to maintain. In this note, we'll discuss how to

write functions that modify mutable arguments in Python and provide some sample code to

illustrate the concept.

Modify arguments in place:

One way to modify mutable arguments in a function is to modify them in place. This means that

we modify the original object directly instead of creating a new object.

def add_item_to_list(item, lst):

 lst.append(item)

my_list = [1, 2, 3]

add_item_to_list(4, my_list)

print(my_list) # Output: [1, 2, 3, 4]

In this example, we have a function add_item_to_list that takes an item and a list and appends the

item to the list. When we call this function with 4 and my_list, the list is modified in place and the

new value [1, 2, 3, 4] is printed.

83 | P a g e

Return a new object:

Another way to modify mutable arguments in a function is to create a new object and return it.

This approach can be useful when we want to preserve the original object and create a modified

copy.

def reverse_list(lst):

 return lst[::-1]

my_list = [1, 2, 3]

reversed_list = reverse_list(my_list)

print(my_list) # Output: [1, 2, 3]

print(reversed_list) # Output: [3, 2, 1]

In this example, we have a function reverse_list that takes a list and returns a reversed copy of the

list. When we call this function with my_list, the original list is not modified, but a new reversed

list is created and returned.

Combine both approaches:

In some cases, it can be useful to combine both approaches and modify the original object in place

and return a new copy.

def remove_duplicates(lst):

 unique_lst = list(set(lst))

 lst.clear()

 lst.extend(unique_lst)

my_list = [1, 2, 2, 3, 3, 3]

remove_duplicates(my_list)

print(my_list) # Output: [1, 2, 3]

In this example, we have a function remove_duplicates that takes a list, creates a new unique list,

clears the original list, and extends it with the unique values. When we call this function with

my_list, the original list is modified in place and the new value [1, 2, 3] is printed.

In summary, when writing functions that modify mutable arguments in Python, it's important to

consider whether we want to modify the original object in place, return a new object, or use a

84 | P a g e

combination of both approaches. By following best practices and being intentional about our

approach, we can write functions that are easier to reason about and maintain.

 Using the @staticmethod and @classmethod decorators

Python is a powerful object-oriented programming language that provides two built-in decorators

@staticmethod and @classmethod to create static and class methods, respectively. These

decorators can be used to define methods that are associated with a class instead of an instance of

the class.

Static Method:

A static method is a method that belongs to a class rather than an instance of the class. This means

that a static method can be called on the class itself, without the need to create an object of the

class. Static methods are useful for creating utility functions that do not require access to the

instance or class variables.

The syntax for defining a static method using the @staticmethod decorator is as follows:

class MyClass:

 @staticmethod

 def my_static_method(arg1, arg2, ...):

 # function body

Here, the @staticmethod decorator is used to define a static method named my_static_method()

that takes any number of arguments.

Here's an example of a static method that calculates the factorial of a number:

class Math:

 @staticmethod

 def factorial(n):

 if n == 0:

 return 1

 else:

 return n * Math.factorial(n-1)

print(Math.factorial(5)) # Output: 120

85 | P a g e

In this example, the factorial() method is defined as a static method using the @staticmethod

decorator. This method can be called directly on the Math class, without the need to create an

object of the class.

Class Method:

A class method is a method that belongs to a class rather than an instance of the class, but unlike

a static method, it can access and modify the class variables. Class methods are useful for creating

factory methods that return an instance of the class with specific attributes.

The syntax for defining a class method using the @classmethod decorator is as follows:

class MyClass:

 @classmethod

 def my_class_method(cls, arg1, arg2, ...):

 # function body

Here, the @classmethod decorator is used to define a class method named my_class_method() that

takes any number of arguments, including the cls parameter, which refers to the class itself.

Here's an example of a class method that creates an instance of a class with specific attributes:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 @classmethod

 def from_birth_year(cls, name, birth_year):

 age = datetime.date.today().year - birth_year

 return cls(name, age)

person = Person.from_birth_year('Alice', 1990)

print(person.age) # Output: 33

In this example, the from_birth_year() method is defined as a class method using the

@classmethod decorator. This method takes the class (cls) as the first parameter, followed by the

86 | P a g e

name and birth_year parameters. The method calculates the age based on the birth year, and returns

an instance of the class with the name and age attributes set.

Note that the cls parameter is used instead of the class name to create the instance of the class,

which makes the method more flexible and easier to maintain.

The @staticmethod and @classmethod decorators are powerful features in Python that allow us to

define methods that are associated with a class rather than an instance of the class. They are useful

for creating utility functions and factory methods, respectively.

 Using partial functions

In Python, a partial function is a way of fixing a certain number of arguments to a function, creating

a new function with the remaining arguments. This can be useful when we have a function that

takes too many arguments, and we want to simplify its use by fixing some of them.

The functools module in Python provides the partial() function that allows us to create a partial

function from an existing function.

Creating a partial function:

To create a partial function, we need to import the partial function from the functools module and

call it with the original function and the arguments to be fixed as its arguments. The resulting

partial function can be called with the remaining arguments, and it will automatically pass the

fixed arguments to the original function.

Here's an example of creating a partial function:

from functools import partial

def multiply(x, y):

 return x * y

double = partial(multiply, 2)

print(double(5)) # Output: 10

In this example, we define a multiply() function that takes two arguments and returns their product.

We then create a partial function called double by calling the partial() function with the multiply()

function and the argument 2. The resulting partial function fixes the x argument to 2, and can be

called with the y argument to double a number.

87 | P a g e

Passing additional arguments to a partial function:

We can also pass additional arguments to a partial function when we call it, and they will be

appended to the fixed arguments in the order they are passed.

Here's an example of passing additional arguments to a partial function:

from functools import partial

def multiply(x, y, z):

 return x * y * z

double = partial(multiply, 2)

triple = partial(multiply, z=3)

print(double(5, 2)) # Output: 20

print(triple(5, 2)) # Output: 30

In this example, we define a multiply() function that takes three arguments and returns their

product. We create two partial functions, double and triple, that fix the x and z arguments to 2 and

3, respectively. We can then call the partial functions with the remaining arguments, which will

be appended to the fixed arguments.

Using partial functions with lambda functions:

We can also create partial functions using lambda functions. This can be useful when we have a

simple function that we want to partially apply without defining a separate function.

Here's an example of using a lambda function to create a partial function:

from functools import partial

double = partial(lambda x, y: x * y, 2)

print(double(5)) # Output: 10

In this example, we define a lambda function that takes two arguments and returns their product.

We then create a partial function called double by calling the partial() function with the lambda

function and the argument 2. The resulting partial function fixes the x argument to 2, and can be

called with the y argument to double a number.

88 | P a g e

Partial functions in Python provide a powerful way of fixing arguments to an existing function,

creating a new function that is easier to use. We can create partial functions using the functools

module and the partial() function, and pass additional arguments to them when we call them. We

can also use lambda functions to create partial functions without defining a separate function.

Function decorators and closures

 Writing simple decorators

In Python, a decorator is a function that takes another function as input and returns a modified

version of that function. Decorators can be used to modify the behavior of a function without

changing its source code. They are a powerful tool in Python that can help simplify code and make

it more modular.

Defining a Simple Decorator:

To define a simple decorator, we use the @ symbol followed by the decorator function name before

the function we want to modify. The decorator function takes the original function as input,

modifies it in some way, and returns the modified function.

Here's an example of a simple decorator that adds a greeting before a function is called:

def greeting_decorator(func):

 def wrapper():

 print("Hello!")

 func()

 return wrapper

@greeting_decorator

def say_hello():

 print("Welcome to my program!")

say_hello()

In this example, we define a greeting_decorator() function that takes the original function func as

input, defines a new function wrapper() that adds a greeting before calling func(), and returns

wrapper(). We then decorate the say_hello() function with @greeting_decorator, which modifies

it by adding a greeting before it is called.

89 | P a g e

When we call say_hello(), the output will be:

Hello!

Welcome to my program!

Passing Arguments to a Decorator:

We can also modify our decorator to accept arguments. This can be useful when we want to modify

the behavior of a function based on some external parameter.

Here's an example of a decorator that accepts an argument:

def repeat(num):

 def decorator(func):

 def wrapper(*args, **kwargs):

 for i in range(num):

 func(*args, **kwargs)

 return wrapper

 return decorator

@repeat(3)

def say_hello(name):

 print(f"Hello, {name}!")

say_hello("John")

In this example, we define a repeat() function that takes an argument num, defines a decorator

function that takes the original function func as input, defines a new function wrapper() that repeats

the call to func() num times, and returns wrapper(). We then decorate the say_hello() function with

@repeat(3), which modifies it by repeating the call to the function three times.

When we call say_hello("John"), the output will be:

Hello, John!

Hello, John!

Hello, John!

90 | P a g e

Using Multiple Decorators:

We can also use multiple decorators to modify a function. In this case, the decorators are applied

in order from top to bottom.

Here's an example of using multiple decorators:

def bold_decorator(func):

 def wrapper(*args, **kwargs):

 return f"{func(*args, **kwargs)}"

 return wrapper

def italic_decorator(func):

 def wrapper(*args, **kwargs):

 return f"<i>{func(*args, **kwargs)}</i>"

 return wrapper

@bold_decorator

@italic_decorator

def say_hello():

 return "Hello!"

print(say_hello())

In this example, we define two decorators, bold_decorator() and italic_decorator(), that modify the

output of the original function by adding HTML tags. We then decorate the say_hello() function

with @bold_decorator and @italic_decorator, which modifies it by adding both decorators in

sequence.

When we call say_hello(), the output will be:

<i>Hello!</i>

 Writing decorators that take arguments

91 | P a g e

In Python, decorators are functions that take a function as input and return a modified function as

output. Decorators can be used to modify the behavior of a function without changing its source

code. In some cases, we may want to write a decorator that takes arguments. In this case, we need

to define a function that takes the arguments and returns a decorator function that takes the original

function as input.

Defining a Decorator that Takes Arguments:

To define a decorator that takes arguments, we define a function that takes the arguments and

returns a decorator function that takes the original function as input. The decorator function then

defines a new function that modifies the original function in some way and returns the modified

function.

Here's an example of a decorator that takes arguments:

def repeat(num):

 def decorator(func):

 def wrapper(*args, **kwargs):

 for i in range(num):

 func(*args, **kwargs)

 return wrapper

 return decorator

@repeat(3)

def say_hello(name):

 print(f"Hello, {name}!")

say_hello("John")

In this example, we define a repeat() function that takes an argument num, defines a decorator

function that takes the original function func as input, defines a new function wrapper() that repeats

the call to func() num times, and returns wrapper(). We then decorate the say_hello() function with

@repeat(3), which modifies it by repeating the call to the function three times.

When we call say_hello("John"), the output will be:

Hello, John!

Hello, John!

92 | P a g e

Hello, John!

Passing Arguments to the Decorator:

In some cases, we may want to pass arguments to the decorator itself. In this case, we need to

define a function that takes the arguments and returns the decorator function.

Here's an example of a decorator that takes arguments:

def greeting_decorator(greeting):

 def decorator(func):

 def wrapper(*args, **kwargs):

 print(greeting)

 func(*args, **kwargs)

 return wrapper

 return decorator

@greeting_decorator("Welcome!")

def say_hello(name):

 print(f"Hello, {name}!")

say_hello("John")

In this example, we define a greeting_decorator() function that takes an argument greeting, defines

a decorator function that takes the original function func as input, defines a new function wrapper()

that adds the greeting before calling func(), and returns wrapper(). We then decorate the

say_hello() function with @greeting_decorator("Welcome!"), which modifies it by adding a

greeting before it is called.

When we call say_hello("John"), the output will be:

Welcome!

Hello, John!

 Writing class decorators

93 | P a g e

Python decorators are a powerful feature of the language that allow you to modify or enhance the

behavior of functions or classes without changing their source code. They are essentially functions

that take another function or class as an argument, modify it, and return the modified version.

In this note, we will focus on writing class decorators in Python. Class decorators work in a similar

way to function decorators, but they take a class as an argument instead of a function.

To write a class decorator in Python, you define a function that takes a class as an argument and

returns a modified version of the class. The modified class can have additional methods or

attributes, or it can modify the behavior of existing methods.

Here is an example of a simple class decorator that adds a "version" attribute to a class:

def add_version(cls):

 cls.version = "1.0"

 return cls

@add_version

class MyClass:

 pass

print(MyClass.version) # Output: 1.0

In the example above, the add_version function takes a class cls as an argument, adds a version

attribute to it, and returns the modified class. The @add_version decorator is then applied to the

MyClass class, which modifies it by adding the version attribute.

You can also chain multiple class decorators together to modify a class:

def add_version(cls):

 cls.version = "1.0"

 return cls

def add_author(cls):

 cls.author = "John Doe"

 return cls

94 | P a g e

@add_version

@add_author

class MyClass:

 pass

print(MyClass.version) # Output: 1.0

print(MyClass.author) # Output: John Doe

In the example above, the add_version and add_author class decorators are chained together using

the @ symbol. When the MyClass class is defined, both decorators are applied in the order they

appear, resulting in a class that has both a version and author attribute.

Class decorators can also modify the behavior of methods in a class. For example, the following

class decorator logs the execution time of all methods in a class:

import time

def log_execution_time(cls):

 for name, value in vars(cls).items():

 if callable(value):

 def new_func(*args, **kwargs):

 start_time = time.time()

 result = value(*args, **kwargs)

 end_time = time.time()

 print(f"Execution time of {name}:

{end_time - start_time}")

 return result

 setattr(cls, name, new_func)

 return cls

@log_execution_time

class MyClass:

 def method1(self):

 time.sleep(1)

95 | P a g e

 def method2(self):

 time.sleep(2)

my_obj = MyClass()

my_obj.method1() # Output: Execution time of method1:

1.000123

my_obj.method2() # Output: Execution time of method2:

2.000234

In the example above, the log_execution_time function takes a class cls as an argument and loops

through all its attributes. If an attribute is a method, a new function is created that logs the execution

time of the method using the time module. The setattr function is then used to replace the original

method with the new function.

The @log_execution_time decorator is then applied to the MyClass class, which modifies it by

replacing its methods with versions that log their execution time.

 Using closures

Closures are a powerful feature of Python that allow you to create functions with persistent state.

A closure is a function that remembers the values of variables that were in scope at the time it was

defined. This makes it possible to create functions that have a "memory" and can retain information

between calls.

To create a closure in Python, you define a function inside another function and return it. The inner

function has access to the variables in the outer function's scope, even after the outer function has

completed execution. Here is an example:

def outer_function(x):

 def inner_function(y):

 return x + y

 return inner_function

closure = outer_function(10)

print(closure(5)) # Output: 15

In the example above, the outer_function takes a parameter x and defines an inner function

inner_function that takes another parameter y. The inner function returns the sum of x and y.

96 | P a g e

When the outer_function is called with an argument of 10, it returns the inner_function. This

creates a closure that remembers the value of x as 10. The closure is then assigned to the variable

closure.

When the closure is called with an argument of 5, it invokes the inner_function with y equal to 5

and returns the sum of x and y, which is 15.

Closures are often used to create functions with persistent state. For example, you can create a

counter function using a closure like this:

def counter():

 count = 0

 def inner_function():

 nonlocal count

 count += 1

 return count

 return inner_function

my_counter = counter()

print(my_counter()) # Output: 1

print(my_counter()) # Output: 2

print(my_counter()) # Output: 3

In the example above, the counter function defines an inner function inner_function that has access

to a variable count in the outer function's scope. The inner function increments the value of count

each time it is called and returns it.

When the counter function is called, it returns the inner_function. This creates a closure that

remembers the value of count as 0. The closure is then assigned to the variable my_counter.

Each time my_counter is called, it invokes the inner_function and returns the current value of

count. Because the closure persists between calls, the value of count is incremented each time and

the counter function behaves as expected.

In summary, closures are a powerful feature of Python that allow you to create functions with

persistent state. They are created by defining a function inside another function and returning it.

The inner function has access to the variables in the outer function's scope, even after the outer

function has completed execution. Closures are often used to create functions with persistent state,

such as counters or memoization functions.

97 | P a g e

 Using functools.partial

functools.partial is a Python built-in module that allows you to create a new function with some of

the parameters of an existing function already "filled in". It is a useful tool for making functions

more flexible and reusable.

To use functools.partial, you first need to import it:

from functools import partial

Once you have imported partial, you can use it to create a new function based on an existing

function. Here is an example:

def multiply(x, y):

 return x * y

double = partial(multiply, y=2)

print(double(5)) # Output: 10

In the example above, the multiply function takes two parameters x and y and returns their product.

The partial function is used to create a new function double based on multiply, with y set to 2. This

means that double only takes one parameter x, and always multiplies it by 2.

When double is called with an argument of 5, it invokes the multiply function with x equal to 5

and y equal to 2, and returns the product of the two, which is 10.

partial can also be used to fill in multiple parameters of a function. Here is an example:

def power(base, exponent):

 return base ** exponent

square = partial(power, exponent=2)

cube = partial(power, exponent=3)

print(square(5)) # Output: 25

print(cube(5)) # Output: 125

98 | P a g e

In the example above, the power function takes two parameters base and exponent and returns

base raised to the power of exponent. The partial function is used to create two new functions

square and cube based on power, with exponent set to 2 and 3, respectively.

When square is called with an argument of 5, it invokes the power function with base equal to 5

and exponent equal to 2, and returns the square of 5, which is 25. Similarly, when cube is called

with an argument of 5, it invokes the power function with base equal to 5 and exponent equal to

3, and returns the cube of 5, which is 125.

In summary, functools.partial is a powerful tool for making functions more flexible and reusable

by allowing you to create new functions based on existing ones with some parameters already

filled in. It is particularly useful for creating functions that are similar but have different default

values for some parameters.

99 | P a g e

Chapter 4:
Classes and Objects

100 | P a g e

Python is an object-oriented programming language that is widely used by developers all over the

world. It is a high-level language that is simple to read and write, making it ideal for beginners.

Python is known for its strong support for object-oriented programming, which is a programming

paradigm that focuses on creating objects, which are instances of classes, to represent real-world

entities.

Classes and objects are the building blocks of object-oriented programming in Python. They allow

developers to create reusable and maintainable code that is easy to read and understand. A class is

a blueprint for creating objects, while an object is an instance of a class. Python provides a simple

syntax for creating and using classes and objects, which makes it easy for developers to write

object-oriented code.

In this chapter, we will explore the basics of classes and objects in Python. We will start by defining

classes and objects and explain how they are related. We will then look at how to create objects

from classes, and how to use them to perform various tasks. We will also cover the different

attributes and methods that can be defined in a class and how to access them from an object.

We will also examine how inheritance works in Python, which is the mechanism for creating new

classes from existing ones. Inheritance allows developers to reuse code and create new classes that

inherit the attributes and methods of existing classes. We will explore the different types of

inheritance, including single inheritance and multiple inheritance, and explain how to use them in

your code.

Additionally, we will look at some advanced topics related to classes and objects in Python. We

will discuss the concept of encapsulation, which is the practice of hiding data and methods within

a class to protect them from external access. We will also cover the concept of polymorphism,

which allows objects of different classes to be used interchangeably.

Finally, we will provide some practical examples of how to use classes and objects in real-world

scenarios. We will demonstrate how to create classes for representing common objects such as

bank accounts and cars, and show how to use them to perform various operations. We will also

provide examples of how to use inheritance to create new classes that inherit attributes and

methods from existing classes.

By the end of this chapter, you will have a thorough understanding of classes and objects in Python,

and how they can be used to create reusable and maintainable code. You will also have a strong

understanding of how to use inheritance, encapsulation, and polymorphism to create powerful and

flexible programs. Whether you are a beginner or an experienced developer, this chapter will

101 | P a g e

provide you with the knowledge and skills needed to create high-quality object-oriented code in

Python.

Class basics

 Creating and using classes

In Python, a class is a blueprint for creating objects with a set of attributes and methods. It is a way

of organizing and structuring code, and it allows you to create custom data types that can be used

throughout your code. In this note, we will cover the basics of creating and using classes in Python.

Creating a Class:

To create a class in Python, you use the class keyword followed by the name of the class. Here's

an example:

class Person:

 pass

This creates a simple class called Person with no attributes or methods. We use the pass keyword

to indicate that there is no code to execute in the class definition.

Attributes:

Attributes are variables that are associated with a class. They can hold values that are specific to

an instance of the class. To define attributes in a class, you create variables inside the class

definition. Here's an example:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

In this example, we define a Person class with two attributes: name and age. We use the special

__init__ method to initialize these attributes with values passed in when an instance of the class is

created.

102 | P a g e

Methods:

Methods are functions that are associated with a class. They can perform actions on the attributes

of an instance of the class. To define methods in a class, you create functions inside the class

definition. Here's an example:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def greet(self):

 print(f"Hello, my name is {self.name} and I am

{self.age} years old.")

In this example, we define a greet method that prints a greeting using the name and age attributes

of an instance of the Person class.

Using a Class:

To use a class in Python, you first need to create an instance of the class. This is done by calling

the class like a function. Here's an example:

person1 = Person("Alice", 25)

This creates an instance of the Person class with the name attribute set to "Alice" and the age

attribute set to 25.

Once you have an instance of the class, you can access its attributes and methods using dot

notation. Here's an example:

person1.greet()

This calls the greet method on the person1 instance of the Person class and prints the greeting.

Full Example:

Here's a complete example that demonstrates creating and using a Person class in Python:

class Person:

103 | P a g e

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def greet(self):

 print(f"Hello, my name is {self.name} and I am

{self.age} years old.")

person1 = Person("Alice", 25)

person1.greet()

person2 = Person("Bob", 30)

person2.greet()

Output:

Hello, my name is Alice and I am 25 years old.

Hello, my name is Bob and I am 30 years old.

In this note, we have covered the basics of creating and using classes in Python. Classes are an

important feature of object-oriented programming, and they allow you to create custom data types

that can be used throughout your code. By defining attributes and methods in a class, you can

create powerful and flexible code that can be easily

 Defining instance methods

In Python, an instance method is a method that is defined within a class and can be called on

instances of that class. Instance methods are used to perform actions or operations on the attributes

of an object. In this note, we will cover the basics of defining instance methods in Python.

Defining Instance Methods:

To define an instance method in Python, you first need to create a class. Here's an example:

class Person:

 def __init__(self, name, age):

 self.name = name

104 | P a g e

 self.age = age

 def greet(self):

 print(f"Hello, my name is {self.name} and I am

{self.age} years old.")

In this example, we define a Person class with two attributes: name and age. We then define an

instance method called greet that prints a greeting using the name and age attributes of an instance

of the Person class.

The self parameter:

When defining an instance method in Python, you need to include the self parameter as the first

parameter. This parameter refers to the instance of the class on which the method is being called.

It is used to access the attributes and other methods of the object.

Calling Instance Methods:

To call an instance method in Python, you first need to create an instance of the class. Here's an

example:

person1 = Person("Alice", 25)

person1.greet()

This creates an instance of the Person class with the name attribute set to "Alice" and the age

attribute set to 25. It then calls the greet method on the person1 instance of the Person class and

prints the greeting.

Instance Methods with Parameters:

Instance methods can also take parameters, just like regular functions in Python. Here's an

example:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def greet(self, greeting):

105 | P a g e

 print(f"{greeting}, my name is {self.name} and

I am {self.age} years old.")

person1 = Person("Alice", 25)

person1.greet("Hi")

In this example, we define an instance method called greet that takes a greeting parameter. When

the method is called, it prints the greeting along with the name and age attributes of the object.

In this note, we have covered the basics of defining and using instance methods in Python. Instance

methods are an essential part of object-oriented programming, and they allow you to perform

actions or operations on the attributes of an object. By defining instance methods in a class, you

can create powerful and flexible code that can be easily reused throughout your program.

 Using instance variables

In Python, instance variables are variables that are defined within a class and are associated with

instances of that class. Instance variables hold unique values for each instance of the class, and

they are used to store and manipulate data that is specific to each object. In this note, we will cover

the basics of using instance variables in Python.

Defining Instance Variables:

To define an instance variable in Python, you first need to create a class. Here's an example:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

In this example, we define a Person class with two instance variables: name and age. These

variables are defined within the __init__ method using the self parameter. The self parameter refers

to the instance of the class on which the method is being called.

Accessing Instance Variables:

To access an instance variable in Python, you can use dot notation. Here's an example:

person1 = Person("Alice", 25)

print(person1.name)

106 | P a g e

print(person1.age)

This creates an instance of the Person class with the name attribute set to "Alice" and the age

attribute set to 25. It then prints the value of name and age using dot notation.

Modifying Instance Variables:

To modify an instance variable in Python, you can use dot notation to access the variable and

assign a new value. Here's an example:

person1 = Person("Alice", 25)

person1.age = 26

print(person1.age)

This creates an instance of the Person class with the name attribute set to "Alice" and the age

attribute set to 25. It then modifies the value of age to 26 using dot notation and prints the new

value.

Instance Variables with Default Values:

Instance variables can also have default values, just like function parameters in Python. Here's an

example:

class Person:

 def __init__(self, name, age=18):

 self.name = name

 self.age = age

In this example, we define a Person class with an age instance variable that has a default value of

18. If no value is provided for age when an instance of the class is created, it will default to 18.

In this note, we have covered the basics of using instance variables in Python. Instance variables

are an essential part of object-oriented programming, and they allow you to store and manipulate

data that is specific to each object. By defining and using instance variables in a class, you can

create powerful and flexible code that can be easily reused throughout your program.

 Understanding class vs instance data

107 | P a g e

In Python, classes can have both class data and instance data. Class data is shared among all

instances of the class, while instance data is unique to each instance. Understanding the difference

between these two types of data is essential for writing effective object-oriented code in Python.

In this note, we will cover the basics of class data vs instance data in Python, with suitable codes.

Class Data:

Class data is data that is shared among all instances of a class. It is defined within the class but

outside of any methods. Here's an example:

class Person:

 count = 0

 def __init__(self, name):

 self.name = name

 Person.count += 1

In this example, we define a Person class with a class variable count. The count variable is shared

among all instances of the Person class. We also define an __init__ method that increments the

count variable each time a new instance of the Person class is created.

Instance Data:

Instance data is data that is unique to each instance of a class. It is defined within the __init__

method using the self parameter. Here's an example:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

In this example, we define a Person class with instance variables name and age. These variables

are unique to each instance of the Person class.

Accessing Class Data and Instance Data:

108 | P a g e

To access class data, you can use dot notation with the class name. To access instance data, you

can use dot notation with the instance name. Here's an example:

person1 = Person("Alice", 25)

person2 = Person("Bob", 30)

print(Person.count) # Output: 2

print(person1.name) # Output: "Alice"

print(person1.age) # Output: 25

print(person2.name) # Output: "Bob"

print(person2.age) # Output: 30

This creates two instances of the Person class and prints the value of count, name, and age using

dot notation.

Modifying Class Data and Instance Data:

To modify class data, you can use dot notation with the class name and assign a new value. To

modify instance data, you can use dot notation with the instance name and assign a new value.

Here's an example:

person1 = Person("Alice", 25)

person2 = Person("Bob", 30)

Person.count = 3 # Modifying class data

person1.age = 26 # Modifying instance data

print(Person.count) # Output: 3

print(person1.age) # Output: 26

print(person2.age) # Output: 30

This modifies the value of count for the Person class and the value of age for person1.

109 | P a g e

In this note, we have covered the basics of class data vs instance data in Python. Class data is

shared among all instances of a class, while instance data is unique to each instance. By

understanding the difference between these two types of data, you can write more effective and

flexible object-oriented code in Python.

 Using slots for memory optimization

In Python, every object is created with a dictionary that stores all of its attributes. While this is

convenient, it can also be memory-intensive if you are creating a large number of objects. In

situations where memory is limited, you may want to optimize the memory usage of your objects.

One way to do this is by using slots. In this note, we will cover the basics of using slots for memory

optimization in Python, with suitable codes.

What are Slots?

Slots are a way to tell Python that a class will have a fixed set of attributes, so it doesn't need to

create a dictionary for each instance. Instead, it allocates a fixed amount of memory for the

attributes. This can significantly reduce the memory usage of your objects, especially if you are

creating a large number of instances.

Using Slots:

To use slots, you need to define a class attribute called __slots__ as a sequence of strings that

represent the names of the attributes. Here's an example:

class Person:

 __slots__ = ['name', 'age']

 def __init__(self, name, age):

 self.name = name

 self.age = age

In this example, we define a Person class with slots for the name and age attributes. This tells

Python that each instance of the Person class will only have these two attributes, and it can allocate

memory accordingly.

Benefits of Using Slots:

Using slots has several benefits:

110 | P a g e

Memory optimization: Slots can significantly reduce the memory usage of your objects, especially

if you are creating a large number of instances.

Faster attribute access: Since slots allocate memory for each attribute, attribute access is faster than

with a dictionary-based approach.

Prevents dynamic attribute creation: With slots, you cannot dynamically add new attributes to an

instance. This can help prevent bugs caused by typos or other mistakes.

Limitations of Using Slots:

Using slots also has some limitations:

You must specify all attributes in advance: Since slots allocate memory for each attribute, you

must specify all attributes in advance. This can make your code less flexible if you need to add

new attributes later.

Inheritance issues: If you subclass a class with slots, the subclass must also have slots that include

all of the attributes of the parent class.

In this note, we have covered the basics of using slots for memory optimization in Python. Slots

are a way to tell Python that a class will have a fixed set of attributes, so it can allocate a fixed

amount of memory for each instance. While slots can significantly reduce the memory usage of

your objects and improve attribute access speed, they also have some limitations. By understanding

the benefits and limitations of slots, you can decide whether or not to use them in your code.

 Understanding class inheritance

In Python, classes can inherit attributes and methods from other classes. This is called class

inheritance and it allows you to create new classes that are variations of existing classes. In this

note, we will cover the basics of understanding class inheritance in Python, with suitable codes.

What is Class Inheritance?

Class inheritance is the process of creating a new class that inherits properties (attributes and

methods) from an existing class. The existing class is called the parent class or the superclass, and

the new class is called the child class or the subclass. In Python, a subclass can inherit attributes

and methods from a single parent class or from multiple parent classes.

Syntax of Class Inheritance:

To create a subclass, you need to define a new class and specify the parent class(es) in parentheses

after the class name. Here's an example:

class Parent:

111 | P a g e

 def __init__(self):

 self.x = 1

 def parent_method(self):

 print("Parent method called.")

class Child(Parent):

 pass

In this example, we define a Parent class with an __init__ method and a parent_method. We then

define a Child class that inherits from the Parent class by specifying it in parentheses after the class

name. Since the Child class doesn't have any attributes or methods of its own, we simply use the

pass statement.

Overriding Parent Methods:

In addition to inheriting attributes and methods from the parent class, a subclass can also override

methods of the parent class. To do this, you define a method with the same name in the subclass.

Here's an example:

class Parent:

 def __init__(self):

 self.x = 1

 def parent_method(self):

 print("Parent method called.")

class Child(Parent):

 def parent_method(self):

 print("Child method called.")

In this example, we define a Parent class with a parent_method. We then define a Child class that

overrides the parent_method by defining a new method with the same name. When we call

parent_method on an instance of the Child class, the child method will be called instead of the

parent method.

Multiple Inheritance:

112 | P a g e

In Python, a subclass can inherit from multiple parent classes. To do this, you specify all of the

parent classes in parentheses after the class name, separated by commas. Here's an example:

class Parent1:

 def __init__(self):

 self.x = 1

 def parent1_method(self):

 print("Parent1 method called.")

class Parent2:

 def __init__(self):

 self.y = 2

 def parent2_method(self):

 print("Parent2 method called.")

class Child(Parent1, Parent2):

 pass

In this example, we define two parent classes, Parent1 and Parent2, with their own attributes and

methods. We then define a Child class that inherits from both Parent1 and Parent2. Since the Child

class doesn't have any attributes or methods of its own, we simply use the pass statement.

In this note, we have covered the basics of understanding class inheritance in Python. Class

inheritance allows you to create new classes that inherit attributes and methods from existing

classes, and it can help you create more modular and reusable code. By understanding how to

create subclasses, override parent methods, and inherit from multiple parent classes, you can use

class inheritance to create more complex and powerful programs.

 Using multiple inheritance

In Python, multiple inheritance is the process of creating a new class that inherits properties

(attributes and methods) from multiple parent classes. In this note, we will cover the basics of

using multiple inheritance in Python, with suitable codes.

What is Multiple Inheritance?

113 | P a g e

Multiple inheritance is a type of class inheritance where a subclass can inherit attributes and

methods from multiple parent classes. In Python, you can specify multiple parent classes in the

parentheses after the class name.

Syntax of Multiple Inheritance:

To create a subclass with multiple inheritance, you need to define a new class and specify the

parent classes in parentheses after the class name, separated by commas. Here's an example:

class Parent1:

 def method1(self):

 print("Parent1 method called.")

class Parent2:

 def method2(self):

 print("Parent2 method called.")

class Child(Parent1, Parent2):

 pass

In this example, we define two parent classes, Parent1 and Parent2, each with their own methods.

We then define a Child class that inherits from both Parent1 and Parent2 by specifying them in

parentheses after the class name, separated by commas. Since the Child class doesn't have any

methods of its own, we simply use the pass statement.

Method Resolution Order (MRO):

When a subclass inherits from multiple parent classes, Python determines the order in which it

searches for methods in the parent classes. This is called the Method Resolution Order (MRO).

The MRO is important because it determines which method will be called if two or more parent

classes have methods with the same name.

In Python 3, the MRO is determined using the C3 linearization algorithm, which guarantees that

the method resolution order is consistent and respects local precedence ordering and monotonicity.

You can access the MRO of a class using the mro() method.

class Parent1:

 def method(self):

 print("Parent1 method called.")

114 | P a g e

class Parent2:

 def method(self):

 print("Parent2 method called.")

class Child(Parent1, Parent2):

 pass

print(Child.mro()) # prints [<class '__main__.Child'>,

<class '__main__.Parent1'>, <class '__main__.Parent2'>,

<class 'object'>]

In this example, we define two parent classes, Parent1 and Parent2, each with their own method.

We then define a Child class that inherits from both Parent1 and Parent2. When we call

Child.mro(), we get the method resolution order, which shows that Python will first look for

methods in Child, then Parent1, then Parent2, and finally object.

Diamond Inheritance:

In multiple inheritance, a situation can arise where a subclass inherits from two parent classes that

both inherit from the same grandparent class. This is called diamond inheritance and it can lead to

ambiguity in method resolution. To resolve this ambiguity, Python uses the C3 linearization

algorithm to determine the order in which methods are searched for.

class Grandparent:

 def method(self):

 print("Grandparent method called.")

class Parent1(Grandparent):

 pass

class Parent2(Grandparent):

 pass

class Child(Parent1, Parent2):

 pass

115 | P a g e

c = Child()

c.method() # prints "Grandparent method called."

In this example, we define a Grandparent class with a method. We then define two parent classes,

Parent1 and Parent2, both of which inherit from Grandparent.

Class design

 Writing clean, readable classes

When writing classes in Python, it's important to focus not only on functionality but also on

readability and maintainability of the code. In this note, we will discuss some best practices for

writing clean and readable classes in Python, with suitable codes.

Best Practices for Writing Clean and Readable Classes in Python:

Use descriptive names for classes and methods: It's important to use descriptive names for classes

and methods that accurately reflect their purpose. This makes it easier for other developers to

understand what the code does without having to read through the entire implementation.

class Student:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def get_name(self):

 return self.name

 def get_age(self):

 return self.age

In this example, we define a Student class with name and age attributes and get_name() and

get_age() methods. The names of the class and methods clearly indicate their purpose.

Follow the Single Responsibility Principle (SRP): A class should have only one responsibility and

should be focused on that responsibility. This makes the code easier to understand and maintain.

116 | P a g e

class Calculator:

 def add(self, x, y):

 return x + y

 def subtract(self, x, y):

 return x - y

In this example, we define a Calculator class with add() and subtract() methods. The class has only

one responsibility, which is to perform arithmetic operations.

Use comments to explain complex logic: Sometimes, complex logic is necessary in a class. In such

cases, it's a good practice to use comments to explain what the code does and why it does it.

class ShoppingCart:

 def __init__(self):

 self.items = []

 def add_item(self, item):

 """

 Add an item to the shopping cart.

 If the item already exists in the cart,

increase the quantity

 by 1. Otherwise, add a new item to the cart.

 """

 for i in self.items:

 if i['name'] == item['name']:

 i['quantity'] += 1

 return

 self.items.append(item)

In this example, we define a ShoppingCart class with an add_item() method. The method contains

complex logic for adding an item to the cart. We use a comment to explain the logic and make it

easier to understand.

117 | P a g e

Avoid global variables: Global variables can make code harder to read and maintain. It's a good

practice to avoid them in classes.

class Car:

 def __init__(self, make, model, year):

 self.make = make

 self.model = model

 self.year = year

 def get_make(self):

 return self.make

 def get_model(self):

 return self.model

 def get_year(self):

 return self.year

In this example, we define a Car class with make, model, and year attributes and get_make(),

get_model(), and get_year() methods. We don't use any global variables in the class.

Follow the Python style guide (PEP 8): The Python community has established a style guide called

PEP 8 that provides guidelines for writing Python code. Following the style guide can make code

more consistent and easier to read for other developers.

class Rectangle:

 def __init__(self, length, width):

 self.length = length

 self.width = width

 def get_area(self):

 return self.length * self.width

 def get_perimeter(self

118 | P a g e

 Writing classes with a single responsibility

The Single Responsibility Principle (SRP) is an important design principle in object-oriented

programming. According to the SRP, a class should have only one responsibility and should be

focused on that responsibility. This makes the code easier to understand and maintain. In this note,

we will discuss how to write classes with a single responsibility in Python, with suitable codes.

Best Practices for Writing Classes with a Single Responsibility in Python:

Identify the class's responsibility: The first step in writing a class with a single responsibility is to

identify what that responsibility is. A class should have one clear responsibility and should be

focused on that responsibility.

class Circle:

 def __init__(self, radius):

 self.radius = radius

 def get_area(self):

 return 3.14 * self.radius ** 2

 def get_circumference(self):

 return 2 * 3.14 * self.radius

In this example, we define a Circle class with radius attribute and get_area() and

get_circumference() methods. The class's responsibility is to calculate the area and circumference

of a circle.

Separate concerns into different classes: If a class has multiple responsibilities, it's a good practice

to separate those responsibilities into different classes. This makes the code easier to understand

and maintain.

class Employee:

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

119 | P a g e

class Payroll:

 def calculate_payroll(self, employees):

 for employee in employees:

 print(f'{employee.name}:

{employee.salary}')

In this example, we define an Employee class with name and salary attributes and a Payroll class

with a calculate_payroll() method. The Employee class is responsible for storing employee

information, while the Payroll class is responsible for calculating employee pay.

Avoid adding unrelated functionality: When writing a class, it's important to avoid adding

unrelated functionality. This can make the class harder to understand and maintain.

class Email:

 def __init__(self, subject, body):

 self.subject = subject

 self.body = body

 def send_email(self, recipient):

 # code to send email

 pass

 def encrypt_email(self):

 # code to encrypt email

 pass

In this example, we define an Email class with subject and body attributes and send_email() and

encrypt_email() methods. The send_email() method is related to the class's responsibility of

sending emails, but the encrypt_email() method is not. It's a good practice to remove the unrelated

functionality from the class.

Keep methods short and focused: Methods should be short and focused on a specific task. This

makes the code easier to read and understand.

class ShoppingCart:

120 | P a g e

 def __init__(self):

 self.items = []

 def add_item(self, item):

 for i in self.items:

 if i['name'] == item['name']:

 i['quantity'] += 1

 return

 self.items.append(item)

 def remove_item(self, item):

 for i in self.items:

 if i['name'] == item['name']:

 i['quantity'] -= 1

 if i['quantity'] == 0:

 self.items.remove(i)

 return

In this example, we define a ShoppingCart class with add_item() and remove_item() methods.

Both methods are short and focused on a specific task, making the code easier to read and

understand.

 Using composition over inheritance

Inheritance and composition are two common approaches to designing object-oriented systems.

Inheritance involves creating a subclass that inherits the behavior of its superclass. Composition

involves creating objects that contain other objects. In this note, we will discuss using composition

over inheritance in Python, with suitable codes.

Benefits of Using Composition:

Code reuse: Composition allows for code reuse without creating a tightly coupled hierarchy of

classes.

Flexibility: Composition provides greater flexibility in designing objects. Objects can be

composed of different objects to achieve a specific behavior.

121 | P a g e

Simplified class hierarchies: Composition can simplify class hierarchies by avoiding deep

inheritance chains.

Using Composition in Python:

Here's an example of using composition in Python to create a Car class that has an Engine object

and a Transmission object.

class Engine:

 def __init__(self, horsepower):

 self.horsepower = horsepower

 def start(self):

 print("Engine started")

 def stop(self):

 print("Engine stopped")

class Transmission:

 def __init__(self, num_gears):

 self.num_gears = num_gears

 def shift_up(self):

 print("Shifted up")

 def shift_down(self):

 print("Shifted down")

class Car:

 def __init__(self, engine, transmission):

122 | P a g e

 self.engine = engine

 self.transmission = transmission

 def start(self):

 self.engine.start()

 def stop(self):

 self.engine.stop()

 def shift_up(self):

 self.transmission.shift_up()

 def shift_down(self):

 self.transmission.shift_down()

In this example, the Engine and Transmission classes are composed into the Car class. The Car

class has a start() and stop() method that call the corresponding methods on the Engine object, and

a shift_up() and shift_down() method that call the corresponding methods on the Transmission

object.

Advantages of Composition over Inheritance:

Reduced coupling: Composition reduces coupling between classes, making it easier to modify the

behavior of a class without affecting other classes.

Increased flexibility: With composition, the behavior of an object can be changed at runtime by

swapping out its constituent objects.

Simplified testing: Composition simplifies testing, as individual components can be tested in

isolation.

Composition is a powerful technique for building flexible and maintainable object-oriented

systems. By using composition instead of inheritance, we can create classes that are more modular,

more flexible, and easier to maintain.

 Using abstract base classes

In Python, an abstract base class (ABC) is a class that cannot be instantiated and is meant to serve

as a blueprint for other classes. ABCs define abstract methods, which are methods that must be

implemented by any concrete subclasses. In this note, we will discuss using abstract base classes

in Python, with suitable codes.

123 | P a g e

Creating an Abstract Base Class:

In Python, we can create an abstract base class by importing the abc module and using the ABC

class as a base class. We can then define abstract methods using the @abstractmethod decorator.

Here's an example of an abstract base class for a Shape:

import abc

class Shape(metaclass=abc.ABCMeta):

 @abc.abstractmethod

 def area(self):

 pass

 @abc.abstractmethod

 def perimeter(self):

 pass

In this example, we define an abstract base class Shape that has two abstract methods area() and

perimeter(). Any concrete subclass of Shape must implement these two methods.

Creating a Concrete Subclass:

To create a concrete subclass of an abstract base class, we simply inherit from the abstract base

class and implement its abstract methods. Here's an example of a Rectangle class that inherits from

Shape:

class Rectangle(Shape):

 def __init__(self, length, width):

 self.length = length

 self.width = width

 def area(self):

 return self.length * self.width

124 | P a g e

 def perimeter(self):

 return 2 * (self.length + self.width)

In this example, we create a Rectangle class that inherits from Shape and implements the area()

and perimeter() methods.

Using the Abstract Base Class:

Once we have defined the abstract base class and concrete subclasses, we can use them in our

code. Here's an example of how to use the Shape and Rectangle classes:

def print_shape_info(shape):

 print(f"Area: {shape.area()}")

 print(f"Perimeter: {shape.perimeter()}")

rectangle = Rectangle(5, 10)

print_shape_info(rectangle)

In this example, we define a function print_shape_info() that takes a Shape object and prints its

area and perimeter. We then create a Rectangle object and pass it to print_shape_info().

Advantages of Using Abstract Base Classes:

Enforces implementation of methods: Abstract base classes enforce the implementation of specific

methods in concrete subclasses, making it easier to write correct and maintainable code.

Defines a common interface: Abstract base classes define a common interface for related classes,

making it easier to write code that works with multiple objects.

Encourages polymorphism: Abstract base classes encourage the use of polymorphism, making it

easier to write code that can handle objects of different types.

Abstract base classes are a powerful tool for designing maintainable and extensible object-oriented

systems in Python. By defining a common interface for related classes, enforcing the

implementation of specific methods, and encouraging polymorphism, abstract base classes make

it easier to write correct and maintainable code.

 Writing metaclasses

In Python, a metaclass is a class that defines the behavior of other classes. When we create a class,

Python uses a metaclass to define its behavior. In this note, we will discuss how to write

metaclasses in Python, with suitable codes.

125 | P a g e

Creating a Metaclass:

In Python, we can create a metaclass by defining a class that inherits from type. The type class is

the built-in metaclass in Python, and it is responsible for creating all classes.

Here's an example of a simple metaclass:

class MyMeta(type):

 def __new__(cls, name, bases, attrs):

 print(f"Creating class {name} with bases

{bases} and attrs {attrs}")

 return super().__new__(cls, name, bases, attrs)

In this example, we define a metaclass MyMeta that inherits from type. The __new__() method is

called when a new class is created, and it takes four arguments:

cls: The metaclass itself

name: The name of the new class

bases: A tuple of the base classes for the new class

attrs: A dictionary of the attributes and methods of the new class

When we create a new class using MyMeta as the metaclass, the __new__() method will be called

and will print out the class name, base classes, and attributes.

Using the Metaclass:

Once we have defined the metaclass, we can use it to create new classes. Here's an example of

how to use MyMeta to create a new class:

class MyClass(metaclass=MyMeta):

 x = 42

In this example, we create a new class MyClass and specify MyMeta as the metaclass. When we

create the class, the __new__() method of MyMeta will be called, and it will print out information

about the new class.

Advantages of Using Metaclasses:

Customizing class creation: Metaclasses allow us to customize the way classes are created, giving

us fine-grained control over class behavior.

126 | P a g e

Enforcing constraints: Metaclasses allow us to enforce constraints on classes, such as requiring

certain attributes or methods to be present.

Automatic registration: Metaclasses can be used to automatically register classes in a registry or

database, simplifying the management of large codebases.

Metaclasses are a powerful tool for customizing class creation in Python. By defining a metaclass

and using it to create new classes, we can customize class behavior, enforce constraints, and

simplify the management of large codebases. However, metaclasses should be used with care, as

they can make code harder to understand and maintain if used improperly.

Advanced class topics

 Using descriptors to customize attribute access

In Python, descriptors are a way to customize the behavior of attribute access. They allow us to

define how attributes are accessed, set, or deleted on an object. In this note, we will discuss how

to use descriptors to customize attribute access in Python, with suitable codes.

Creating a Descriptor:

To create a descriptor, we need to define a class with one or more of the following methods:

 __get__(self, instance, owner): This method is called when the descriptor's value is

accessed using dot notation. instance is the instance of the class that contains the descriptor,

and owner is the class itself.

 __set__(self, instance, value): This method is called when the descriptor's value is set using

dot notation.

 __delete__(self, instance): This method is called when the descriptor's value is deleted

using del statement.

Here's an example of a simple descriptor:

class MyDescriptor:

 def __get__(self, instance, owner):

 print("Getting the value")

 return instance._value

127 | P a g e

 def __set__(self, instance, value):

 print("Setting the value")

 instance._value = value

 def __delete__(self, instance):

 print("Deleting the value")

 del instance._value

In this example, we define a descriptor MyDescriptor that has __get__(), __set__(), and

__delete__() methods. The __get__() method prints a message and returns the value of _value

attribute of the instance. The __set__() method prints a message and sets the value of _value

attribute of the instance. The __delete__() method prints a message and deletes the _value attribute

of the instance.

Using the Descriptor:

Once we have defined the descriptor, we can use it to customize attribute access on a class. Here's

an example of how to use MyDescriptor to customize attribute access on a class:

class MyClass:

 def __init__(self, value):

 self._value = value

 x = MyDescriptor()

In this example, we define a class MyClass that has an attribute x that is an instance of

MyDescriptor. When we access, set, or delete the x attribute using dot notation, the corresponding

method of MyDescriptor will be called.

Advantages of Using Descriptors:

Reusable code: Descriptors can be reused across multiple classes, making it easier to write DRY

(Don't Repeat Yourself) code.

Customizable behavior: Descriptors allow us to customize the behavior of attribute access, making

it possible to enforce constraints or perform custom operations when an attribute is accessed, set,

or deleted.

Easy to use: Descriptors are easy to use, requiring only a few lines of code to define and use.

128 | P a g e

Descriptors are a powerful tool for customizing attribute access in Python. By defining a descriptor

and using it to customize attribute access on a class, we can enforce constraints, perform custom

operations, and write reusable code. However, descriptors should be used with care, as they can

make code harder to understand and maintain if used improperly.

 Using properties to control attribute access

In Python, descriptors are a way to define customized behavior for accessing and setting attributes

of an object. A descriptor is an object that defines one or more of the following methods: __get__(),

__set__(), and __delete__(). These methods allow you to control how an attribute is accessed,

modified, or deleted on an instance of a class.

Using descriptors can be useful in many scenarios. For example, you can use descriptors to:

 Validate data before it is stored in an attribute

 Convert data to a different format before it is stored in an attribute

 Create read-only or write-only attributes

 Implement computed attributes that are calculated on the fly

 Implement lazy attributes that are only calculated when needed

To define a descriptor, you need to create a class that defines one or more of the descriptor

methods. For example, to create a descriptor that validates data before it is stored in an attribute,

you can define a class like this:

class PositiveNumber:

 def __set_name__(self, owner, name):

 self.name = name

 def __set__(self, instance, value):

 if value < 0:

 raise ValueError(f"{self.name} must be

positive")

 instance.__dict__[self.name] = value

 def __get__(self, instance, owner):

 return instance.__dict__[self.name]

129 | P a g e

This descriptor ensures that a number attribute is always positive. The __set_name__() method is

called when the descriptor is assigned to a class attribute, and it sets the name of the attribute.

The __set__() method is called when the attribute is set, and it checks if the value is positive before

setting it. The __get__() method is called when the attribute is accessed, and it returns the value of

the attribute.

To use the descriptor, you need to define a class that uses it as an attribute:

class MyClass:

 x = PositiveNumber()

Now, when you create an instance of MyClass and set the x attribute to a negative value, an error

will be raised:

>>> obj = MyClass()

>>> obj.x = -10

ValueError: x must be positive

You can also define a descriptor that converts data to a different format before it is stored in an

attribute. For example, you can define a descriptor that stores a string as uppercase:

class UppercaseString:

 def __set_name__(self, owner, name):

 self.name = name

 def __set__(self, instance, value):

 instance.__dict__[self.name] =

str(value).upper()

 def __get__(self, instance, owner):

 return instance.__dict__[self.name]

To use this descriptor, you can define a class like this:

class MyOtherClass:

130 | P a g e

 name = UppercaseString()

Now, when you create an instance of MyOtherClass and set the name attribute to a lowercase

string, it will be stored as uppercase:

>>> obj2 = MyOtherClass()

>>> obj2.name = "john"

>>> obj2.name

'JOHN'

Descriptors can also be used to create read-only or write-only attributes. To create a read-only

attribute, you can define a descriptor that only implements the __get__() method:

class ReadOnly:

 def __set_name__(self, owner, name):

 self.name = name

 def __set__(self, instance, value):

 raise AttributeError(f"{self.name} is read-

only")

 def __get__(self, instance, owner):

 return instance.__dict

 Writing class decorators

In Python, class decorators are a way to modify or extend the behavior of a class without changing

its code. A class decorator is a function that takes a class as its argument and returns a new class

that has the same name as the original class. The new class can inherit from the original class or

not, and can add new methods, attributes, or modify existing ones.

To create a class decorator, you define a function that takes a class as an argument and returns a

new class. The new class can inherit from the original class or not, and can add new methods,

attributes, or modify existing ones.

For example, let's create a class decorator that adds a count attribute to a class that keeps track of

the number of instances created from the class:

131 | P a g e

def count_instances(cls):

 class CountedClass(cls):

 count = 0

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 CountedClass.count += 1

 return CountedClass

The count_instances decorator takes a class as an argument and returns a new class that inherits

from the original class. The new class has a count attribute that is initialized to 0, and a modified

__init__() method that increments the count attribute every time an instance of the class is created.

To use the decorator, you just need to apply it to a class:

@count_instances

class MyClass:

 def __init__(self, value):

 self.value = value

Now, every time you create an instance of MyClass, the count attribute will be incremented:

>>> obj1 = MyClass(10)

>>> obj2 = MyClass(20)

>>> obj3 = MyClass(30)

>>> MyClass.count

3

You can also create a class decorator that modifies the behavior of a method. For example, let's

create a class decorator that adds logging to all methods of a class:

def log_methods(cls):

 for name, method in cls.__dict__.items():

 if callable(method):

132 | P a g e

 def logged_method(self, *args, **kwargs):

 print(f"Calling method {name}")

 return method(self, *args, **kwargs)

 setattr(cls, name, logged_method)

 return cls

The log_methods decorator iterates over all the attributes of the class, and if an attribute is a

method, it replaces it with a new method that logs the name of the method before calling it.

To use the decorator, you just need to apply it to a class:

@log_methods

class MyOtherClass:

 def method1(self):

 print("Method 1")

 def method2(self):

 print("Method 2")

 Using the super function

In Python, the super() function is used to call a method from a parent class, which allows us to

extend or override the behavior of the parent class in the child class.

The super() function is commonly used in object-oriented programming to call the constructor or

methods of the parent class, while still allowing the child class to customize its behavior.

To use the super() function, we call it with two arguments: the first argument is the child class,

and the second argument is an instance of the child class.

For example, let's consider the following class hierarchy:

class Parent:

 def __init__(self, name):

 self.name = name

 def greet(self):

133 | P a g e

 print(f"Hello, {self.name}!")

class Child(Parent):

 def greet(self):

 super().greet()

 print("I'm a child!")

In this example, we have a Parent class with an __init__() method and a greet() method, and a

Child class that inherits from Parent and overrides the greet() method.

In the Child class, we call the greet() method of the Parent class using super().greet(). This will

call the greet() method of the parent class, and then print "I'm a child!".

Let's create an instance of the Child class and call the greet() method:

>>> child = Child("John")

>>> child.greet()

Hello, John!

I'm a child!

As you can see, the super() function allowed us to call the greet() method of the Parent class, while

still allowing the Child class to customize its behavior.

Another example of using the super() function is to call the constructor of the parent class from

the child class:

class Parent:

 def __init__(self, name):

 self.name = name

class Child(Parent):

 def __init__(self, name, age):

 super().__init__(name)

 self.age = age

134 | P a g e

In this example, we have a Parent class with an __init__() method that takes a name argument, and

a Child class that inherits from Parent and overrides the __init__() method to take an additional

age argument.

In the Child class, we call the __init__() method of the Parent class using super().__init__(name).

This will call the __init__() method of the parent class with the name argument, and then we can

initialize the age attribute in the child class.

Let's create an instance of the Child class and print its attributes:

>>> child = Child("John", 10)

>>> print(child.name, child.age)

John 10

As you can see, the super() function allowed us to call the constructor of the parent class from the

child class, while still allowing the child class to customize its behavior.

 Using slots to optimize memory usage

In Python, every object has a dictionary that stores its attributes. While this is convenient, it can

also lead to high memory usage, especially when creating large numbers of objects.

To optimize memory usage in Python, we can use slots. Slots are a mechanism that allows us to

explicitly declare the attributes that an object can have. This allows Python to allocate memory for

these attributes directly in the object, rather than in a dictionary.

To use slots, we define a list of attribute names as class variables in our class, like this:

class Person:

 __slots__ = ['name', 'age']

 def __init__(self, name, age):

 self.name = name

 self.age = age

In this example, we have defined a Person class with two attributes: name and age. We have also

defined the __slots__ attribute as a list of strings containing the attribute names.

When we create an instance of this class, Python will allocate memory for the name and age

attributes directly in the object, rather than in a dictionary. This can lead to significant memory

savings when creating large numbers of objects.

135 | P a g e

Let's create a few instances of this class and check their memory usage:

import sys

p1 = Person("Alice", 25)

p2 = Person("Bob", 30)

p3 = Person("Charlie", 35)

print(sys.getsizeof(p1)) # prints 56

print(sys.getsizeof(p2)) # prints 56

print(sys.getsizeof(p3)) # prints 56

As you can see, the memory usage of each object is only 56 bytes, which is much smaller than the

size of a typical Python object.

Note that slots have some limitations. Once we define a class with slots, we can only assign

attributes to the slots that we have defined. If we try to assign a new attribute, we will get an

AttributeError. Additionally, we cannot use properties or other dynamic attributes in classes with

slots.

Overall, slots can be a useful tool for optimizing memory usage in Python, especially when

creating large numbers of objects with a fixed set of attributes. However, it's important to carefully

consider the limitations of slots before using them in a project.

136 | P a g e

Chapter 5:
Concurrency and Parallelism

137 | P a g e

Concurrency and parallelism are essential concepts in modern programming, as they allow

developers to take advantage of modern hardware to write programs that are more efficient and

responsive. Python is a popular language that supports both concurrency and parallelism, making

it a powerful tool for creating high-performance applications.

Concurrency refers to the ability of a program to handle multiple tasks at the same time. In other

words, it is the ability of a program to perform more than one task simultaneously. This is achieved

through the use of threads, which are lightweight processes that can run independently of each

other within the same program.

Parallelism, on the other hand, refers to the ability of a program to use multiple processors or cores

to perform tasks simultaneously. This is achieved through the use of processes, which are separate

instances of a program that can run independently of each other.

In this chapter, we will explore the basics of concurrency and parallelism in Python. We will start

by defining the concepts of threads and processes and explain how they are related to concurrency

and parallelism. We will then look at how to create and manage threads and processes in Python,

and how to communicate between them.

We will also examine some of the challenges of concurrency and parallelism, such as race

conditions and deadlocks, and discuss techniques for avoiding them. We will explore how to use

locks, semaphores, and other synchronization primitives to coordinate access to shared resources

and avoid conflicts between threads and processes.

Additionally, we will look at some advanced topics related to concurrency and parallelism in

Python. We will discuss the concept of asynchronous programming, which allows programs to

perform non-blocking I/O operations and handle large numbers of concurrent connections

efficiently.

Threads and Processes

 Understanding the Global Interpreter Lock (GIL)

138 | P a g e

In Python, the Global Interpreter Lock (GIL) is a mechanism that ensures only one thread executes

Python bytecode at a time. This means that even in a multithreaded application, only one thread

can execute Python code at any given moment.

The purpose of the GIL is to ensure thread safety in Python. Because of the way Python's memory

management works, allowing multiple threads to execute Python bytecode simultaneously could

lead to data corruption and other issues.

While the GIL is an important feature for ensuring the safety of multithreaded Python applications,

it can also be a bottleneck in applications that require high levels of parallelism. Because only one

thread can execute Python bytecode at a time, applications that spend a lot of time executing

Python code may not see significant performance improvements from using multiple threads.

Let's take a look at an example that demonstrates the GIL in action:

import threading

x = 0

def increment():

 global x

 for i in range(1000000):

 x += 1

threads = []

for i in range(10):

 t = threading.Thread(target=increment)

 threads.append(t)

for t in threads:

 t.start()

for t in threads:

 t.join()

print(x)

In this example, we define a function increment that simply increments a global variable x by 1,

1000000 times. We then create 10 threads and start them, each of which calls the increment

function.

If we run this code, we might expect the final value of x to be 10000000 (10 threads * 1000000

increments per thread). However, due to the GIL, the actual value of x will be less than this. On

my machine, the output is typically around 8-9 million.

139 | P a g e

While the GIL can be a bottleneck in applications that require high levels of parallelism, it's

important to note that it only affects the execution of Python bytecode. If your application spends

a lot of time waiting for I/O (such as network requests or disk reads), you may still see significant

performance improvements from using multiple threads.

In summary, the Global Interpreter Lock is an important feature of Python that ensures thread

safety. While it can be a bottleneck in certain types of applications, it's important to carefully

consider the tradeoffs between performance and safety when designing multithreaded Python

applications.

 Using threads for I/O-bound tasks

In Python, threads can be used to improve the performance of I/O-bound tasks. An I/O-bound task

is one that spends a significant amount of time waiting for input/output operations to complete,

such as reading from a file or making a network request. By using threads, we can allow the main

thread to continue executing other tasks while the I/O-bound task is waiting for I/O operations to

complete.

Let's take a look at an example that demonstrates how threads can be used to improve the

performance of an I/O-bound task:

import threading

import requests

def download_url(url):

 response = requests.get(url)

 print(f"Downloaded {len(response.content)} bytes

from {url}")

urls = [

 "https://www.example.com",

 "https://www.python.org",

 "https://www.google.com",

 "https://www.github.com",

 "https://www.stackoverflow.com",

]

threads = []

for url in urls:

 t = threading.Thread(target=download_url,

args=(url,))

 threads.append(t)

 t.start()

140 | P a g e

for t in threads:

 t.join()

print("All downloads complete!")

In this example, we define a function download_url that uses the requests library to download the

contents of a URL. We then create a list of URLs to download and create a thread for each URL,

passing the URL as an argument to the download_url function.

We then start each thread and wait for them to complete using the join method. Finally, we

print a message indicating that all downloads are complete.

When we run this code, we should see that the downloads are performed concurrently in multiple

threads. Because each download operation spends most of its time waiting for I/O operations to

complete, using threads allows us to download multiple URLs in parallel without significantly

impacting the performance of the main thread.

It's important to note that while threads can be used to improve the performance of I/O-bound

tasks, they may not be suitable for tasks that are CPU-bound (i.e., tasks that spend most of their

time performing calculations rather than waiting for I/O operations to complete). In such cases,

using multiprocessing or other techniques may be more appropriate. Additionally, care should be

taken when using threads to ensure that shared resources (such as file handles or database

connections) are accessed safely from multiple threads.

 Using processes for CPU-bound tasks

In Python, processes can be used to improve the performance of CPU-bound tasks. A CPU-bound

task is one that spends most of its time performing calculations or other CPU-intensive operations,

rather than waiting for I/O operations to complete. By using multiple processes, we can perform

these calculations in parallel, taking advantage of multiple CPU cores.

Let's take a look at an example that demonstrates how processes can be used to improve the

performance of a CPU-bound task:

from multiprocessing import Pool

def square(x):

 return x * x

if __name__ == '__main__':

 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 with Pool() as pool:

 results = pool.map(square, numbers)

141 | P a g e

 print(results)

In this example, we define a function square that calculates the square of a given number. We then

create a list of numbers to square and use the Pool class from the multiprocessing module to create

a pool of worker processes. We then use the map method of the pool to apply the square function

to each number in the list.

The map method applies the function to each element of the input list in parallel, using multiple

worker processes. The results are returned as a list in the order they were submitted.

When we run this code, we should see that the squares of the numbers are calculated in parallel

using multiple processes. Because each calculation is CPU-bound and can be performed

independently of the others, using multiple processes allows us to perform these calculations in

parallel, taking advantage of multiple CPU cores.

It's important to note that while processes can be used to improve the performance of CPU-bound

tasks, they come with some overhead compared to using threads. Creating new processes is more

expensive than creating new threads, and interprocess communication (IPC) can be more complex

than interthread communication. Additionally, care should be taken when using processes to

ensure that shared resources (such as memory or database connections) are accessed safely from

multiple processes.

 Using multiprocessing

Python's multiprocessing module allows us to spawn multiple processes in order to execute code

concurrently. This can be useful for CPU-bound tasks that need to take advantage of multiple CPU

cores. In this subtopic, we will explore how to use the multiprocessing module in Python to spawn

processes and execute code concurrently.

Here is an example that demonstrates how to use the multiprocessing module:

import multiprocessing

def worker(num):

 """Worker function"""

 print(f'Worker {num} executing')

 return

if __name__ == '__main__':

 jobs = []

 for i in range(5):

 p = multiprocessing.Process(target=worker,

args=(i,))

 jobs.append(p)

 p.start()

142 | P a g e

In this example, we define a function called worker that prints a message indicating that it is

executing. We then create a list of processes and use a for loop to create five instances of the

Process class, passing the worker function and an argument to identify the worker as arguments to

the constructor.

We then append each process to the jobs list and start it by calling the start method. When we run

this code, we should see five messages printed to the console indicating that each worker is

executing concurrently in its own process.

We can also use the Pool class from the multiprocessing module to create a pool of worker

processes. The Pool class provides a convenient way to create a fixed number of worker processes

and distribute tasks to them. Here is an example that demonstrates how to use the Pool class:

import multiprocessing

def worker(num):

 """Worker function"""

 print(f'Worker {num} executing')

 return

if __name__ == '__main__':

 with multiprocessing.Pool(processes=5) as pool:

 pool.map(worker, range(5))

In this example, we define the same worker function as before. We then create a Pool object with

five processes by passing processes=5 as an argument to the constructor.

We then use the map method of the Pool object to apply the worker function to each element in

the range from 0 to 4. The map method distributes the work across the processes in the pool and

returns the results as a list.

When we run this code, we should see five messages printed to the console indicating that each

worker is executing concurrently in its own process.

The multiprocessing module provides a powerful way to spawn multiple processes and ecute code

concurrently. By using the Process class or the Pool class, we can take advantage of multiple CPU

cores to perform CPU-bound tasks in parallel. However, care should be taken when using

multiprocessing to ensure that shared resources (such as memory or database connections) are

accessed safely from multiple processes.

 Using concurrent.futures

The concurrent.futures module in Python provides a high-level interface for asynchronously

executing functions using threads or processes. This can be useful for performing I/O-bound tasks

143 | P a g e

or CPU-bound tasks in parallel. In this subtopic, we will explore how to use the concurrent.futures

module in Python to execute functions concurrently.

Here is an example that demonstrates how to use the concurrent.futures module with threads:

import concurrent.futures

import time

def worker(num):

 """Worker function"""

 print(f'Worker {num} executing')

 time.sleep(1)

 return num

if __name__ == '__main__':

 with concurrent.futures.ThreadPoolExecutor() as

executor:

 results = [executor.submit(worker, i) for i in

range(5)]

 for f in

concurrent.futures.as_completed(results):

 print(f.result())

In this example, we define a function called worker that prints a message indicating that it is

executing and then sleeps for 1 second. We then create a ThreadPoolExecutor object and use a list

comprehension to create five futures by submitting the worker function and an argument to identify

the worker to the executor.

We then use a for loop and the as_completed function to iterate over the futures as they complete.

The as_completed function returns an iterator that yields futures as they complete. We print the

result of each future to the console when it completes.

When we run this code, we should see five messages printed to the console indicating that each

worker is executing concurrently in its own thread. We should also see the results of each worker

printed to the console as they complete.

We can also use the concurrent.futures module with processes by using the ProcessPoolExecutor

class instead of the ThreadPoolExecutor class. Here is an example that demonstrates how to use

the concurrent.futures module with processes:

import concurrent.futures

import time

def worker(num):

 """Worker function"""

 print(f'Worker {num} executing')

144 | P a g e

 time.sleep(1)

 return num

if __name__ == '__main__':

 with concurrent.futures.ProcessPoolExecutor() as

executor:

 results = [executor.submit(worker, i) for i in

range(5)]

 for f in

concurrent.futures.as_completed(results):

 print(f.result())

In this example, we define the same worker function as before. We then create a

ProcessPoolExecutor object instead of a ThreadPoolExecutor object.

The rest of the code is the same as before. When we run this code, we should see five messages

printed to the console indicating that each worker is executing concurrently in its own process. We

should also see the results of each worker printed to the console as they complete.

The concurrent.futures module provides a powerful way to execute functions asynchronously

using threads or processes. By using the ThreadPoolExecutor class or the ProcessPoolExecutor

class, we can take advantage of multiple CPU cores to perform CPU-bound tasks in parallel or

execute I/O-bound tasks concurrently.

Coroutines and asyncio

 Understanding coroutines

Coroutines are a powerful feature in Python that allow for asynchronous programming. They are

functions that can pause their execution, save their state, and resume execution from where they

left off later. This makes it possible to write code that can handle multiple tasks in parallel, without

the need for multiple threads or processes.

To use coroutines in Python, we use the asyncio module, which provides the infrastructure for

running coroutines and managing their execution. Here are the key concepts to understand when

working with coroutines in Python:

 async and await keywords: The async keyword is used to define a coroutine function, while

the await keyword is used to pause execution of a coroutine until some asynchronous

operation is completed.

145 | P a g e

 Event loop: The event loop is the heart of the asyncio module. It is responsible for

scheduling and running coroutines, and managing the execution of asynchronous

operations.

 Coroutines: Coroutines are functions that use the async keyword to define themselves as

asynchronous functions that can be paused and resumed.

Here is a simple example of a coroutine that uses the async and await keywords:

import asyncio

async def my_coroutine():

 print('Coroutine started')

 await asyncio.sleep(1)

 print('Coroutine resumed')

 return 'Coroutine finished'

asyncio.run(my_coroutine())

In this example, we define a coroutine function called my_coroutine() using the async keyword.

The function prints a message, pauses for 1 second using the await keyword and the asyncio.sleep()

function, prints another message, and returns a value. Finally, we run the coroutine using the

asyncio.run() function.

Here is another example that shows how to use coroutines to run multiple tasks in parallel:

import asyncio

async def my_coroutine(id):

 print(f'Coroutine {id} started')

 await asyncio.sleep(1)

 print(f'Coroutine {id} resumed')

 return f'Coroutine {id} finished'

async def main():

 tasks = [asyncio.create_task(my_coroutine(i)) for i

in range(3)]

 results = await asyncio.gather(*tasks)

 print(results)

asyncio.run(main())

In this example, we define a main() coroutine function that creates three instances of the

my_coroutine() function using the asyncio.create_task() function. We then use the asyncio.gather()

function to wait for all the tasks to complete and collect their results. Finally, we print the results.

146 | P a g e

To summarize, coroutines are a powerful feature in Python that allow for asynchronous

programming. They are functions that can pause their execution, save their state, and resume

execution from where they left off later. To use coroutines in Python, we use the asyncio module,

which provides the infrastructure for running coroutines and managing their execution.

 Using asyncio for I/O-bound tasks

Asyncio is a library in Python that helps to write asynchronous code, which can be beneficial for

handling I/O-bound tasks. When a program performs a lot of I/O-bound tasks, it often spends most

of its time waiting for the I/O operation to complete. By using asyncio, we can write code that

efficiently manages I/O-bound tasks and can improve the overall performance of the program.

Here's how asyncio works: Instead of waiting for the I/O operation to complete, it switches to

another task that can be executed. When the I/O operation completes, the corresponding task is

resumed. This way, the program can perform other operations while waiting for the I/O operation

to complete, making it more efficient.

To use asyncio, we need to write coroutines. A coroutine is a function that can be paused and

resumed during its execution. In Python, a coroutine is defined using the async def keyword. Here's

an example:

import asyncio

async def my_coroutine():

 print("Coroutine started")

 await asyncio.sleep(1)

 print("Coroutine resumed")

In this example, my_coroutine is a coroutine that prints a message, pauses for one second using

the await keyword, and then prints another message. The await keyword tells asyncio to suspend

the coroutine until the sleep function completes.

To run a coroutine, we need to create an event loop. An event loop is an object that manages the

execution of coroutines. We can create an event loop using the asyncio.get_event_loop function,

like this:

loop = asyncio.get_event_loop()

Once we have an event loop, we can run a coroutine using the run_until_complete method of the

event loop. Here's an example:

loop.run_until_complete(my_coroutine())

This code will run the my_coroutine coroutine until it completes.

147 | P a g e

Now let's look at an example of using asyncio to perform I/O-bound tasks. In this example, we'll

download a list of URLs and save the contents to a file. We'll use the aiohttp library to perform the

downloads. Here's the code:

import asyncio

import aiohttp

async def download_coroutine(session, url):

 async with session.get(url) as response:

 filename = url.split("/")[-1]

 with open(filename, "wb") as f:

 while True:

 chunk = await

response.content.read(1024)

 if not chunk:

 break

 f.write(chunk)

 print(f"Downloaded {url}")

async def download_all(urls):

 async with aiohttp.ClientSession() as session:

 tasks = []

 for url in urls:

 task =

asyncio.ensure_future(download_coroutine(session, url))

 tasks.append(task)

 await asyncio.gather(*tasks)

urls = [

 "https://www.python.org",

 "https://www.google.com",

 "https://www.bing.com",

 "https://www.yahoo.com",

]

loop = asyncio.get_event_loop()

loop.run_until_complete(download_all(urls))

In this code, we define a coroutine called download_coroutine that downloads a file from a URL

using aiohttp and saves it to a file. We also define a coroutine called download_all that runs

multiple download_coroutine coroutines concurrently using asyncio.gather. We pass a list of

URLs to download_all, and it downloads all the files concurrently.

 Using asyncio for CPU-bound tasks

148 | P a g e

Asyncio is a Python library that is used to write concurrent code in a simple and efficient way.

Traditionally, asyncio was mainly used for IO-bound tasks, but it can also be used for CPU-bound

tasks. In this note, we will discuss how to use asyncio for CPU-bound tasks.

When we talk about CPU-bound tasks, we refer to tasks that involve significant computation and

are CPU-intensive. These tasks can block the event loop and make the program unresponsive. To

avoid this, we can use asyncio to run these tasks in a separate thread or process.

To use asyncio for CPU-bound tasks, we need to create a custom event loop and run our tasks in

a separate executor. Here is an example of how to do this:

import asyncio

import concurrent.futures

async def cpu_bound_task(num):

 """

 A sample CPU-bound task that computes the sum of

the first N natural numbers

 """

 return sum(range(num))

async def main():

 """

 The main function that creates an executor and runs

the task

 """

 loop = asyncio.get_running_loop()

 executor = concurrent.futures.ThreadPoolExecutor()

 result = await loop.run_in_executor(executor,

cpu_bound_task, 1000000)

 print(f"The result is {result}")

asyncio.run(main())

In this example, we define a CPU-bound task that computes the sum of the first N natural numbers.

We then define a main function that creates an executor and runs the task using the run_in_executor

method of the event loop. The ThreadPoolExecutor is used in this case, but we could also use a

ProcessPoolExecutor.

The await keyword is used to suspend the coroutine until the result is ready. When the task is

complete, the result is printed to the console.

149 | P a g e

One thing to note is that using an executor comes with some overhead, so it may not always be the

best option for small tasks. However, for large and complex tasks, using an executor can

significantly improve performance.

Asyncio can be used for CPU-bound tasks by creating a custom event loop and running the tasks

in a separate executor. This can significantly improve performance and prevent the program from

becoming unresponsive.

 Using asyncio with third-party libraries

Asyncio is a powerful tool for writing concurrent code in Python. While it was originally designed

for IO-bound tasks, it can also be used with third-party libraries that support asyncio. In this note,

we will discuss how to use asyncio with third-party libraries.

Many popular Python libraries have added support for asyncio, making it easier to write concurrent

code with these libraries. Some examples of popular libraries that support asyncio include:

 aiohttp: A library for making HTTP requests asynchronously

 aioredis: A library for using Redis asynchronously

 asyncpg: A library for using PostgreSQL asynchronously

 aiomysql: A library for using MySQL asynchronously

Using these libraries with asyncio is usually straightforward. Here is an example of how to use

aiohttp to make an HTTP request asynchronously:

import asyncio

import aiohttp

async def main():

 """

 The main function that makes an HTTP request

asynchronously

 """

 async with aiohttp.ClientSession() as session:

 async with

session.get('https://www.google.com') as response:

 print(response.status)

 print(await response.text())

150 | P a g e

asyncio.run(main())

In this example, we define a main function that makes an HTTP request asynchronously using the

aiohttp library. We create a ClientSession and use it to make a GET request to the Google

homepage. We then print the status code and the text of the response.

Another example is using aioredis to interact with a Redis database asynchronously:

import asyncio

import aioredis

async def main():

 """

 The main function that interacts with Redis

asynchronously

 """

 redis = await

aioredis.create_redis_pool('redis://localhost')

 await redis.set('key', 'value')

 value = await redis.get('key', encoding='utf-8')

 print(value)

 redis.close()

 await redis.wait_closed()

asyncio.run(main())

In this example, we define a main function that interacts with a Redis database asynchronously

using the aioredis library. We create a Redis pool and use it to set a key-value pair and get the

value of the key. We then print the value and close the connection to the Redis database.

Using asyncio with third-party libraries can be a powerful way to write concurrent code in Python.

Many popular libraries have added support for asyncio, making it easier to write asynchronous

code with these libraries. By combining the power of asyncio with these libraries, we can write

code that is both efficient and easy to main

 Debugging asyncio code

Debugging asyncio code can be challenging, especially when dealing with complex asynchronous

programs. In this note, we will discuss some techniques and tools that can be used to debug asyncio

code.

One common technique for debugging asyncio code is to use print statements. However, this can

be difficult because of the asynchronous nature of the code. One way to overcome this is to use

151 | P a g e

the asyncio.gather function to wait for multiple coroutines to complete before printing the results.

Here's an example:

import asyncio

async def coroutine1():

 print("Start coroutine 1")

 await asyncio.sleep(1)

 print("End coroutine 1")

async def coroutine2():

 print("Start coroutine 2")

 await asyncio.sleep(2)

 print("End coroutine 2")

async def main():

 print("Start main")

 await asyncio.gather(coroutine1(), coroutine2())

 print("End main")

asyncio.run(main())

In this example, we define two coroutines that each print a start message, sleep for a specified

amount of time, and then print an end message. We also define a main coroutine that calls the

asyncio.gather function to run both coroutines concurrently. We then print a start message, wait

for the coroutines to complete, and print an end message.

Another technique for debugging asyncio code is to use the asyncio.Task.all_tasks() method to get

a list of all pending tasks. This can be useful for finding tasks that are stuck or taking too long to

complete. Here's an example:

import asyncio

async def coroutine1():

 print("Start coroutine 1")

 await asyncio.sleep(1)

 print("End coroutine 1")

async def coroutine2():

 print("Start coroutine 2")

 await asyncio.sleep(2)

 print("End coroutine 2")

async def main():

 print("Start main")

152 | P a g e

 task1 = asyncio.create_task(coroutine1())

 task2 = asyncio.create_task(coroutine2())

 tasks = asyncio.Task.all_tasks()

 print("All tasks:", tasks)

 await asyncio.gather(task1, task2)

 print("End main")

asyncio.run(main())

In this example, we use the asyncio.create_task function to create two tasks that run concurrently.

We then use the asyncio.Task.all_tasks() method to get a list of all pending tasks and print it to the

console. Finally, we wait for the tasks to complete and print an end message.

Additionally, tools like aiodebug and asyncio.run_in_executor can also be used for debugging

asyncio code. aiodebug is a third-party library that provides a debugger for asyncio applications,

while asyncio.run_in_executor can be used to run synchronous code in an executor, which can

make it easier to debug.

Debugging asyncio code can be challenging, but using techniques such as print statements, the

asyncio.Task.all_tasks() method, and tools like aiodebug and asyncio.run_in_executor can help to

make it easier. By using these techniques, you can quickly identify and resolve issues in your

asyncio applications.

153 | P a g e

154 | P a g e

Chapter 6:
Built-in Modules

Python is a high-level, interpreted programming language that has gained immense popularity over

the years due to its simplicity, versatility, and ease of use. One of the many reasons for Python's

popularity is its extensive library of built-in modules, which provide a vast array of functions and

tools to developers, without requiring them to write the code from scratch.

Built-in modules in Python are pre-existing modules that come bundled with the Python

installation and offer a range of functionalities that can be used in a wide range of applications.

These modules are designed to save developers time and effort by providing ready-to-use functions

that can perform complex tasks quickly and efficiently.

155 | P a g e

In this chapter, we will explore the various built-in modules available in Python and discuss how

they can be used to simplify development and increase productivity. We will cover a range of

modules, from the more commonly used ones, such as math, datetime, and os, to some of the

lesser-known ones, such as ctypes, pickle, and hashlib.

We will begin by discussing the math module, which provides a range of mathematical functions,

including trigonometric, logarithmic, and exponential functions, among others. The module is

widely used in scientific applications and can be used to perform a variety of calculations, such as

finding the square root of a number or generating random numbers.

Next, we will look at the datetime module, which provides a range of functions for working with

dates and times. The module can be used to perform various operations, such as calculating the

difference between two dates, formatting dates and times, and converting between different time

zones.

We will also explore the os module, which provides functions for interacting with the operating

system. The module can be used to perform various tasks, such as creating and deleting files and

directories, navigating file systems, and setting environment variables.

Another module that we will discuss is the pickle module, which is used for serializing and

deserializing Python objects. The module allows developers to store Python objects in a file or a

database and retrieve them later, making it easier to work with complex data structures.

We will also cover the hashlib module, which provides functions for generating secure hashes of

data. The module can be used to generate hashes of passwords, to verify the integrity of data, and

to ensure that data has not been tampered with.

Throughout the chapter, we will provide examples of how these modules can be used in real-world

applications, including web development, data analysis, and machine learning. We will also

discuss some of the best practices for using built-in modules in Python, such as importing only the

required modules, using aliases for long module names, and handling exceptions.

Built-in modules in Python are a powerful tool for developers, providing a range of functionalities

that can be used to simplify development and increase productivity. By exploring the various

modules available in Python, we can gain a better understanding of how they can be used to solve

complex problems and build robust applications.

Collections

 Using namedtuple

Python's collections module provides several useful data structures that are not included in the

standard built-in types. One of these data structures is namedtuple, which is a subclass of tuple that

has named fields. In this note, we will discuss how to use namedtuple and provide some sample

code.

156 | P a g e

namedtuple is defined using the collections.namedtuple() factory function. The first argument to

this function is the name of the new tuple type, and the second argument is a string containing the

names of the fields separated by spaces or commas. Here's an example:

from collections import namedtuple

Point = namedtuple('Point', ['x', 'y'])

p = Point(1, 2)

print(p)

print(p.x)

print(p.y)

In this example, we define a new namedtuple type called Point with two fields, x and y. We then

create a new instance of this type with values (1, 2) and print it to the console. We also print the

values of the x and y fields individually.

One advantage of using namedtuple is that it provides a more readable and self-documenting

alternative to defining tuples or using dictionaries. For example, instead of using a plain tuple or a

dictionary to represent a 2D point, we can use a namedtuple with fields x and y:

p = (1, 2)

vs

p = {'x': 1, 'y': 2}

vs

Point = namedtuple('Point', ['x', 'y'])

p = Point(1, 2)

namedtuple also provides some convenient features, such as the ability to access fields using dot

notation instead of indexing:

p = (1, 2)

x = p[0]

y = p[1]

vs

p = Point(1, 2)

x = p.x

y = p.y

namedtuple instances are immutable, which means that their values cannot be changed once they

are created. This can help to prevent bugs caused by accidental modifications of tuples.

namedtuple can also be used in some situations where a class would be overkill, such as when

defining simple data structures that only have a few fields. For example, a namedtuple could be

used to represent a user's login credentials:

157 | P a g e

User = namedtuple('User', ['username', 'password'])

user = User('john_doe', 'password123')

Namedtuple is a useful data structure provided by Python's collections module. It can be used to

create tuples with named fields, providing a more readable and self-documenting alternative to

plain tuples or dictionaries. namedtuple instances are immutable, and they can be used in situations

where a full-fledged class would be overkill.

 Using deque

In Python, the collections module provides several useful data structures that are not included in

the standard built-in types. One of these data structures is deque, which is a double-ended queue

that provides O(1) time complexity for adding or removing elements from either end. In this note,

we will discuss how to use deque and provide some sample code.

To use deque, you first need to import it from the collections module:

from collections import deque

Once you have imported deque, you can create a new instance of the deque using the following

syntax:

my_deque = deque()

This creates an empty deque instance. You can also pass an iterable to the deque() constructor to

initialize it with some values:

my_deque = deque([1, 2, 3])

Now that you have a deque instance, you can add elements to it using the append() method. This

adds an element to the right end of the deque:

my_deque.append(4)

You can also add elements to the left end of the deque using the appendleft() method:

my_deque.appendleft(0)

To remove an element from the right end of the deque, you can use the pop() method:

last_element = my_deque.pop()

This removes the last element from the deque and returns it. Similarly, to remove an element from

the left end of the deque, you can use the popleft() method:

158 | P a g e

first_element = my_deque.popleft()

This removes the first element from the deque and returns it.

deque also provides a rotate() method that allows you to rotate the deque by a specified number of

steps. Positive values rotate the deque to the right, while negative values rotate it to the left:

my_deque.rotate(1) # rotates the deque to the right by

one step

Finally, deque provides a few other methods for querying and manipulating the deque, such as

clear(), extend(), and remove(). You can read more about these methods in the Python

documentation.

Deque is a useful data structure provided by Python's collections module. It provides O(1) time

complexity for adding or removing elements from either end of the deque, and it also provides a

few other useful methods for querying and manipulating the deque. deque can be used in situations

where you need to efficiently add or remove elements from both ends of a collection.

 Using defaultdict

The defaultdict is a powerful tool in Python's built-in collections module that provides a convenient

way to create dictionaries with default values for missing keys. By using a defaultdict, you can

simplify your code and avoid having to manually check if a key is already in the dictionary before

accessing or modifying its value.

Here's an example of how to use a defaultdict to count the frequency of items in a list:

from collections import defaultdict

my_list = ['apple', 'banana', 'apple', 'cherry',

'cherry', 'cherry']

my_dict = defaultdict(int)

for item in my_list:

 my_dict[item] += 1

print(my_dict)

In this code, we import the defaultdict class from the collections module and create a new instance

called my_dict with a default value of int (which is 0). Then, we iterate over the items in my_list

and add 1 to the value associated with each item in my_dict. Finally, we print out the resulting

dictionary, which shows the frequency of each item in the list:

159 | P a g e

defaultdict(<class 'int'>, {'apple': 2, 'banana': 1,

'cherry': 3})

Notice that we didn't have to check whether each key was already in the dictionary before

incrementing its value. If a key didn't exist yet, its default value of 0 was used instead, and then

incremented.

Another useful feature of defaultdict is the ability to specify a default value function that gets

called whenever a missing key is accessed. This can be useful if you want to use a different default

value depending on the context. Here's an example:

from collections import defaultdict

def default_list():

 return []

my_dict = defaultdict(default_list)

my_dict['colors'].append('red')

my_dict['colors'].append('blue')

my_dict['fruits'].append('apple')

print(my_dict)

In this code, we define a function called default_list that returns an empty list. Then, we create a

new defaultdict called my_dict that uses this function as its default value. We add some items to

my_dict using the append method, and then print out the resulting dictionary:

defaultdict(<function default_list at 0x7f7f60eeca60>,

{'colors': ['red', 'blue'], 'fruits': ['apple']})

Notice that the default value function was only called when a missing key was accessed, not when

the dictionary was first created.

Overall, defaultdict can be a powerful tool for simplifying your code and avoiding common errors.

By providing a default value for missing keys, you can avoid having to manually check for their

existence and handle them separately.

 Using OrderedDict

The OrderedDict is a class provided by the collections module in Python that is similar to a regular

dictionary, but with the added feature of preserving the order in which the items were inserted.

This can be particularly useful in cases where the order of items in a dictionary matters.

To use OrderedDict, first, we need to import it from the collections module. Here's an example:

160 | P a g e

from collections import OrderedDict

Now, let's see some of the useful methods that are available with OrderedDict:

1. Creating an OrderedDict

To create an OrderedDict, we can simply call the OrderedDict() constructor. Here's an example:

od = OrderedDict()

2. Adding elements to an OrderedDict

To add an element to an OrderedDict, we can use the update() method. Here's an example:

od.update({'a': 1})

od.update({'b': 2})

od.update({'c': 3})

This will add the key-value pairs ('a', 1), ('b', 2), and ('c', 3) to the OrderedDict, in that order.

Alternatively, we can also use the od[key] = value syntax to add an element to the OrderedDict.

Here's an example:

od['d'] = 4

3. Removing elements from an OrderedDict

To remove an element from an OrderedDict, we can use the pop() method. Here's an example:

od.pop('a')

This will remove the key-value pair ('a', 1) from the OrderedDict.

Alternatively, we can also use the del keyword to remove an element from the OrderedDict. Here's

an example:

del od['b']

This will remove the key-value pair ('b', 2) from the OrderedDict.

4. Iterating over an OrderedDict

To iterate over an OrderedDict, we can simply use a for loop. Here's an example:

for key, value in od.items():

 print(key, value)

161 | P a g e

This will print the key-value pairs in the OrderedDict, in the order in which they were inserted.

5. Reversing the order of an OrderedDict

To reverse the order of an OrderedDict, we can use the reversed() function. Here's an example:

for key, value in reversed(od.items()):

 print(key, value)

This will print the key-value pairs in the OrderedDict in reverse order.

Example usage of OrderedDict

Here's an example of using OrderedDict to count the number of occurrences of words in a text:

text = "the quick brown fox jumps over the lazy dog"

words = text.split()

word_count = OrderedDict()

for word in words:

 if word in word_count:

 word_count[word] += 1

 else:

 word_count[word] = 1

for key, value in word_count.items():

 print(key, value)

This will output the following:

the 2

quick 1

brown 1

fox 1

jumps 1

over 1

lazy 1

dog 1

As you can see, OrderedDict has preserved the order in which the words were inserted, allowing

us to count the number of occurrences of each word in the text while still preserving the original

order.

 Using Counter

162 | P a g e

Counter is a built-in module in Python that provides a simple and efficient way to count the

frequency of elements in an iterable. It is particularly useful when working with large datasets

where counting occurrences manually can be tedious and time-consuming. In this note, we will

discuss how to use the Counter module in Python.

To use the Counter module, we first need to import it. This can be done using the following code:

from collections import Counter

Now, let's say we have a list of fruits and we want to count the frequency of each fruit in the list.

We can use the Counter module to do this as follows:

fruits = ['apple', 'banana', 'orange', 'apple',

'banana', 'apple']

fruit_count = Counter(fruits)

print(fruit_count)

This will output:

Counter({'apple': 3, 'banana': 2, 'orange': 1})

As we can see, the Counter module has counted the frequency of each fruit in the list and returned

a dictionary-like object with the counts.

We can also use the most_common() method of the Counter object to get a list of the n most

common elements and their counts. For example, to get the two most common fruits in our list,

we can use the following code:

print(fruit_count.most_common(2))

This will output:

[('apple', 3), ('banana', 2)]

Another useful method of the Counter object is elements(), which returns an iterator over the

elements in the Counter object, repeating each element as many times as its count. For example,

to get an iterator of all the fruits in our list, we can use the following code:

print(list(fruit_count.elements()))

This will output:

['apple', 'apple', 'apple', 'banana', 'banana',

'orange']

163 | P a g e

In addition to lists, Counter can also be used with other iterables such as tuples, strings, and

dictionaries. For example, to count the frequency of characters in a string, we can use the following

code:

sentence = "The quick brown fox jumps over the lazy

dog"

char_count = Counter(sentence)

print(char_count)

This will output:

Counter({' ': 8, 'o': 4, 'e': 3, 'u': 2, 'h': 2, 'r':

2, 'T': 1, 'q': 1, 'i': 1, 'c': 1, 'k': 1, 'b': 1, 'w':

1, 'n': 1, 'f': 1, 'x': 1, 'j': 1, 'm': 1, 'p': 1, 's':

1, 'v': 1, 't': 1, 'l': 1, 'a': 1, 'z': 1, 'y': 1, 'd':

1, 'g': 1})

The Counter module is a very useful tool for counting the frequency of elements in iterables. Its

simple interface and efficient implementation make it a great choice for dealing with large datasets

where counting occurrences manually would be impractical.

 Using ChainMap

ChainMap is a built-in module in Python that provides a way to combine multiple dictionaries or

mappings into a single, unified view. It acts as a single dictionary that contains all the keys and

values from the input dictionaries, and allows us to perform lookups and modifications on the

entire chain of mappings at once. In this note, we will discuss how to use the ChainMap module

in Python.

To use the ChainMap module, we first need to import it. This can be done using the following

code:

from collections import ChainMap

Now, let's say we have two dictionaries, one representing the default configuration settings and

the other representing the user-defined settings. We want to merge these two dictionaries into a

single dictionary with the user-defined settings taking precedence over the default settings. We

can use the ChainMap module to do this as follows:

default_settings = {'debug': False, 'log_level':

'INFO', 'timeout': 30}

user_settings = {'log_level': 'DEBUG', 'timeout': 60}

164 | P a g e

settings = ChainMap(user_settings, default_settings)

print(settings)

This will output:

ChainMap({'log_level': 'DEBUG', 'timeout': 60},

{'debug': False, 'log_level': 'INFO', 'timeout': 30})

As we can see, the ChainMap object contains all the keys and values from both dictionaries, with

the user-defined settings taking precedence over the default settings.

We can now perform lookups and modifications on the settings dictionary, and these will be

reflected in both the user_settings and default_settings dictionaries. For example, to get the value

of the 'log_level' key, we can use the following code:

print(settings['log_level'])

This will output:

DEBUG

To modify the value of the 'timeout' key, we can use the following code:

settings['timeout'] = 90

print(default_settings['timeout'])

print(user_settings['timeout'])

This will output:

30

60

As we can see, the value of the 'timeout' key in the default_settings dictionary has not changed,

while the value in the user_settings dictionary has also remained unchanged. This is because the

ChainMap object only modifies the first dictionary in the chain that contains the key.

In addition to dictionaries, ChainMap can also be used with other mappings such as OrderedDicts

and defaultdicts. For example, to merge two OrderedDicts into a single OrderedDict with the keys

and values in the order they were added, we can use the following code:

from collections import OrderedDict

od1 = OrderedDict([('a', 1), ('b', 2)])

od2 = OrderedDict([('c', 3), ('d', 4)])

od = ChainMap(od2, od1)

165 | P a g e

print(od)

This will output:

ChainMap(OrderedDict([('c', 3), ('d', 4)]),

OrderedDict([('a', 1), ('b', 2)]))

The ChainMap module is a very useful tool for combining multiple dictionaries or mappings into

a single, unified view. Its simple interface and efficient implementation make it a great choice for

dealing with complex configuration settings or other scenarios where multiple mappings need to

be combined.

 Using UserDict

UserDict is a built-in module in Python that provides a convenient way to create our own

dictionary-like objects. It is a subclass of the built-in dict class, but with some additional features

that make it easier to customize the behavior of the dictionary. In this note, we will discuss how to

use the UserDict module in Python.

To use the UserDict module, we first need to import it. This can be done using the following code:

from collections import UserDict

Now, let's say we want to create a dictionary-like object that allows us to access the values using

both keys and attribute names. We can create a new class that inherits from the UserDict class and

implements the getattr method to allow attribute access. Here's an example:

class MyDict(UserDict):

 def __getattr__(self, key):

 if key in self.data:

 return self.data[key]

 elif key in self.__dict__:

 return self.__dict__[key]

 else:

 raise AttributeError(f"'MyDict' object has

no attribute '{key}'")

In this example, we define a new class called MyDict that inherits from the UserDict class. We

override the getattr method to allow attribute access to the dictionary keys. The method first checks

if the key is in the self.data dictionary, and returns the value if it is. If the key is not in the self.data

dictionary, it checks if it is in the instance's dict attribute, which contains the instance's attributes.

If the key is not found in either dictionary, it raises an AttributeError.

We can now create an instance of this class and access the values using both keys and attributes.

Here's an example:

166 | P a g e

d = MyDict({'a': 1, 'b': 2})

print(d.a)

print(d['b'])

This will output:

1

2

As we can see, we can access the values using both attributes and keys.

We can also override other methods of the UserDict class to customize the behavior of our

dictionary-like object. For example, we can override the setitem method to allow setting values

using attributes as well as keys. Here's an example:

class MyDict(UserDict):

 def __getattr__(self, key):

 if key in self.data:

 return self.data[key]

 elif key in self.__dict__:

 return self.__dict__[key]

 else:

 raise AttributeError(f"'MyDict' object has

no attribute '{key}'")

 def __setitem__(self, key, value):

 self.data[key] = value

 setattr(self, key, value)

In this example, we add a new setitem method that sets the value using both the key and the

attribute name. We use the setattr method to set the attribute with the same name as the key to the

value.

We can now create an instance of this class and set values using both keys and attributes. Here's

an example:

d = MyDict()

d.a = 1

d['b'] = 2

print(d.a)

print(d['b'])

This will output:

1

2

167 | P a g e

As we can see, we can set values using both attributes and keys.

The UserDict module is a very useful tool for creating custom dictionary-like objects that can be

accessed using both keys and attributes. Its simple interface and flexible implementation make it

a great choice for scenarios where custom dictionary behavior is needed.

 Using UserList

UserList is a built-in module in Python that provides a way to create list-like objects with

customized behavior. It is a subclass of the built-in list class, but with some additional features that

make it easier to customize the behavior of the list. In this note, we will discuss how to use the

UserList module in Python.

To use the UserList module, we first need to import it. This can be done using the following code:

from collections import UserList

Now, let's say we want to create a list-like object that always returns the sum of the values in the

list when we call the sum method. We can create a new class that inherits from the UserList class

and implements the sum method to return the sum of the values in the list. Here's an example:

class MyList(UserList):

 def sum(self):

 return sum(self.data)

In this example, we define a new class called MyList that inherits from the UserList class. We add

a new sum method that returns the sum of the values in the list by calling the built-in sum function

on the self.data attribute, which contains the list of values.

We can now create an instance of this class and call the sum method to get the sum of the values

in the list. Here's an example:

l = MyList([1, 2, 3, 4])

print(l.sum())

This will output:

10

As we can see, the sum method returns the sum of the values in the list.

We can also override other methods of the UserList class to customize the behavior of our list-like

object. For example, we can override the getitem method to return the negative index when a

positive index is provided. Here's an example:

class MyList(UserList):

168 | P a g e

 def sum(self):

 return sum(self.data)

 def __getitem__(self, index):

 if index >= 0:

 return self.data[index]

 else:

 return self.data[len(self.data) + index]

In this example, we add a new getitem method that returns the negative index when a positive

index is provided. If the index is greater than or equal to zero, it returns the value at that index. If

the index is negative, it calculates the corresponding positive index by adding the length of the list

to the index and returns the value at that index.

We can now create an instance of this class and access the values using negative indices as well as

positive indices. Here's an example:

l = MyList([1, 2, 3, 4])

print(l[0])

print(l[-1])

This will output:

1

4

As we can see, we can access the values using both positive and negative indices.

The UserList module is a very useful tool for creating custom list-like objects that can be

customized to suit specific needs. Its simple interface and flexible implementation make it a great

choice for scenarios where custom list behavior is needed.

 Using UserString

The UserString module is a built-in Python module that provides a convenient way to work with

strings in a more flexible and customizable manner. The module provides a wrapper class called

UserString, which allows you to create string-like objects that can be customized to your specific

needs. In this note, we will explore how to use the UserString module and its various features.

Creating a UserString object:

To create a UserString object, we simply instantiate the UserString class with the string we want

to work with as an argument. Here's an example:

from collections import UserString

169 | P a g e

my_string = UserString("Hello, World!")

print(my_string)

In this example, we created a UserString object called my_string that contains the string "Hello,

World!". We then printed the object, which outputs the string just like any regular string object

would.

Customizing a UserString object:

One of the key features of the UserString module is the ability to customize the behavior of the

UserString object. This is done by subclassing the UserString class and overriding various

methods.

For example, let's say we want to create a UserString object that always outputs its contents in

uppercase letters. We can do this by creating a subclass of UserString and overriding the __str__

method:

class UppercaseString(UserString):

 def __str__(self):

 return self.data.upper()

my_string = UppercaseString("Hello, World!")

print(my_string)

In this example, we created a new class called UppercaseString that inherits from UserString. We

then defined the __str__ method to return the string in all uppercase letters. When we create a new

UppercaseString object and print it, we see that the string is indeed in all uppercase letters.

Using a UserString object with built-in string methods:

Another advantage of the UserString module is that UserString objects can be used with most of

the built-in string methods. This includes methods such as strip, replace, split, and many others.

For example, let's say we want to create a UserString object that strips all whitespace from the

beginning and end of the string. We can do this by creating a subclass of UserString and overriding

the __str__ method:

class StrippedString(UserString):

 def __str__(self):

 return self.data.strip()

my_string = StrippedString(" Hello, World! ")

print(my_string)

In this example, we created a new class called StrippedString that inherits from UserString. We

then defined the __str__ method to return the stripped version of the string. When we

170 | P a g e

create a new StrippedString object and print it, we see that the whitespace has been removed from

the beginning and end of the string.

The UserString module is a powerful tool for working with strings in Python. By creating

UserString objects and customizing their behavior, we can create strings that fit our specific needs.

And because UserString objects can be used with most built-in string methods, they can be

seamlessly integrated into existing code.

Itertools

 Using count, cycle, and repeat

The itertools module in Python provides a collection of functions for working with iterable objects

efficiently. Among these functions are count, cycle, and repeat, which are used to generate infinite

or finite sequences of values. In this note, we will explore how to use count, cycle, and repeat in

itertools.

count function:

The count function generates an infinite sequence of numbers starting from a specified value and

incrementing by a specified step. Here's an example:

from itertools import count

for i in count(start=1, step=2):

 if i > 10:

 break

 print(i)

In this example, we import the count function from itertools. We then use a for loop to iterate over

an infinite sequence of numbers starting from 1 and incrementing by 2. We use the break statement

to terminate the loop once the value of i exceeds 10.

cycle function:

The cycle function generates an infinite sequence by cycling through the values of an iterable.

Here's an example:

from itertools import cycle

colors = ['red', 'green', 'blue']

color_cycle = cycle(colors)

for i in range(6):

 print(next(color_cycle))

171 | P a g e

In this example, we import the cycle function from itertools. We then create a list of colors and

use the cycle function to create an infinite sequence that cycles through the values of the colors

list. We use the next function to retrieve the next value in the sequence and print it. We repeat this

process six times, which produces the output:

red

green

blue

red

green

blue

repeat function:

The repeat function generates an infinite sequence by repeating a specified value a specified

number of times. Here's an example:

from itertools import repeat

for i in repeat(10, 5):

 print(i)

In this example, we import the repeat function from itertools. We then use a for loop to iterate over

a sequence that repeats the value 10 five times. We print each value in the sequence, which

produces the output:

10

10

10

10

10

The count, cycle, and repeat functions in itertools provide a convenient way to generate infinite or

finite sequences of values. By using these functions, we can easily create sequences of numbers,

cycle through the values of an iterable, or repeat a value a specified number of times. These

functions are powerful tools that can be used in a wide range of applications.

 Using chain, tee, and zip_longest

The itertools module in Python provides a collection of functions for working with iterable objects

efficiently. Among these functions are chain, tee, and zip_longest, which are used to manipulate

and combine iterables. In this note, we will explore how to use chain, tee, and zip_longest in

itertools.

172 | P a g e

chain function:

The chain function is used to combine multiple iterables into a single iterable. Here's an example:

from itertools import chain

colors = ['red', 'green', 'blue']

numbers = [1, 2, 3]

combined = chain(colors, numbers)

for item in combined:

 print(item)

In this example, we import the chain function from itertools. We then create two lists: colors and

numbers. We use the chain function to combine the two lists into a single iterable called combined.

We use a for loop to iterate over the combined iterable and print each item in the sequence. The

output of this code is:

red

green

blue

1

2

3

tee function:

The tee function is used to create multiple independent iterators from a single iterable. Here's an

example:

from itertools import tee

colors = ['red', 'green', 'blue']

iter1, iter2 = tee(colors, 2)

print(list(iter1))

print(list(iter2))

In this example, we import the tee function from itertools. We then create a list called colors. We

use the tee function to create two independent iterators (iter1 and iter2) from the colors list. We

use the list function to convert the iterators to lists and print them. The output of this code is:

['red', 'green', 'blue']

['red', 'green', 'blue']

zip_longest function:

173 | P a g e

The zip_longest function is used to combine two or more iterables into a single iterable. Unlike

the built-in zip function, which stops when the shortest iterable is exhausted, zip_longest continues

until the longest iterable is exhausted. Here's an example:

from itertools import zip_longest

colors = ['red', 'green', 'blue']

numbers = [1, 2, 3, 4]

combined = zip_longest(colors, numbers)

for item in combined:

 print(item)

In this example, we import the zip_longest function from itertools. We then create two lists: colors

and numbers. We use the zip_longest function to combine the two lists into a single iterable called

combined. We use a for loop to iterate over the combined iterable and print each item in the

sequence. The output of this code is:

('red', 1)

('green', 2)

('blue', 3)

(None, 4)

The chain, tee, and zip_longest functions in itertools provide a convenient way to manipulate and

combine iterables. By using these functions, we can easily combine multiple iterables into a single

iterable, create multiple independent iterators from a single iterable, or combine two or more

iterables into a single iterable with different lengths. These functions are powerful tools that can

be used in a wide range of applications.

 Using islice, dropwhile, and takewhile

One useful aspect of Python's itertools module is its ability to manipulate and iterate over iterable

objects in a variety of ways. Among the most useful functions in this module are islice, dropwhile,

and takewhile, which allow you to perform complex operations on iterables with minimal code.

islice() Function:

The islice() function allows you to slice an iterable object like a list, tuple, or string, just like you

would with square brackets, but without actually creating a new list. This means that you can slice

very large iterables without taking up a lot of memory.

The syntax of the islice() function is as follows:

174 | P a g e

from itertools import islice

islice(iterable, start, stop[, step])

Here, iterable is the iterable object you want to slice, start is the starting index of the slice, stop is

the ending index of the slice, and step is the step size. You can omit the step argument if you want

to slice the iterable in the default step size of 1.

Here's an example of using islice() to slice a list:

my_list = ['a', 'b', 'c', 'd', 'e']

print(list(islice(my_list, 1, 4)))

Output:

['b', 'c', 'd']

dropwhile() Function:

The dropwhile() function allows you to drop elements from an iterable until a certain condition is

met. Once the condition is met, the function returns the remaining elements of the iterable.

The syntax of the dropwhile() function is as follows:

from itertools import dropwhile

dropwhile(predicate, iterable)

Here, predicate is a function that takes an element of the iterable as an argument and returns a

Boolean value indicating whether to drop the element or not. iterable is the iterable object you

want to iterate over.

Here's an example of using dropwhile() to drop elements from a list:

my_list = [1, 3, 5, 7, 2, 4, 6]

print(list(dropwhile(lambda x: x < 5, my_list)))

Output:

[5, 7, 2, 4, 6]

takewhile() Function:

175 | P a g e

The takewhile() function allows you to take elements from an iterable until a certain condition is

met. Once the condition is not met, the function stops taking elements and returns what it has taken

so far.

The syntax of the takewhile() function is as follows:

from itertools import takewhile

takewhile(predicate, iterable)

Here, predicate is a function that takes an element of the iterable as an argument and returns a

Boolean value indicating whether to take the element or not. iterable is the iterable object you want

to iterate over.

Here's an example of using takewhile() to take elements from a list:

my_list = [1, 3, 5, 7, 2, 4, 6]

print(list(takewhile(lambda x: x < 5, my_list)))

Output:

[1, 3]

The itertools module provides useful functions like islice(), dropwhile(), and takewhile() to

perform complex operations on iterables. These functions are particularly useful for large data sets

where you want to perform operations efficiently and without creating unnecessary lists.

 Using groupby

The groupby() function in Python's itertools module is a powerful tool for grouping items in an

iterable based on a key function. The key function returns a value for each item in the iterable, and

the items with the same value are grouped together into a single group.

The groupby() function works by creating an iterator that produces pairs of keys and groups, where

the key is the value returned by the key function, and the group is an iterator that produces the

items in the iterable that have that key.

The syntax of the groupby() function is as follows:

from itertools import groupby

groupby(iterable, key=None)

Here, iterable is the iterable object you want to group, and key is an optional function that takes

an element of the iterable as an argument and returns a key value for that element. If no key

function is provided, the element itself is used as the key.

176 | P a g e

Here's an example of using groupby() to group a list of words by their first letter:

words = ['apple', 'banana', 'cherry', 'date',

'elderberry', 'fig']

groups = groupby(words, key=lambda x: x[0])

for key, group in groups:

 print(key, list(group))

Output:

a ['apple']

b ['banana']

c ['cherry']

d ['date']

e ['elderberry']

f ['fig']

In this example, we created a list of words, and then passed it to the groupby() function along with

a key function that returns the first letter of each word. The function returned an iterator that

produced pairs of keys and groups, where each group contained the words that started with the

same letter.

We then looped over the iterator using a for loop, printing each key and the list of words in the

corresponding group. Note that the group object produced by the iterator is itself an iterator, so we

had to convert it to a list to print it.

Here's another example of using groupby() to group a list of numbers by their parity:

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

groups = groupby(numbers, key=lambda x: 'even' if x % 2

== 0 else 'odd')

for key, group in groups:

 print(key, list(group))

Output:

177 | P a g e

odd [1]

even [2, 4, 6, 8, 10]

odd [3, 5, 7, 9]

In this example, we created a list of numbers, and then passed it to the groupby() function along

with a key function that returns the string 'even' for even numbers and 'odd' for odd numbers. The

function returned an iterator that produced pairs of keys and groups, where each group contained

the numbers with the same parity.

We then looped over the iterator using a for loop, printing each key and the list of numbers in the

corresponding group.

The groupby() function in Python's itertools module is a powerful tool for grouping items in an

iterable based on a key function. It is particularly useful for tasks such as data analysis and data

manipulation, where grouping by certain criteria is a common operation.

 Using starmap and product

The starmap() and product() functions in Python's itertools module are useful tools for performing

calculations on multiple iterables. They can be used to generate all possible combinations of

elements from two or more iterables and perform an operation on each combination.

The starmap() function takes a function and an iterable of tuples as arguments. It applies the

function to each tuple in the iterable, unpacking the elements of the tuple as arguments to the

function. The result is an iterator that produces the results of the function for each tuple in the

iterable.

Here's an example of using starmap() to calculate the squares of the numbers in a list of tuples:

from itertools import starmap

numbers = [(1, 2), (3, 4), (5, 6)]

squares = starmap(lambda x, y: x**2 + y**2, numbers)

for square in squares:

 print(square)

Output:

5

25

178 | P a g e

61

In this example, we created a list of tuples, where each tuple contains two numbers. We then passed

this list to the starmap() function along with a lambda function that calculates the sum of the

squares of the two numbers in each tuple. The function returned an iterator that produced the result

of the lambda function for each tuple in the list.

We then looped over the iterator using a for loop, printing each result.

The product() function takes two or more iterables as arguments and returns an iterator that

produces tuples containing all possible combinations of elements from the input iterables. The

length of each tuple is equal to the number of input iterables.

Here's an example of using product() to generate all possible combinations of two lists:

from itertools import product

list1 = ['A', 'B']

list2 = [1, 2, 3]

combinations = product(list1, list2)

for combination in combinations:

 print(combination)

Output:

('A', 1)

('A', 2)

('A', 3)

('B', 1)

('B', 2)

('B', 3)

In this example, we created two lists, and then passed them to the product() function. The function

returned an iterator that produced tuples containing all possible combinations of elements from the

two input lists.

We then looped over the iterator using a for loop, printing each tuple.

179 | P a g e

The starmap() and product() functions in Python's itertools module are useful tools for performing

calculations on multiple iterables. They can be used to generate all possible combinations of

elements from two or more iterables and perform an operation on each combination. These

functions are particularly useful for tasks such as combinatorial optimization, simulations, and

statistical analysis.

File and Directory Access

 Using os and os.path

The os and os.path modules in Python provide a wide range of functions for accessing files and

directories on the file system. These modules can be used to perform various operations such as

navigating directories, creating and deleting files, checking file properties, and more.

Here are some examples of how to use the os and os.path modules for file and directory access:

Navigating Directories:

The os module provides functions for navigating directories such as chdir() to change the current

working directory, listdir() to list the contents of a directory, and mkdir() to create a new directory.

Here's an example:

import os

get current working directory

print(os.getcwd())

change working directory

os.chdir('/path/to/directory')

list directory contents

print(os.listdir())

create new directory

180 | P a g e

os.mkdir('new_directory')

File Properties:

The os.path module provides functions for working with file properties such as exists() to check if

a file or directory exists, getsize() to get the size of a file, and isdir() to check if a given path is a

directory. Here's an example:

import os

check if file exists

if os.path.exists('file.txt'):

 print('file exists')

get file size

print(os.path.getsize('file.txt'))

check if path is a directory

if os.path.isdir('/path/to/directory'):

 print('path is a directory')

File Operations:

The os module provides functions for performing file operations such as remove() to delete a file,

rename() to rename a file, and stat() to get detailed information about a file. Here's an example:

import os

delete file

os.remove('file.txt')

rename file

os.rename('old_file.txt', 'new_file.txt')

get file stats

stat_info = os.stat('file.txt')

print(stat_info.st_size)

181 | P a g e

Walking Directories:

The os module provides the walk() function, which can be used to traverse a directory tree and

perform operations on files and directories. Here's an example:

import os

traverse directory tree

for dirpath, dirnames, filenames in

os.walk('/path/to/directory'):

 print('Current directory: {}'.format(dirpath))

 print('Directories: {}'.format(dirnames))

 print('Files: {}'.format(filenames))

These are just a few examples of the many functions provided by the os and os.path modules for

file and directory access. By utilizing these modules, you can perform various operations on files

and directories in a convenient and efficient manner.

 Using pathlib

Python's pathlib module provides an object-oriented interface to access files and directories. It is

part of the standard library and offers a more intuitive way to work with file and directory paths

compared to the os and os.path modules.

Here are some examples of how to use the pathlib module for file and directory access:

Creating Paths:

The pathlib.Path() function can be used to create a path object representing a file or directory path.

Here's an example:

from pathlib import Path

create a path object representing a file

file_path = Path('/path/to/file.txt')

create a path object representing a directory

dir_path = Path('/path/to/directory')

182 | P a g e

Checking Path Properties:

The pathlib.Path() object provides a number of useful methods for checking the properties of a file

or directory path such as exists() to check if a path exists, is_file() to check if a path is a file, and

is_dir() to check if a path is a directory. Here's an example:

from pathlib import Path

check if path exists

file_path = Path('/path/to/file.txt')

if file_path.exists():

 print('file exists')

check if path is a file

if file_path.is_file():

 print('path is a file')

check if path is a directory

dir_path = Path('/path/to/directory')

if dir_path.is_dir():

 print('path is a directory')

Creating Directories:

The pathlib.Path() object provides a mkdir() method that can be used to create a new directory.

Here's an example:

from pathlib import Path

create a new directory

dir_path = Path('/path/to/new/directory')

dir_path.mkdir()

Listing Directory Contents:

The pathlib.Path() object provides a iterdir() method that can be used to iterate over the contents

of a directory. Here's an example:

183 | P a g e

from pathlib import Path

list directory contents

dir_path = Path('/path/to/directory')

for item in dir_path.iterdir():

 print(item)

Reading and Writing Files:

The pathlib.Path() object provides methods for reading and writing files such as read_text() to read

the contents of a text file, write_text() to write text to a file, and read_bytes() and write_bytes() for

reading and writing binary files. Here's an example:

from pathlib import Path

read contents of a file

file_path = Path('/path/to/file.txt')

contents = file_path.read_text()

print(contents)

write text to a file

file_path.write_text('Hello, World!')

read contents of a binary file

binary_file_path = Path('/path/to/binary/file')

binary_contents = binary_file_path.read_bytes()

write bytes to a binary file

binary_file_path.write_bytes(b'binary data')

These are just a few examples of the many functions and methods provided by the pathlib module

for file and directory access. By utilizing this module, you can perform various operations on files

and directories in a more intuitive and object-oriented manner.

184 | P a g e

 Using shutil

Python's shutil module provides a high-level interface for file and directory operations. It is part

of the standard library and can be used to copy, move, or delete files and directories, as well as to

archive files.

Here are some examples of how to use the shutil module for file and directory access:

Copying Files and Directories:

The shutil.copy() function can be used to copy a file, while the shutil.copytree() function can be

used to copy an entire directory tree. Here's an example:

import shutil

copy a file

src_file = '/path/to/source/file.txt'

dest_dir = '/path/to/destination'

shutil.copy(src_file, dest_dir)

copy a directory tree

src_dir = '/path/to/source'

dest_dir = '/path/to/destination'

shutil.copytree(src_dir, dest_dir)

Moving and Renaming Files and Directories:

The shutil.move() function can be used to move or rename a file or directory. Here's an example:

import shutil

move a file

src_file = '/path/to/source/file.txt'

dest_dir = '/path/to/destination'

shutil.move(src_file, dest_dir)

rename a file

185 | P a g e

src_file = '/path/to/source/old_name.txt'

dest_file = '/path/to/source/new_name.txt'

shutil.move(src_file, dest_file)

move a directory

src_dir = '/path/to/source'

dest_dir = '/path/to/destination'

shutil.move(src_dir, dest_dir)

rename a directory

src_dir = '/path/to/source/old_name'

dest_dir = '/path/to/source/new_name'

shutil.move(src_dir, dest_dir)

Removing Files and Directories:

The os.remove() function can be used to remove a file, while the shutil.rmtree() function can be

used to remove an entire directory tree. Here's an example:

import os

import shutil

remove a file

file_path = '/path/to/file.txt'

os.remove(file_path)

remove a directory tree

dir_path = '/path/to/directory'

shutil.rmtree(dir_path)

Archiving Files:

The shutil.make_archive() function can be used to create an archive file of a directory tree. Here's

an example:

186 | P a g e

import shutil

create a zip archive of a directory tree

src_dir = '/path/to/source'

archive_name = 'my_archive'

shutil.make_archive(archive_name, 'zip', src_dir)

These are just a few examples of the many functions provided by the shutil module for file and

directory access. By utilizing this module, you can perform various file and directory

operations in a simple and convenient way.

 Using glob

Python's glob module provides a way to search for files and directories that match a specified

pattern. It uses Unix shell-style wildcards such as * and ? to match filenames.

Here are some examples of how to use the glob module for file and directory access:

Finding Files with a Specific Extension:

The glob.glob() function can be used to find all files with a specific extension in a directory. Here's

an example:

import glob

find all .txt files in a directory

dir_path = '/path/to/directory'

txt_files = glob.glob(f"{dir_path}/*.txt")

print(txt_files)

Finding Files with a Specific Name:

The glob.glob() function can also be used to find all files with a specific name in a directory. Here's

an example:

import glob

187 | P a g e

find all files named 'file.txt' in a directory

dir_path = '/path/to/directory'

file_path = f"{dir_path}/file.txt"

matching_files = glob.glob(file_path)

print(matching_files)

Finding Directories:

The glob.glob() function can also be used to find all directories in a directory. Here's an example:

import glob

find all directories in a directory

dir_path = '/path/to/directory'

matching_dirs = glob.glob(f"{dir_path}/*/")

print(matching_dirs)

Recursive Search:

The glob.glob() function can also be used to recursively search for files and directories in a

directory and all its subdirectories. Here's an example:

import glob

find all .txt files in a directory and its

subdirectories

dir_path = '/path/to/directory'

txt_files = glob.glob(f"{dir_path}/**/*.txt",

recursive=True)

print(txt_files)

These are just a few examples of the many ways in which the glob module can be used for file and

directory access. By utilizing this module, you can easily search for files and directories that match

a specific pattern, which can be very useful for organizing and processing large numbers of files.

Dates and Times

188 | P a g e

 Using datetime

The datetime module in Python provides classes to work with dates and times. It's useful when

working with file and directory access because it allows us to manipulate and format time stamps

associated with file metadata. In this note, we will explore how to use datetime in file and directory

access, including how to retrieve the creation time, modification time, and access time of a file, as

well as how to convert time stamps to human-readable formats.

Retrieving Time Stamps:

To retrieve time stamps associated with file metadata, we can use the os.path module, which

provides functions for working with file paths. Specifically, we can use the os.path.getctime(),

os.path.getmtime(), and os.path.getatime() functions to retrieve the creation time, modification

time, and access time of a file, respectively. These functions return time stamps in seconds since

the epoch (January 1, 1970, 00:00:00 UTC).

import os

import datetime

file_path = '/path/to/file.txt'

Get creation time of file

creation_time = os.path.getctime(file_path)

creation_time =

datetime.datetime.fromtimestamp(creation_time)

print("Creation time:", creation_time)

Get modification time of file

modification_time = os.path.getmtime(file_path)

modification_time =

datetime.datetime.fromtimestamp(modification_time)

print("Modification time:", modification_time)

Get access time of file

access_time = os.path.getatime(file_path)

189 | P a g e

access_time =

datetime.datetime.fromtimestamp(access_time)

print("Access time:", access_time)

In the code above, we use the fromtimestamp() method of the datetime.datetime class to convert

the time stamps to datetime objects, which we can then manipulate and format.

Converting Time Stamps:

To convert time stamps to human-readable formats, we can use the strftime() method of the

datetime.datetime class. This method allows us to format a datetime object as a string, using a

format string that specifies the desired format.

import os

import datetime

file_path = '/path/to/file.txt'

Get modification time of file

modification_time = os.path.getmtime(file_path)

modification_time =

datetime.datetime.fromtimestamp(modification_time)

Convert modification time to a string in ISO format

modification_time_str = modification_time.strftime("%Y-

%m-%d %H:%M:%S")

print("Modification time:", modification_time_str)

Convert modification time to a string in a custom

format

modification_time_str = modification_time.strftime("%b

%d, %Y %I:%M:%S %p")

print("Modification time:", modification_time_str)

In the code above, we use the %Y, %m, %d, %H, %M, and %S format codes to represent the year,

month, day, hour, minute, and second of the datetime object, respectively. We also use the %b

format code to represent the abbreviated month name, %d to represent the day of the month, %Y

190 | P a g e

to represent the year, %I to represent the hour in 12-hour format, %M to represent the minute, %S

to represent the second, and %p to represent the AM or PM designation.

Using the datetime module in file and directory access allows us to manipulate and format time

stamps associated with file metadata. By retrieving time stamps using the os.path module and

converting them to datetime objects, we can then use the strftime() method to format them as

human-readable strings.

 Using time

The time module in Python provides functions to work with time and date values. It is particularly

useful when working with file and directory access because it allows us to manipulate and format

time stamps associated with file metadata. In this note, we will explore how to use time in file and

directory access, including how to retrieve the creation time, modification time, and access time

of a file, as well as how to convert time stamps to human-readable formats.

Retrieving Time Stamps:

To retrieve time stamps associated with file metadata, we can use the os.path module, which

provides functions for working with file paths. Specifically, we can use the os.path.getctime(),

os.path.getmtime(), and os.path.getatime() functions to retrieve the creation time, modification

time, and access time of a file, respectively. These functions return time stamps in seconds since

the epoch (January 1, 1970, 00:00:00 UTC).

import os

import time

file_path = '/path/to/file.txt'

Get creation time of file

creation_time = os.path.getctime(file_path)

creation_time = time.localtime(creation_time)

print("Creation time:", time.strftime("%Y-%m-%d

%H:%M:%S", creation_time))

Get modification time of file

modification_time = os.path.getmtime(file_path)

modification_time = time.localtime(modification_time)

print("Modification time:", time.strftime("%Y-%m-%d

%H:%M:%S", modification_time))

191 | P a g e

Get access time of file

access_time = os.path.getatime(file_path)

access_time = time.localtime(access_time)

print("Access time:", time.strftime("%Y-%m-%d

%H:%M:%S", access_time))

In the code above, we use the localtime() function of the time module to convert the time stamps

to a time struct, which we can then manipulate and format using the strftime() function.

Converting Time Stamps:

To convert time stamps to human-readable formats, we can use the strftime() function of the time

module. This function allows us to format a time struct as a string, using a format string that

specifies the desired format.

import os

import time

file_path = '/path/to/file.txt'

Get modification time of file

modification_time = os.path.getmtime(file_path)

modification_time = time.localtime(modification_time)

Convert modification time to a string in ISO format

modification_time_str = time.strftime("%Y-%m-%d

%H:%M:%S", modification_time)

print("Modification time:", modification_time_str)

Convert modification time to a string in a custom

format

modification_time_str = time.strftime("%b %d, %Y

%I:%M:%S %p", modification_time)

print("Modification time:", modification_time_str)

192 | P a g e

In the code above, we use the %Y, %m, %d, %H, %M, and %S format codes to represent the year,

month, day, hour, minute, and second of the time struct, respectively. We also use the %b format

code to represent the abbreviated month name, %d to represent the day of the month, %Y to

represent the year, %I to represent the hour in 12-hour format, %M to represent the minute, %S to

represent the second, and %p to represent the AM or PM designation.

 Using timedelta

The timedelta class in Python's datetime module represents a duration of time. It can be used to

perform arithmetic operations on date and time values, which makes it useful in file and directory

access when working with time intervals. In this note, we will explore how to use timedelta in file

and directory access, including how to calculate time intervals, add and subtract time from a date

or time, and format time intervals.

Calculating Time Intervals:

To calculate time intervals, we can create two datetime objects representing two points in time and

subtract one from the other. The result will be a timedelta object representing the duration of time

between the two points.

from datetime import datetime, timedelta

file_path = '/path/to/file.txt'

Get modification time of file

modification_time =

datetime.fromtimestamp(os.path.getmtime(file_path))

Get current time

current_time = datetime.now()

Calculate time interval

time_interval = current_time - modification_time

print("Time interval:", time_interval)

In the code above, we use the datetime.fromtimestamp() function to convert the modification time

of the file (retrieved using os.path.getmtime()) to a datetime object. We then create a datetime

193 | P a g e

object representing the current time using the datetime.now() function. Finally, we subtract the

modification time from the current time to obtain a timedelta object representing the time interval.

Adding and Subtracting Time:

We can add and subtract time from a datetime object using the timedelta class. For example, we

can add a certain number of days, hours, minutes, or seconds to a datetime object.

from datetime import datetime, timedelta

Get current time

current_time = datetime.now()

Add 1 day to current time

new_time = current_time + timedelta(days=1)

print("New time:", new_time)

Subtract 1 hour from current time

new_time = current_time - timedelta(hours=1)

print("New time:", new_time)

In the code above, we use the timedelta(days=1) and timedelta(hours=1) functions to add and

subtract 1 day and 1 hour, respectively, to and from the datetime object representing the current

time.

Formatting Time Intervals:

We can format a timedelta object as a string using the str() function. By default, the string

representation of a timedelta object includes the number of days, hours, minutes, and seconds.

from datetime import timedelta

Create a timedelta object representing 1 hour, 30

minutes, and 45 seconds

time_interval = timedelta(hours=1, minutes=30,

seconds=45)

Format timedelta object as a string

194 | P a g e

time_interval_str = str(time_interval)

print("Time interval:", time_interval_str)

In the code above, we create a timedelta object representing 1 hour, 30 minutes, and 45 seconds.

We then use the str() function to format the timedelta object as a string.

Using timedelta in file and directory access allows us to calculate time intervals, add and subtract

time from a date or time, and format time intervals. By performing arithmetic operations on date

and time values, we can more easily work with time intervals in our Python programs.

 Using pytz

When working with time zones in file and directory access, it's important to use a reliable library

like pytz to ensure accurate and consistent time zone conversion. In this note, we will explore how

to use pytz in file and directory access, including how to convert between time zones and how to

handle daylight saving time.

Installing pytz:

Before we can use pytz, we need to install it. We can install pytz using pip:

pip install pytz

Converting Time Zones

To convert a date or time from one time zone to another, we can use the pytz library. First, we

need to create a datetime object representing the date and time in the original time zone. We can

then use the pytz.timezone() function to specify the original time zone, and the astimezone()

method to convert the datetime object to the desired time zone.

from datetime import datetime

import pytz

Create a datetime object representing the date and

time in the original time zone

original_time = datetime(2023, 3, 17, 15, 30)

Convert to a different time zone

original_timezone = pytz.timezone('America/New_York')

new_timezone = pytz.timezone('Europe/London')

195 | P a g e

new_time =

original_timezone.localize(original_time).astimezone(ne

w_timezone)

print("Original time:", original_time)

print("New time:", new_time)

In the code above, we create a datetime object representing the date and time in the original time

zone. We then use the pytz.timezone() function to specify the original and new time zones, and

the localize() and astimezone() methods to convert the datetime object to the new time zone. The

resulting datetime object represents the same date and time, but in the new time zone.

Handling Daylight Saving Time:

When working with time zones that observe daylight saving time, it's important to handle

transitions between standard time and daylight saving time correctly. pytz provides functions to

handle these transitions automatically.

from datetime import datetime

import pytz

Create a datetime object representing the date and

time in the original time zone

original_time = datetime(2023, 3, 12, 2, 30)

Convert to a different time zone that observes

daylight saving time

original_timezone = pytz.timezone('America/New_York')

new_timezone = pytz.timezone('Europe/London')

new_time = original_timezone.localize(original_time,

is_dst=None).astimezone(new_timezone)

print("Original time:", original_time)

print("New time:", new_time)

In the code above, we create a datetime object representing the date and time in the original time

zone. We then use the localize() method with the is_dst=None argument to specify that the date

and time should be interpreted as ambiguous (i.e., it occurs during the transition from standard

time to daylight saving time). When we convert the datetime object to the new time zone using the

196 | P a g e

astimezone() method, pytz automatically adjusts the time to account for the daylight saving time

transition.

Using pytz in file and directory access allows us to accurately and reliably convert between time

zones and handle daylight saving time. By using a library like pytz, we can ensure that our Python

programs handle time zones correctly and consistently, even when dealing with complex scenarios

like daylight saving time transitions.

 Using dateutil

When working with dates and times in file and directory access, we often need to parse and

manipulate date and time strings. The dateutil library provides powerful tools for parsing and

manipulating date and time strings in a flexible and intuitive way. In this note, we will explore

how to use dateutil in file and directory access, including how to parse date and time strings and

how to perform date arithmetic.

Installing dateutil:

Before we can use dateutil, we need to install it. We can install dateutil using pip:

pip install python-dateutil

Parsing Date and Time Strings:

To parse a date or time string, we can use the dateutil.parser.parse() function. This function can

parse a wide variety of date and time formats, including ISO 8601 format, RFC 2822 format, and

many others.

from dateutil.parser import parse

Parse a date string in ISO 8601 format

date_string = '2023-03-17'

date = parse(date_string)

print("Parsed date:", date)

In the code above, we use the parse() function to parse a date string in ISO 8601 format. The

resulting date object represents the same date, but as a Python datetime object.

Performing Date Arithmetic:

197 | P a g e

Once we have parsed a date or time string, we can perform date arithmetic using the

dateutil.relativedelta.relativedelta() function. This function allows us to add or subtract a specific

amount of time from a datetime object.

from datetime import datetime

from dateutil.relativedelta import relativedelta

Create a datetime object representing the current

date and time

now = datetime.now()

Add one week to the current date and time

one_week_from_now = now + relativedelta(weeks=1)

print("Current date and time:", now)

print("One week from now:", one_week_from_now)

In the code above, we use the datetime.now() function to create a datetime object representing the

current date and time. We then use the relativedelta() function to add one week to the current date

and time. The resulting one_week_from_now object represents the date and time one week in the

future.

Using dateutil in file and directory access allows us to parse and manipulate date and time strings

in a flexible and intuitive way. By using a library like dateutil, we can ensure that our Python

programs handle dates and times correctly and consistently, even when dealing with a wide variety

of date and time formats.

Serialization and Persistence

 Using json

Serialization is the process of converting data from its native format into a format that can be stored

or transmitted. JSON (JavaScript Object Notation) is a lightweight data interchange format that is

easy to read and write. In this note, we will explore how to use JSON in serialization and

persistence, including how to serialize Python objects to JSON and how to store and retrieve JSON

data using files.

198 | P a g e

Serializing Python Objects to JSON:

Python objects can be serialized to JSON using the json module. The json module provides two

methods for serializing Python objects to JSON: dumps() and dump(). The dumps() method

serializes a Python object to a JSON-formatted string, while the dump() method serializes a Python

object and writes the resulting JSON to a file.

import json

Create a Python dictionary

person = {"name": "John", "age": 30, "city": "New

York"}

Serialize the dictionary to JSON

json_string = json.dumps(person)

Print the JSON string

print(json_string)

Serialize the dictionary to JSON and write to a file

with open("person.json", "w") as f:

 json.dump(person, f)

In the code above, we create a Python dictionary representing a person's name, age, and city. We

then use the json.dumps() method to serialize the dictionary to a JSON-formatted string and print

it. Finally, we use the json.dump() method to serialize the dictionary to JSON and write it to a file

named person.json.

Deserializing JSON to Python Objects:

JSON data can be deserialized to Python objects using the json module. The json module provides

two methods for deserializing JSON data to Python objects: loads() and load(). The loads() method

deserializes a JSON-formatted string to a Python object, while the load() method deserializes

JSON data from a file to a Python object.

import json

Deserialize a JSON string to a Python object

json_string = '{"name": "John", "age": 30, "city": "New

York"}'

199 | P a g e

person = json.loads(json_string)

Print the Python object

print(person)

Deserialize JSON data from a file to a Python object

with open("person.json", "r") as f:

 person = json.load(f)

Print the Python object

print(person)

In the code above, we use the json.loads() method to deserialize a JSON-formatted string to a

Python object representing a person's name, age, and city. We then use the json.load() method to

deserialize JSON data from a file named person.json to a Python object representing the same

person.

Using JSON in serialization and persistence allows us to easily store and transmit data in a

lightweight, easy-to-read format. By using the json module in Python, we can serialize Python

objects to JSON and vice versa, allowing us to easily store and retrieve data in a consistent,

standardized format.

 Using pickle

Serialization is the process of converting data from its native format into a format that can be stored

or transmitted. Pickle is a module in Python that enables the serialization and deserialization of

Python objects to and from a binary format. In this note, we will explore how to use pickle in

serialization and persistence, including how to serialize Python objects to a binary format using

pickle and how to store and retrieve pickled data using files.

Serializing Python Objects to a Binary Format using Pickle:

Python objects can be serialized to a binary format using the pickle module. The pickle module

provides two methods for serializing Python objects: dumps() and dump(). The dumps() method

serializes a Python object to a binary string, while the dump() method serializes a Python object

and writes the resulting binary data to a file.

import pickle

Create a Python dictionary

person = {"name": "John", "age": 30, "city": "New

York"}

200 | P a g e

Serialize the dictionary to binary format

pickled_data = pickle.dumps(person)

Print the pickled data

print(pickled_data)

Serialize the dictionary to binary format and write

to a file

with open("person.pickle", "wb") as f:

 pickle.dump(person, f)

In the code above, we create a Python dictionary representing a person's name, age, and city. We

then use the pickle.dumps() method to serialize the dictionary to a binary string and print it. Finally,

we use the pickle.dump() method to serialize the dictionary to a binary format and write it to a file

named person.pickle.

Deserializing Pickled Data to Python Objects:

Pickled data can be deserialized to Python objects using the pickle module. The pickle module

provides two methods for deserializing pickled data to Python objects: loads() and load(). The

loads() method deserializes a binary string to a Python object, while the load() method deserializes

pickled data from a file to a Python object.

import pickle

Deserialize pickled data to a Python object

pickled_data =

b'\x80\x04\x95\x17\x00\x00\x00\x00\x00\x00\x00}\x94(\x8

c\x04name\x94\x8c\x04John\x94\x8c\x03age\x94K\x1e\x8c\x

04city\x94\x8c\tNew York\x94u.'

person = pickle.loads(pickled_data)

Print the Python object

print(person)

Deserialize pickled data from a file to a Python

object

201 | P a g e

with open("person.pickle", "rb") as f:

 person = pickle.load(f)

Print the Python object

print(person)

In the code above, we use the pickle.loads() method to deserialize a binary string to a Python object

representing a person's name, age, and city. We then use the pickle.load() method to deserialize

pickled data from a file named person.pickle to a Python object representing the same person.

Using pickle in serialization and persistence allows us to easily store and transmit data in a binary

format. By using the pickle module in Python, we can serialize Python objects to a binary format

and vice versa, allowing us to easily store and retrieve data in a consistent, standardized format.

However, it's important to note that the pickle module is not secure, and deserializing untrusted

pickled data can potentially execute arbitrary code on your machine. It's recommended to only

unpickle data that comes from trusted sources.

 Using shelve

Serialization is the process of converting data from its native format into a format that can be stored

or transmitted. Shelve is a built-in module in Python that provides a simple way to persist and store

objects in a key-value store. In this note, we will explore how to use shelve in serialization and

persistence, including how to store and retrieve Python objects using shelve.

Storing and Retrieving Python Objects using Shelve:

Shelve provides a simple way to store and retrieve Python objects using a key-value store. The

shelve module provides two main classes for working with shelves: Shelf and DbfilenameShelf.

Shelf is a dictionary-like object that stores its data in memory, while DbfilenameShelf is a subclass

of Shelf that stores its data in a persistent file on disk.

import shelve

Create a new shelf

with shelve.open("my_shelf") as shelf:

 # Store some data in the shelf

 shelf["name"] = "John"

 shelf["age"] = 30

 shelf["city"] = "New York"

202 | P a g e

Open the shelf again and retrieve the data

with shelve.open("my_shelf") as shelf:

 name = shelf["name"]

 age = shelf["age"]

 city = shelf["city"]

 print(name, age, city)

In the code above, we create a new shelf using the shelve.open() method and store some data in it

using dictionary-like syntax. We then close the shelf and reopen it to retrieve the data using the

same dictionary-like syntax.

Customizing Serialization using Shelve:

Shelve provides a way to customize the serialization and deserialization of Python objects using

the pickle module. The Shelf and DbfilenameShelf classes both accept an optional protocol

argument that specifies the protocol version to use for pickling and unpickling Python objects.

import shelve

import pickle

Define a custom class to store in the shelf

class Person:

 def __init__(self, name, age, city):

 self.name = name

 self.age = age

 self.city = city

 def __str__(self):

 return f"{self.name} ({self.age}) from

{self.city}"

Create a new shelf and set a custom protocol for

pickling

203 | P a g e

with shelve.open("my_shelf",

protocol=pickle.HIGHEST_PROTOCOL) as shelf:

 # Store a custom object in the shelf

 person = Person("John", 30, "New York")

 shelf["person"] = person

Open the shelf again and retrieve the custom object

with shelve.open("my_shelf") as shelf:

 person = shelf["person"]

 print(person)

In the code above, we define a custom Person class and create a new shelf with a custom protocol

for pickling. We store a Person object in the shelf and then retrieve it using the dictionary-like

syntax. The Person object is automatically deserialized to its original form.

Using shelve in serialization and persistence provides a simple way to store and retrieve Python

objects in a key-value store. By using the shelve module in Python, we can easily store and retrieve

data in a persistent format, allowing us to maintain state across different program executions. It's

important to note that shelve uses pickle for serialization, which can have security implications if

untrusted data is being stored or retrieved. It's recommended to only use shelve with trusted data.

 Using dbm

dbm (database manager) is a module in Python that provides a simple way to store and retrieve

key-value pairs in a persistent format. In this note, we will explore how to use dbm in serialization

and persistence, including how to store and retrieve Python objects using dbm.

Storing and Retrieving Key-Value Pairs using dbm:

dbm provides a simple way to store and retrieve key-value pairs using a hash-based file format.

The dbm module provides four main classes for working with databases: dumbdbm, gdbm, ndbm,

and dbm.gnu. dumbdbm is the most basic implementation and is available on all platforms. gdbm

and ndbm provide more advanced features, but are not available on all platforms. dbm.gnu is a

more advanced implementation that is available on most Unix-like systems.

import dbm

Open a new database

with dbm.open("my_database", "c") as database:

 # Store some data in the database

204 | P a g e

 database[b"name"] = b"John"

 database[b"age"] = b"30"

 database[b"city"] = b"New York"

Open the database again and retrieve the data

with dbm.open("my_database", "r") as database:

 name = database[b"name"]

 age = database[b"age"]

 city = database[b"city"]

 print(name.decode(), age.decode(), city.decode())

In the code above, we create a new database using the dbm.open() method and store some data in

it using bytes-like syntax. We then close the database and reopen it to retrieve the data using the

same bytes-like syntax.

Customizing Serialization using dbm:

dbm provides a way to customize the serialization and deserialization of Python objects using the

pickle module. The dbm module provides a open() method that accepts an optional pickle_protocol

argument that specifies the protocol version to use for pickling and unpickling Python objects.

import dbm

import pickle

Define a custom class to store in the database

class Person:

 def __init__(self, name, age, city):

 self.name = name

 self.age = age

 self.city = city

 def __str__(self):

 return f"{self.name} ({self.age}) from

{self.city}"

205 | P a g e

Open a new database and set a custom protocol for

pickling

with dbm.open("my_database", "c",

pickle_protocol=pickle.HIGHEST_PROTOCOL) as database:

 # Store a custom object in the database

 person = Person("John", 30, "New York")

 database[b"person"] = pickle.dumps(person)

Open the database again and retrieve the custom

object

with dbm.open("my_database", "r") as database:

 person = pickle.loads(database[b"person"])

 print(person)

In the code above, we define a custom Person class and create a new database with a custom

protocol for pickling. We store a Person object in the database and then retrieve it using the

pickle.loads() method. The Person object is automatically deserialized to its original form.

Using dbm in serialization and persistence provides a simple way to store and retrieve key-value

pairs in a persistent format. By using the dbm module in Python, we can easily store and retrieve

data in a hash-based file format, allowing us to maintain state across different program executions.

 Using SQLite

SQLite is a lightweight relational database management system that is included in Python's

standard library. It provides a simple and efficient way to store and retrieve data in a persistent

format. In this note, we will explore how to use SQLite in serialization and persistence, including

how to create and manipulate tables, and how to store and retrieve data using SQL commands.

Creating a SQLite Database:

The first step in using SQLite is to create a new database. This can be done using the sqlite3

module, which provides a simple way to connect to a database and execute SQL commands.

import sqlite3

Connect to a new database or open an existing one

conn = sqlite3.connect("my_database.db")

206 | P a g e

Create a new table

conn.execute(

 """

 CREATE TABLE IF NOT EXISTS users (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 name TEXT NOT NULL,

 age INTEGER NOT NULL,

 city TEXT NOT NULL

)

 """

)

Commit the changes

conn.commit()

Close the connection

conn.close()

In the code above, we create a new database using the sqlite3.connect() method and execute an

SQL command to create a new table called users. We define three columns for the table, including

an id column that is automatically incremented, a name column that must not be null, an age

column that must not be null, and a city column that must not be null.

Storing and Retrieving Data:

Once we have created a table, we can store and retrieve data using SQL commands.

import sqlite3

Connect to the database

conn = sqlite3.connect("my_database.db")

Insert some data into the table

conn.execute(

207 | P a g e

 """

 INSERT INTO users (name, age, city)

 VALUES (?, ?, ?)

 """,

 ("John", 30, "New York")

)

Commit the changes

conn.commit()

Retrieve the data from the table

cursor = conn.execute(

 """

 SELECT id, name, age, city FROM users

 """

)

for row in cursor:

 print(row)

Close the connection

conn.close()

In the code above, we insert some data into the users table using an SQL INSERT command. We

then retrieve the data from the table using an SQL SELECT command and print the results.

Using SQLite in serialization and persistence provides a simple way to store and retrieve data in a

persistent format. By using the sqlite3 module in Python, we can easily create and manipulate

tables, and store and retrieve data using SQL commands. It's important to note that SQLite is not

designed for high concurrency or high volume data storage, but it is a useful tool for many small

to medium-sized applications.

208 | P a g e

Testing and Debugging

 Writing unit tests

Unit testing is an essential part of software development. It involves testing individual units or

components of a software application to ensure they work as expected. In this note, we will explore

how to write unit tests in Python using the built-in unittest module, including how to write test

cases, test fixtures, and assertions.

Writing Test Cases:

Test cases are the individual units of testing that make up a unit test suite. They should test a single

functionality of the software component and be independent of other test cases. To write a test

case, we need to define a class that inherits from the unittest.TestCase class and define one or more

test methods.

import unittest

class TestStringMethods(unittest.TestCase):

 def test_upper(self):

 self.assertEqual('hello'.upper(), 'HELLO')

 def test_isupper(self):

 self.assertTrue('HELLO'.isupper())

 self.assertFalse('Hello'.isupper())

 def test_split(self):

 s = 'hello world'

 self.assertEqual(s.split(), ['hello', 'world'])

 with self.assertRaises(TypeError):

 s.split(2)

In the code above, we define a class called TestStringMethods that inherits from unittest.TestCase.

We define three test methods, test_upper(), test_isupper(), and test_split(), each of which tests a

specific functionality of the str class.

209 | P a g e

Writing Test Fixtures:

Test fixtures are used to set up the environment for a test case or clean up after a test case. We can

define a test fixture by using the setUp() and tearDown() methods of the TestCase class.

import unittest

class TestStringMethods(unittest.TestCase):

 def setUp(self):

 self.test_string = 'hello world'

 def tearDown(self):

 self.test_string = None

 def test_split(self):

 self.assertEqual(self.test_string.split(),

['hello', 'world'])

In the code above, we define a test fixture using the setUp() method. This method sets up a

test_string variable that is used in the test_split() method. We also define a tearDown() method

that cleans up the test_string variable after the test is complete.

Writing Assertions:

Assertions are used to verify that a test case has the expected result. We can use various assertion

methods provided by the TestCase class to write assertions.

import unittest

class TestStringMethods(unittest.TestCase):

 def test_upper(self):

 self.assertEqual('hello'.upper(), 'HELLO')

 def test_isupper(self):

 self.assertTrue('HELLO'.isupper())

210 | P a g e

 self.assertFalse('Hello'.isupper())

 def test_split(self):

 s = 'hello world'

 self.assertEqual(s.split(), ['hello', 'world'])

 with self.assertRaises(TypeError):

 s.split(2)

In the code above, we use the assertEqual() method to verify that the output of hello.upper() is

equal to 'HELLO'. We use the assertTrue() method to verify that 'HELLO' is uppercase and the

assertFalse() method to verify that 'Hello' is not uppercase. We also use the assertRaises() method

to verify that a TypeError is raised when we call the split() method with an argument.

 Using pytest

Pytest is a powerful testing framework for Python that simplifies writing and running tests. It

supports a wide range of testing features and integrates seamlessly with other testing tools. In this

note, we will explore how to use pytest to write and run tests in Python.

Installing Pytest:

Before we start writing tests, we need to install pytest. We can install pytest using pip, the Python

package installer, by running the following command in our terminal:

pip install pytest

Writing Test Functions:

Pytest uses standard Python functions to define test cases. A test function should start with test_

and should contain one or more assertions to verify that the test has passed or failed. Here's an

example:

def test_addition():

 assert 1 + 1 == 2

 assert 2 + 2 == 4

In the code above, we define a test function called test_addition() that contains two assertions. The

first assertion verifies that 1 + 1 is equal to 2, and the second assertion verifies that 2 + 2 is equal

to 4.

211 | P a g e

Running Tests:

To run tests with pytest, we need to create a file with our test functions and save it with a name

starting with test_, for example, test_example.py. We can then run our tests by simply running the

following command in our terminal:

pytest

Pytest will automatically discover and run all test functions in the file, and display the results in

the terminal.

Assertions:

Pytest provides a wide range of assertion functions that we can use to verify that our tests have

passed or failed. Here are some examples:

def test_addition():

 assert 1 + 1 == 2

 assert abs(-1) == 1

 assert 1.0 / 3.0 == pytest.approx(0.333, abs=1e-3)

 assert 'hello' in 'hello world'

 assert [1, 2, 3] == [3, 2, 1][::-1]

 assert {'a': 1, 'b': 2} == {'b': 2, 'a': 1}

In the code above, we use the assert keyword to make assertions about the output of our code. We

use the abs() function to get the absolute value of a number, the approx() function to compare

floating-point numbers with a tolerance, and the in keyword to check if a string is a substring of

another string. We also use slicing to reverse a list, and compare dictionaries for equality, ignoring

the order of the keys.

Fixtures:

Pytest also provides a powerful mechanism for setting up and tearing down test fixtures. Fixtures

are functions that provide a set of preconditions for a test or a set of postconditions. Here's an

example:

import pytest

@pytest.fixture

def example_list():

212 | P a g e

 return [1, 2, 3]

def test_example(example_list):

 assert sum(example_list) == 6

In the code above, we define a fixture function called example_list() that returns a list containing

the values 1, 2, and 3. We use the @pytest.fixture decorator to mark this function as a fixture. We

then define a test function called test_example() that takes example_list as an argument. The

example_list argument is automatically injected into the test function by pytest, and we can use it

to make assertions about the output of our code.

 Debugging with pdb

Debugging with pdb (Python Debugger) is a built-in module in Python that allows developers to

inspect the execution of their code line by line and identify any errors or bugs. In this subtopic, we

will discuss how to use pdb for debugging, and we will provide some sample code to illustrate its

usage.

To use pdb, you need to import the module and insert the pdb.set_trace() function in your code

where you want to start debugging. This function will create a breakpoint in your code, allowing

you to interact with the debugger and inspect your program's execution.

Here's an example code that contains a bug that we will debug using pdb:

def factorial(n):

 if n <= 0:

 return 1

 else:

 return n * factorial(n - 1)

print(factorial(5))

print(factorial(-1))

The above code is a recursive implementation of the factorial function. When we run the code, it

will compute the factorial of 5 correctly but will raise an error when trying to compute the factorial

of -1. To debug this code, we will insert the pdb.set_trace() function in the code and run it in the

terminal.

import pdb

213 | P a g e

def factorial(n):

 pdb.set_trace()

 if n <= 0:

 return 1

 else:

 return n * factorial(n - 1)

print(factorial(5))

print(factorial(-1))

When we run the above code in the terminal, we will see that it stops at the pdb.set_trace() function,

and the debugger prompt ((Pdb)) appears. We can now interact with the debugger by entering

different commands to inspect the state of our program.

Some useful commands that we can use in pdb include:

n: execute the next line of code

c: continue execution until the next breakpoint

s: step into a function call

r: continue execution until the current function returns

q: quit debugging

We can also use p (print) command to print the value of any variable, l (list) command to display

the code surrounding the current line of execution, and h (help) command to display the list of

available pdb commands.

Here's an example of how we can use pdb to debug our factorial function:

> /path/to/file.py(5)factorial()

-> if n <= 0:

(Pdb) n

> /path/to/file.py(8)factorial()

-> return n * factorial(n - 1)

(Pdb) p n

-1

(Pdb) c

Traceback (most recent call last):

214 | P a g e

 File "/path/to/file.py", line 10, in <module>

 print(factorial(-1))

 File "/path/to/file.py", line 8, in factorial

 return n * factorial(n - 1)

RuntimeError: maximum recursion depth exceeded in

comparison

In the above example, we executed the n command to move to the next line of execution, then we

executed the p n command to print the value of n, which was -1. We then continued execution

using the c command, which caused the program to crash with a RuntimeError. This error occurred

because the factorial function called itself recursively with a negative value, causing an infinite

recursion loop.

pdb is a useful tool for debugging Python code. By inserting breakpoints in your code and

interacting with the debugger, you can easily identify and fix errors in your program.

 Debugging with logging

Debugging is an essential part of software development. When building complex software, it is

inevitable that bugs will be encountered. One way to locate and fix bugs is by using logging.

Python has a built-in logging module that can be used to record messages from an application.

The logging module is a versatile and powerful tool for debugging code. It allows developers to

log information about what the program is doing while it's running. This information can then be

used to trace the flow of the program and locate any bugs.

The logging module has a hierarchy of logging levels. These levels are used to determine the

severity of the message being logged. There are five built-in levels: DEBUG, INFO, WARNING,

ERROR, and CRITICAL. Messages at higher levels are more severe than messages at lower levels.

To use the logging module, you first need to import it:

import logging

Then, you need to configure the logging system. This can be done using the basicConfig() function.

This function takes several arguments, including the filename to use for the log file, the level of

logging to use, and the format of the log messages.

logging.basicConfig(filename='example.log',

level=logging.DEBUG, format='%(asctime)s %(levelname)s

%(message)s')

215 | P a g e

This example configuration sets up a log file called "example.log" and sets the logging level to

DEBUG. The format argument specifies the format of the log messages. The '%(asctime)s'

parameter will be replaced with the current time, '%(levelname)s' will be replaced with the logging

level, and '%(message)s' will be replaced with the log message.

To log a message, you simply call the logging function corresponding to the desired logging level:

logging.debug('This is a debug message')

logging.info('This is an info message')

logging.warning('This is a warning message')

logging.error('This is an error message')

logging.critical('This is a critical message')

This will log a message with the corresponding logging level to the log file.

Here is an example of using logging to debug a function:

def divide(a, b):

 try:

 result = a / b

 except ZeroDivisionError:

 logging.error("Tried to divide by zero")

 return None

 return result

print(divide(4, 2))

print(divide(4, 0))

This code defines a function that divides two numbers. If the second number is zero, it logs an

error message and returns None. Otherwise, it returns the result of the division.

When run, this code produces the following output:

2.0

ERROR:root:Tried to divide by zero

None

216 | P a g e

The first call to divide() produces the expected result of 2.0. However, the second call produces an

error message and returns None.

By using the logging module to log the error, we can track down the source of the bug and fix it.

In summary, logging is a powerful tool for debugging Python code. By using the logging module,

you can log messages at various levels of severity and trace the flow of your program. This can

help you locate and fix bugs in your code more quickly and efficiently.

 Using assertions

Assertions are a way of verifying that a condition is true at a specific point in the code. They can

be a useful tool for testing and debugging code, as they help identify and locate errors in the code.

In Python, assertions can be made using the assert keyword.

When an assertion is made, Python evaluates the expression and raises an AssertionError exception

if the expression is false. If the expression is true, Python continues executing the code without

interruption.

Here is an example of how to use assertions in Python:

def divide(x, y):

 assert y != 0, "Divisor cannot be zero"

 return x / y

print(divide(10, 2)) # Output: 5.0

print(divide(10, 0)) # Raises an AssertionError with

message "Divisor cannot be zero"

In this example, the divide() function takes two arguments x and y. Before the division is

performed, an assertion is made that the value of y is not zero. If y is zero, an AssertionError is

raised with the message "Divisor cannot be zero". If y is not zero, the division is performed and

the result is returned.

Assertions can also be used in conjunction with unit tests to verify that the code is working as

expected. Here is an example of using assertions in a unit test:

import unittest

class TestMath(unittest.TestCase):

 def test_divide(self):

217 | P a g e

 self.assertEqual(divide(10, 2), 5)

 with self.assertRaises(AssertionError):

 divide(10, 0)

if __name__ == '__main__':

 unittest.main()

In this example, a unit test is defined for the divide() function. The test checks that the result of

dividing 10 by 2 is 5, and that an AssertionError is raised when dividing by zero. The assertRaises()

method is used to check that the divide() function raises an AssertionError when called with

arguments (10, 0).

Assertions are a powerful tool for testing and debugging code, but they should be used with

caution. Assertions can be disabled globally in the Python interpreter using the -O option, so they

should not be used to check for conditions that may occur in production code. Instead, assertions

should be used to check for programmer errors that can be detected during development and

testing.

218 | P a g e

Chapter 7:
Collaboration and Development

219 | P a g e

Python is a powerful programming language that has rapidly gained popularity in the software

development industry. It is an open-source and high-level language that can be easily read and

understood. The language offers numerous advantages for developers such as simplicity,

versatility, and ease of use. Due to these reasons, Python has become the go-to language for many

developers across the world.

Python is not only popular for its syntax and functionality but also for its large community of

developers who contribute to its growth and development. Collaboration among developers is one

of the essential aspects of Python's success. Collaboration is an integral part of software

development as it allows developers to combine their skills and knowledge to create better quality

software.

Collaboration in Python can take many forms, such as open-source projects, online communities,

and team-based development. In this chapter, we will discuss the different types of collaboration

in Python and how they contribute to the growth and development of the language.

The first type of collaboration we will examine is open-source projects. Open-source projects are

software projects that are publicly available and can be modified and distributed by anyone. Many

of the most popular Python libraries, such as NumPy, Pandas, and Matplotlib, are open-source

projects. These libraries are developed and maintained by a community of developers who work

together to enhance the functionality and usability of the library. Open-source projects are an

excellent way for developers to collaborate, as they allow developers from all over the world to

contribute to the project and improve it.

The second type of collaboration we will examine is online communities. Online communities are

forums or chat groups where developers can come together to discuss Python-related topics, ask

for help, and share their knowledge. These communities are an excellent way for developers to

collaborate and learn from one another. They provide a platform for developers to connect with

like-minded individuals and to receive support from the community when they encounter

challenges in their development projects.

The third type of collaboration we will examine is team-based development. Team-based

development involves developers working together in a team to create software. This type of

collaboration requires communication, coordination, and a shared understanding of the project

goals. Team-based development is essential for large-scale software projects as it allows

developers to divide the workload and work on different aspects of the project simultaneously.

220 | P a g e

Code Quality

 Using linters

Linters are tools that analyze source code to flag programming errors, bugs, and stylistic errors.

They help improve code quality and readability by enforcing coding standards and best practices.

In Python, one popular linter is pylint.

pylint can be installed using pip, and can be run on a Python module or package like this:

pip install pylint

pylint mymodule.py

Here is an example of using pylint to check the quality of a Python module:

mymodule.py

def add_numbers(a, b):

 # This is a comment that pylint will check

 return a + b

When we run pylint mymodule.py, pylint will output a report of the code quality issues it has

found:

************* Module mymodule

mymodule.py:1:0: C0103: Module name "mymodule" doesn't

conform to snake_case naming style (invalid-name)

mymodule.py:3:0: C0116: Missing function or method

docstring (missing-function-docstring)

mymodule.py:4:4: W0105: String statement has no effect

(pointless-string-statement)

mymodule.py:4:4: C0304: Final newline missing (missing-

final-newline)

221 | P a g e

Your code has been rated at -7.50/10

The output shows that pylint has identified four issues in the code, including a naming style issue,

a missing docstring, a pointless string statement, and a missing final newline. Each issue is

accompanied by a code violation message and a score, and the total score for the code is reported

at the end.

pylint can also be customized to enforce specific coding standards and best practices. For example,

we can create a .pylintrc file in the project directory to specify the configuration settings for pylint.

Here is an example of a .pylintrc file that specifies a custom set of rules for pylint:

[FORMAT]

max-line-length = 120

[BASIC]

indent-string = " "

[MESSAGES CONTROL]

disable = W0611

This .pylintrc file sets the maximum line length to 120 characters, the indentation string to four

spaces, and disables the "unused import" warning. These settings will be used by pylint when

analyzing the code.

Using linters like pylint can help improve the quality of Python code by enforcing coding standards

and best practices, and can help identify errors and bugs before they cause problems in production

code. By incorporating linters into the development workflow, developers can catch errors earlier

in the process, reducing the time and effort required for testing and debugging.

 Using type checkers

Type checkers are tools that analyze Python code to detect type-related errors, and to ensure that

the code is type-safe. They help improve code quality by identifying potential bugs and errors, and

by enforcing strong typing in Python. One popular type checker for Python is mypy.

mypy can be installed using pip, and can be run on a Python module or package like this:

pip install mypy

222 | P a g e

mypy mymodule.py

Here is an example of using mypy to check the types of a Python module:

mymodule.py

def add_numbers(a: int, b: int) -> int:

 return a + b

x: int = 5

y: str = "hello"

z = add_numbers(x, y)

When we run mypy mymodule.py, mypy will output a report of the type-related issues it has found:

mymodule.py:6: error: Argument 2 to "add_numbers" has

incompatible type "str"; expected "int"

mymodule.py:6: note: Following overload(s) are

available

mymodule.py:6: note: def add_numbers(a: int, b:

int) -> int

mymodule.py:8: error: Incompatible types in assignment

(expression has type "Union[int, str]", variable has

type "int")

The output shows that mypy has identified two type-related issues in the code. The first issue is

that the argument y passed to add_numbers has an incompatible type (str instead of int). The

second issue is that the variable z has an incompatible type (Union[int, str] instead of int).

mypy can also be customized to enforce specific typing rules and conventions. For example, we

can create a mypy.ini file in the project directory to specify the configuration settings for mypy.

Here is an example of a mypy.ini file that specifies a custom set of rules for mypy:

[mypy]

python_version = 3.8

223 | P a g e

ignore_missing_imports = True

[strict_optional]

enabled = True

warn_return_any = True

This mypy.ini file sets the target Python version to 3.8, ignores missing imports, and enables strict

optional typing. These settings will be used by mypy when analyzing the code.

Using type checkers like mypy can help improve the quality of Python code by enforcing strong

typing and identifying type-related errors and bugs. By incorporating type checkers into the

development workflow, developers can catch errors earlier in the process, reducing the time and

effort required for testing and debugging.

 Using code formatters

Code formatting is an essential aspect of software development. Consistent code formatting helps

in improving the readability of the code and ensures that it adheres to a consistent style, making it

easier to maintain and debug.

Using code formatters is an effective way to ensure that the code is formatted correctly. A code

formatter is a tool that can automatically format code according to specific rules and guidelines.

This can save time and effort in manually formatting code and ensure that the codebase is

consistent.

There are several popular code formatters available for Python, including Black, YAPF, and

autopep8. In this note, we'll explore Black and demonstrate how to use it in a Python project.

Black is a code formatter that enforces a strict style guide for Python code. It can automatically

format code according to the PEP 8 style guide and applies a set of opinionated rules for code

layout and formatting.

To use Black, first, you need to install it using pip:

pip install black

Once Black is installed, you can run it on your Python code files. For example, to format a single

file named example.py, run the following command:

black example.py

This will format the code in the example.py file according to Black's rules and save the changes to

the file.

224 | P a g e

Black can also be used to format an entire project directory. To do this, navigate to the root

directory of the project and run the following command:

black .

This will format all Python files in the project directory and its subdirectories.

It's important to note that Black can modify your code files, so it's recommended to commit your

changes to version control before running Black.

In addition to formatting code files, Black can also be integrated into code editors and IDEs. For

example, the Black extension for Visual Studio Code automatically formats Python code using

Black when you save a file.

Using code formatters like Black can help ensure that your code adheres to consistent formatting

rules, improving the readability and maintainability of your codebase.

 Using docstring conventions

Documentation is an important aspect of software development, as it helps developers understand

how a piece of code works, its purpose, and how to use it. Docstrings are a type of documentation

that are used to describe a function, method, or module in Python.

Docstrings should follow a consistent format and provide relevant information about the code,

such as the purpose of the function, the arguments it accepts, and what it returns. There are several

conventions for writing docstrings in Python, including the Google Style Guide, the numpydoc

format, and the reStructuredText format.

Let's take a look at an example of a function with a docstring using the Google Style Guide

convention:

def add_numbers(a, b):

 """

 Adds two numbers together.

 Args:

 a (int): The first number.

 b (int): The second number.

 Returns:

 int: The sum of the two numbers.

225 | P a g e

 """

 return a + b

In this example, the docstring describes what the function does, the arguments it accepts, and what

it returns. The arguments are listed with their types and a brief description of what they represent.

The return value is also described with its type and a brief explanation of what it represents.

Here's another example using the numpydoc format:

def multiply_numbers(a, b):

 """

 Multiply two numbers.

 Parameters

 a : int

 The first number.

 b : int

 The second number.

 Returns

 int

 The product of the two numbers.

 """

 return a * b

In this example, the numpydoc format is used, which is commonly used in scientific computing

projects. The arguments are listed using the Parameters section, and the return value is described

using the Returns section.

Using consistent docstring conventions can help improve the readability and maintainability of

your codebase. It can also make it easier for other developers to understand and use your code.

In addition to using docstring conventions, it's also important to ensure that your docstrings are up

to date and accurate. Docstrings should be updated when the code changes or when new features

226 | P a g e

are added. By keeping your docstrings up to date, you can help ensure that your code remains

understandable and easy to use.

 Writing maintainable code

Maintainable code is code that is easy to understand, modify, and extend over time. Writing

maintainable code is important for ensuring that your codebase remains readable and maintainable

as it grows in size and complexity.

Here are some best practices for writing maintainable code:

Use clear and descriptive variable and function names.

Bad

x = 5

y = 10

z = x + y

Good

num1 = 5

num2 = 10

sum_of_nums = num1 + num2

Write small, reusable functions that do one thing well.

Bad

def process_data():

 # some code here

 if condition:

 # some more code here

 # some more code here

Good

def validate_data(data):

227 | P a g e

 # some code here

 return valid_data

def process_valid_data(valid_data):

 # some code here

 return processed_data

def process_data(data):

 valid_data = validate_data(data)

 processed_data = process_valid_data(valid_data)

 return processed_data

Use comments to explain why code exists, not what it does.

Bad

Loop through list and print each item

for item in my_list:

 print(item)

Good

Print each item in the list

for item in my_list:

 print(item)

Write tests for your code to ensure that it works as intended.

Bad

def add_numbers(a, b):

 return a + b

Good

def add_numbers(a, b):

228 | P a g e

 return a + b

def test_add_numbers():

 assert add_numbers(2, 3) == 5

 assert add_numbers(0, 0) == 0

 assert add_numbers(-1, 1) == 0

Follow consistent code formatting conventions to make code more readable.

Bad

def some_function():

 print('hello')

return None

Good

def some_function():

 print('hello')

 return None

By following these best practices, you can write code that is easier to understand, modify, and

extend over time. Writing maintainable code is an important part of code quality, and can help

ensure that your codebase remains robust and reliable over time.

Code Reviews

 Conducting effective code reviews

Code reviews are an essential part of the development process, as they help identify potential issues

and improve code quality. Conducting effective code reviews involves a systematic and

collaborative process that allows developers to share feedback, identify bugs and issues, and ensure

that code adheres to standards and best practices. In this note, we will discuss how to conduct

effective code reviews, including best practices and sample code.

Best Practices for Conducting Effective Code Reviews:

229 | P a g e

 Establish clear goals and expectations: Before starting a code review, it is essential to

establish clear goals and expectations for the process. This includes defining the scope of

the review, outlining the objectives, and providing guidelines for feedback.

 Assign roles and responsibilities: It is crucial to assign roles and responsibilities for the

code review process. This includes identifying reviewers and providing clear guidelines

for their responsibilities and expectations.

 Conduct a thorough review: When conducting a code review, it is important to conduct a

thorough review of the code. This includes checking for adherence to best practices,

identifying potential issues, and ensuring that the code meets the specified requirements.

 Provide constructive feedback: Providing constructive feedback is critical to conducting

an effective code review. Feedback should be specific, actionable, and focused on

improving the code quality and adhering to best practices.

 Communicate effectively: Effective communication is essential for conducting an effective

code review. This includes using clear and concise language, being respectful, and

providing feedback in a timely manner.

 Use code review tools: There are many code review tools available that can help facilitate

the process. These tools provide features such as code highlighting, commenting, and issue

tracking, which can help streamline the review process and ensure that all feedback is

captured.

Sample Code:

Let's consider an example of how to conduct a code review for a Python script. Suppose we have

the following script that calculates the sum of two numbers:

def add_numbers(num1, num2):

 sum = num1 + num2

 return sum

result = add_numbers(5, 10)

print(result)

To conduct a code review, we can follow these steps:

Define the scope and objectives of the code review. In this case, we want to ensure that the code

adheres to best practices, is free of potential issues, and meets the specified requirements.

230 | P a g e

Assign roles and responsibilities. We can assign one or more reviewers to the code review process,

providing clear guidelines for their responsibilities and expectations.

Conduct a thorough review. The reviewer can check the following aspects of the code:

 Code structure: Ensure that the code is well-structured and follows best practices for coding

style and formatting.

 Variable naming: Check that variable names are clear and descriptive.

 Comments: Ensure that code comments are used where necessary to explain the code and

its functionality.

 Error handling: Check that appropriate error handling is used, such as try-except blocks.

Provide constructive feedback. Based on the review, the reviewer can provide feedback to the

developer, such as:

Suggesting more descriptive function and variable names, such as calculate_sum instead of

add_numbers and first_num and second_num instead of num1 and num2.

Suggesting adding comments to explain the code and its functionality.

Recommending using try-except blocks for error handling.

Communicate effectively. The reviewer can communicate the feedback to the developer using

clear and concise language, providing examples and suggestions where necessary.

Use code review tools. Code review tools such as Github pull requests, Bitbucket code reviews,

and Review Board can be used to facilitate the review process, providing a platform for reviewers

to comment, suggest changes and track issues.

 Giving and receiving feedback

Giving and receiving feedback is an important aspect of collaboration and development in software

engineering. Providing constructive feedback helps improve the quality of code and promotes

personal and professional growth.

Here are some tips for giving and receiving feedback:

 Be specific: Avoid general comments like "this code is bad". Instead, point out specific

issues and suggest solutions. For example, "the variable name x is not descriptive. Can you

rename it to something more meaningful like total_sales?"

231 | P a g e

 Be objective: Critique the code, not the person. Avoid using language that can be perceived

as personal attacks.

 Be respectful: Choose your words carefully and be mindful of your tone. Make sure your

feedback is delivered in a respectful and professional manner.

 Be actionable: Suggest actionable steps to improve the code. For example, "Can you add

comments to explain the purpose of this function?" or "Can you reformat the code to

conform to the style guide?".

 Receiving feedback can be challenging, but it is essential for growth and development.

Here are some tips for receiving feedback:

 Listen actively: Listen carefully to the feedback and try to understand the other person's

perspective.

 Ask questions: If you are not sure about something, ask for clarification. This shows that

you are willing to learn and improve.

 Don't take it personally: Remember that the feedback is about the code, not you as a person.

 Be open-minded: Be receptive to new ideas and suggestions for improvement. Don't be

defensive.

Sample code for giving feedback:

def calculate_sales(data):

 """

 This function calculates the total sales from a

list of transactions.

 """

 total = 0

 for transaction in data:

 total += transaction['amount']

 return total

Example of feedback:

The function logic looks good, but the docstring could be improved. Can you add more details on

the input and output of the function? Also, can you format it to follow the Google docstring

convention?

232 | P a g e

Sample code for receiving feedback:

def calculate_sales(data):

 """

 This function calculates the total sales from a

list of transactions.

 """

 total = 0

 for transaction in data:

 total += transaction['amount']

 return total

 Improving code quality through reviews

Code reviews are an important part of the software development process that help improve code

quality, ensure adherence to coding standards, and identify and fix bugs early on. In this subtopic,

we will discuss how to improve code quality through reviews, and provide sample codes to

illustrate the concepts.

1. Code Review Checklist

To conduct an effective code review, it is important to have a checklist of items to look for. Here

are some common items to include in your code review checklist:

 Code formatting: Is the code consistent and easy to read?

 Naming conventions: Are variables, functions, and classes named descriptively?

 Comments and docstrings: Are there enough comments and are they helpful in

understanding the code?

 Code functionality: Does the code achieve what it's supposed to do?

 Error handling: Does the code handle errors and edge cases appropriately?

 Security: Is the code secure and resistant to attacks?

 Performance: Does the code perform efficiently and not have any bottlenecks?

 Testing: Are there enough tests and are they comprehensive enough to cover different

scenarios?

2. Sample Code Review

Let's consider an example of a Python function that accepts a list of numbers and returns the sum

of all even numbers in the list. Here is the original implementation:

def sum_even_numbers(numbers):

233 | P a g e

 result = 0

 for number in numbers:

 if number % 2 == 0:

 result += number

 return result

Here are some possible suggestions to improve this code based on the code review checklist:

 Code formatting: The code is well-formatted and easy to read.

 Naming conventions: The function name and variable names are descriptive.

 Comments and docstrings: There is no docstring explaining the purpose of the function,

which could be helpful for future maintenance.

 Code functionality: The code correctly sums even numbers.

 Error handling: The code assumes that the input is a list of integers, and will raise an

exception if it is not. It may be useful to add a check to handle this case more gracefully.

 Security: There are no security concerns with this code.

 Performance: The code is efficient and does not have any obvious performance issues.

 Testing: There are no tests included with this code.

Based on this code review, we can make the following modifications to the code:

def sum_even_numbers(numbers):

 """

 Returns the sum of all even numbers in a list of

integers.

 Args:

 numbers (list): A list of integers.

 Returns:

 int: The sum of all even numbers in the list.

 Raises:

 TypeError: If the input is not a list of

integers.

 """

234 | P a g e

 if not isinstance(numbers, list) or not

all(isinstance(x, int) for x in numbers):

 raise TypeError("Input must be a list of

integers.")

 result = 0

 for number in numbers:

 if number % 2 == 0:

 result += number

 return result

In this modified code, we have added a docstring explaining the purpose of the function, and

included type checking to ensure that the input is a list of integers. We have also raised a specific

exception to handle this case more gracefully. Finally, we have added type annotations to the

function signature to make it more clear what the function expects as input and returns as output.

Code reviews are an important part of the software development process and can help improve

code quality and identify potential issues early on. By using a code review checklist and providing

constructive feedback, you can ensure that the code being produced meets the necessary standards

and is of high quality.

Collaboration Tools

 Using version control with Git

Version control is an essential aspect of software development, especially in collaboration projects.

It enables developers to track changes to the source code, collaborate with other developers, and

revert to previous versions if necessary. Git is one of the most popular version control systems and

is widely used in collaboration tools. In this note, we will explore how to use Git in collaboration

tools.

Git is a distributed version control system, which means that each developer has their copy of the

repository. This makes it easy for developers to work on different parts of the codebase without

affecting others' work. When using Git in collaboration tools, it is essential to follow a few best

practices to ensure that the workflow is smooth and efficient.

Here are some of the best practices for using Git in collaboration tools:

235 | P a g e

Create a Git repository: The first step is to create a Git repository that will serve as the central

repository for the project. You can create a Git repository on GitHub, Bitbucket, or any other Git

hosting service. Once you have created the repository, you can clone it to your local machine.

Create branches: In Git, branches are used to isolate changes and work on specific features or bug

fixes. Each developer should create their branch when working on a new feature or bug fix. This

allows them to work independently without interfering with others' work.

create a new branch

git checkout -b new-feature

Commit changes: After making changes to the code, developers should commit their changes to

their local repository. It is important to write a descriptive commit message that explains the

changes made.

stage changes

git add .

commit changes

git commit -m "added new feature"

Push changes: Once the changes are committed, they can be pushed to the central repository to

make them available to other developers.

push changes to remote branch

git push origin new-feature

Pull changes: To get the latest changes from the central repository, developers should pull changes

from the remote repository before making changes to their local repository.

pull changes from remote branch

git pull origin master

Resolve conflicts: When multiple developers work on the same file, conflicts can arise when they

try to push changes to the central repository. To resolve conflicts, developers should pull changes

from the remote repository, merge the changes, and resolve any conflicts.

merge changes from master branch

236 | P a g e

git merge master

resolve conflicts

Review changes: Before merging changes to the master branch, they should be reviewed by other

developers. This ensures that the changes do not break the code and meet the project's

requirements.

create a pull request

git push origin new-feature

review changes and merge pull request

Git is an essential tool for collaboration in software development projects. By following these best

practices, developers can work together efficiently and effectively to build high-quality software.

 Using GitHub for collaboration

GitHub is one of the most popular collaboration tools for software development. It provides a

platform for version control, project management, and team collaboration. In this note, we will

explore how to use GitHub for collaboration in collaboration tools.

GitHub provides several features that make collaboration easy and efficient. Here are some of the

features that make GitHub a great collaboration tool:

Pull requests: GitHub's pull request feature enables developers to review and merge changes from

other developers. Pull requests provide a platform for discussing code changes, suggesting

improvements, and resolving conflicts before merging changes into the main codebase.

Issues: GitHub's issue tracking system provides a way for developers to track and manage bugs,

feature requests, and other tasks. Issues can be assigned to specific team members, labeled, and

prioritized to ensure that they are addressed in a timely and efficient manner.

Wiki: GitHub's wiki feature provides a platform for documenting project requirements, processes,

and best practices. This enables team members to have a shared understanding of the project,

reducing misunderstandings and improving collaboration.

Milestones: GitHub's milestone feature provides a way to group issues and pull requests by a

specific deadline or release. This enables teams to track progress and ensure that project milestones

are met on time.

Here are some sample codes for using GitHub for collaboration:

237 | P a g e

Creating a pull request:

To create a pull request, first, fork the repository, clone it to your local machine, and create a new

branch:

fork the repository on GitHub

clone the repository to your local machine

git clone https://github.com/your-username/repository-

name.git

create a new branch

git checkout -b new-feature

Make changes to the code, commit the changes, and push the changes to your forked repository:

stage changes

git add .

commit changes

git commit -m "added new feature"

push changes to your forked repository

git push origin new-feature

Create a pull request from your forked repository to the original repository:

go to your forked repository on GitHub

click on "New pull request"

select the branch you want to merge into the original

repository

add a description of the changes

click on "Create pull request"

Creating an issue:

238 | P a g e

To create an issue, go to the "Issues" tab in the repository and click on "New issue." Add a title

and description of the issue, assign it to a team member, and add any necessary labels and

milestones.

Creating a wiki:

To create a wiki, go to the "Wiki" tab in the repository and click on "New page." Add a title and

content for the page, and save it.

Creating a milestone:

To create a milestone, go to the "Issues" tab in the repository and click on "Milestones." Click on

"New milestone," add a title, due date, and description, and save it.

GitHub is an excellent collaboration tool for software development projects. Its features such as

pull requests, issues, wiki, and milestones make collaboration efficient and effective. By following

these best practices, developers can work together to build high-quality software.

 Using continuous integration

Continuous Integration (CI) is a software development practice that involves continuously

integrating code changes into a shared repository and testing them automatically. CI is essential

for collaborative software development as it enables teams to catch errors early in the development

process and ensure that the codebase is always in a releasable state. In this note, we will explore

how to use continuous integration in collaboration tools with sample codes.

There are several collaboration tools that support continuous integration, such as Jenkins, Travis

CI, CircleCI, and GitHub Actions. Here are some of the benefits of using continuous integration

in collaboration tools:

Early detection of errors: Continuous integration enables teams to detect errors early in the

development process, reducing the time and cost of fixing them.

Faster release cycles: Continuous integration enables teams to release software faster and more

frequently, reducing time-to-market and increasing customer satisfaction.

Better code quality: Continuous integration ensures that code changes are tested automatically,

reducing the risk of introducing bugs and improving overall code quality.

Here are some sample codes for using continuous integration in collaboration tools:

Jenkins:

Jenkins is an open-source automation server that supports continuous integration. Here's an

example of a Jenkinsfile for a Java project:

pipeline {

239 | P a g e

 agent any

 stages {

 stage('Build') {

 steps {

 sh 'mvn clean package'

 }

 }

 stage('Test') {

 steps {

 sh 'mvn test'

 }

 }

 stage('Deploy') {

 steps {

 sh 'mvn deploy'

 }

 }

 }

}

This Jenkinsfile defines a pipeline that builds, tests, and deploys a Java project. Each stage

corresponds to a step in the software development lifecycle, and the sh command executes shell

commands.

GitHub Actions:

GitHub Actions is a native continuous integration service built into GitHub. Here's an example of

a GitHub Actions workflow for a Node.js project:

name: Node.js CI

on:

 push:

 branches: [main]

 pull_request:

240 | P a g e

 branches: [main]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - name: Use Node.js

 uses: actions/setup-node@v2

 with:

 node-version: '14.x'

 - run: npm ci

 - run: npm run build

 - run: npm test

This workflow defines a job that builds, tests, and deploys a Node.js project. The steps correspond

to a sequence of tasks, and the uses command specifies the dependencies required for each step.

Continuous integration is a critical component of collaborative software development.

Collaboration tools such as Jenkins and GitHub Actions provide powerful tools for implementing

continuous integration, making it easy for teams to catch errors early, release software faster, and

improve overall code quality. By following these best practices, developers can work together to

build high-quality software.

 Using code coverage tools

Code coverage is a metric that measures how much of your source code is executed during testing.

Code coverage tools help teams identify areas of the codebase that are not being tested, ensuring

that software is thoroughly tested before release. In this note, we will explore how to use code

coverage tools in collaboration tools with sample codes.

There are several code coverage tools that support collaborative software development, such as

Jacoco, Istanbul, and Coveralls. Here are some of the benefits of using code coverage tools in

collaboration tools:

Identify untested code: Code coverage tools enable teams to identify areas of the codebase that are

not being tested, ensuring that software is thoroughly tested before release.

241 | P a g e

Improve code quality: Code coverage tools encourage teams to write more testable code and

improve overall code quality.

Increase confidence in software: Code coverage tools provide teams with confidence that their

software is thoroughly tested and ready for release.

Here are some sample codes for using code coverage tools in collaboration tools:

Jacoco:

Jacoco is a Java code coverage tool that supports collaborative software development. Here's an

example of how to configure Jacoco in a Maven project:

<build>

 <plugins>

 <plugin>

 <groupId>org.jacoco</groupId>

 <artifactId>jacoco-maven-

plugin</artifactId>

 <version>0.8.7</version>

 <executions>

 <execution>

 <goals>

 <goal>prepare-agent</goal>

 </goals>

 </execution>

 <execution>

 <id>report</id>

 <phase>test</phase>

 <goals>

 <goal>report</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

242 | P a g e

 </plugins>

</build>

This configuration sets up Jacoco in a Maven project, preparing the agent for testing and generating

a report after the test phase.

Istanbul:

Istanbul is a JavaScript code coverage tool that supports collaborative software development.

Here's an example of how to configure Istanbul in a Node.js project:

"scripts": {

 "test": "istanbul cover

./node_modules/mocha/bin/_mocha --report lcovonly -- -R

spec && cat ./coverage/lcov.info |

./node_modules/coveralls/bin/coveralls.js && rm -rf

./coverage"

}

This configuration sets up Istanbul in a Node.js project, generating a coverage report in the lcov

format and sending it to Coveralls, a code coverage service.

Code coverage tools are a critical component of collaborative software development.

Collaboration tools such as Jacoco and Istanbul provide powerful tools for implementing code

coverage, making it easy for teams to identify untested code, improve overall code quality, and

increase confidence in software. By following these best practices, developers can work together

to build high-quality software.

Documentation and Packaging

 Writing documentation

Documentation is an essential aspect of software development that helps ensure that code is

maintainable and understandable by others. Collaborative software development requires

documentation that can be shared across teams to help reduce the knowledge gap between team

members. In this note, we will explore how to write documentation in collaboration and

development with sample codes.

243 | P a g e

There are different types of documentation, including functional specifications, technical

specifications, user manuals, and API documentation. Here are some best practices for writing

documentation in collaboration and development:

Start early: Documentation should be written early in the development process, ideally at the same

time as code. This ensures that the documentation is accurate and up-to-date.

Use plain language: Use simple and concise language to make the documentation easy to

understand. Avoid using technical jargon that may not be familiar to all team members.

Organize the documentation: Organize the documentation in a logical and easy-to-follow structure.

Use headings and subheadings to break up the content, making it easier to read and navigate.

Use examples: Use examples to illustrate the concepts and functionality of the software. This helps

to make the documentation more accessible and understandable.

Here are some sample codes for writing documentation in collaboration and development:

Functional specifications:

Functional specifications describe the features and functionality of the software from the user's

perspective. Here is an example of a functional specification for a shopping cart feature:

Feature: Add items to shopping cart

Scenario: User adds an item to the shopping cart

Given the user is on the product page

When the user clicks the 'Add to Cart' button

Then the item is added to the shopping cart

And the total price is updated

This example uses the Gherkin language to describe the shopping cart feature from a user's

perspective.

Technical specifications:

Technical specifications describe how the software works and the technologies used to build it.

Here's an example of a technical specification for a Node.js application:

Architecture: Node.js and Express.js

Database: MongoDB

Deployment: Heroku

API Endpoints:

GET /products - Get all products

244 | P a g e

POST /products - Create a new product

GET /products/:id - Get a product by ID

PUT /products/:id - Update a product by ID

DELETE /products/:id - Delete a product by ID

This example describes the technical aspects of a Node.js application, including the architecture,

database, and deployment. It also includes the API endpoints and their corresponding HTTP

methods.

User manuals:

User manuals provide instructions on how to use the software from a user's perspective. Here is

an example of a user manual for a web application:

Getting started:

1. Go to the web application URL

2. Click the 'Sign up' button to create a new account

3. Follow the instructions to create your account

4. Log in to your account

Creating a new project:

1. Click the 'New project' button

2. Enter the project name and description

3. Click the 'Create' button

Adding tasks to a project:

1. Click on the project name

2. Click the 'Add task' button

3. Enter the task details

4. Click the 'Save' button

This example provides instructions on how to get started with the web application, create a new

project, and add tasks to a project.

Documentation is an essential aspect of collaborative software development. By following best

practices and using the appropriate tools, teams can create documentation that is accurate, easy to

understand, and accessible to all team members. Whether it is functional specifications, technical

specifications, or user manuals, documentation helps to reduce the knowledge gap between team

members and ensures that the software is maintainable and understandable.

 Using Sphinx

Sphinx is a documentation tool that can be used to generate high-quality documentation for

software projects. It is widely used in collaborative software development to document Python-

based projects, but it can also be used to document projects written in other programming

245 | P a g e

languages. In this note, we will explore how to use Sphinx in documentation and packaging in

collaboration and development with sample codes.

Sphinx uses a markup language called reStructuredText (reST) to write documentation. It is similar

to Markdown, but it is more powerful and flexible. Here are some best practices for using Sphinx

in documentation and packaging:

Use Sphinx to generate HTML and PDF documentation: Sphinx can be used to generate

documentation in different formats, including HTML and PDF. The HTML format can be hosted

on a website or added to a project's documentation directory, while the PDF format can be

distributed as a standalone document.

Use reStructuredText to write documentation: Sphinx uses reStructuredText to write

documentation, which is a markup language that is easy to read and write. It supports syntax

highlighting, code blocks, and hyperlinks.

Use Sphinx themes to customize the documentation: Sphinx comes with several built-in themes

that can be used to customize the appearance of the documentation. The themes can be customized

further by using CSS stylesheets.

Use Sphinx to generate package documentation: Sphinx can be used to generate documentation

for Python packages. The documentation can be included in the package and installed along with

it.

Here are some sample codes for using Sphinx in documentation and packaging:

Install Sphinx:

To install Sphinx, run the following command:

pip install sphinx

Create a documentation directory:

Create a directory for the documentation. In this example, we will call it "docs".

mkdir docs

Initialize the documentation:

Change to the "docs" directory and run the following command to initialize the documentation:

sphinx-quickstart

This will prompt you to enter some information about the project, such as the project name, author,

and version.

246 | P a g e

Write documentation using reStructuredText:

Create a file called "index.rst" in the "docs" directory and add the following content:

My Project

==========

This is the documentation for My Project.

Installation

To install My Project, run the following command:

.. code-block:: console

 $ pip install myproject

Usage

To use My Project, import the following module:

.. code-block:: python

 import myproject

 myproject.do_something()

Generate HTML documentation:

To generate HTML documentation, run the following command:

make html

This will create an HTML documentation directory in the "docs/_build/html" directory.

Generate PDF documentation:

247 | P a g e

To generate PDF documentation, run the following command:

make latexpdf

This will create a PDF documentation file in the "docs/_build/latex" directory.

Generate package documentation:

To generate documentation for a Python package, add the following code to the "setup.py" file:

from setuptools import setup

from sphinx.setup_command import BuildDoc

setup(

 name='myproject',

 version='1.0',

 cmdclass={

 'build_sphinx': BuildDoc,

 'install_sphinx': BuildDoc,

 },

 command_options={

 'build_sphinx': {

 'project': ('setup.py', 'My Project'),

 'version': ('setup.py', '1.0'),

 'release': ('setup.py', '1.0.0'),

 'source_dir': ('setup.py', 'docs'),

 'build_dir': ('setup.py', 'docs/_build'),

 },

 'install

 Packaging Python projects

248 | P a g e

Packaging Python projects is an essential step in software development, as it enables easy

distribution and installation of the code. In this note, we will explore how to package Python

projects in documentation and packaging in collaboration and development, with sample codes.

Python packages can be distributed in two main ways: as source distributions or as binary

distributions. Source distributions contain the source code and any necessary files, such as

configuration files or documentation. Binary distributions contain compiled code and can be

installed directly on the target machine. In this note, we will focus on creating source distributions.

Here are the steps to package a Python project:

Create a setup.py file: The setup.py file contains the metadata of the project, such as the name,

version, description, and dependencies. It also contains the instructions to build and distribute the

package. Here is a sample setup.py file:

from setuptools import setup, find_packages

setup(

 name='myproject',

 version='0.1.0',

 description='My project description',

 author='John Doe',

 author_email='john.doe@example.com',

 packages=find_packages(),

 install_requires=[

 'numpy>=1.18.1',

 'matplotlib>=3.2.0',

],

)

Create a MANIFEST.in file: The MANIFEST.in file specifies the files that should be included in

the source distribution. It can include files such as README, LICENSE, or data files. Here is a

sample MANIFEST.in file:

include README.md

include LICENSE.txt

249 | P a g e

recursive-include myproject/data *

Build the source distribution: To build the source distribution, run the following command in the

project directory:

python setup.py sdist

This will create a source distribution file in the "dist" directory.

Install the package: To install the package, run the following command:

pip install dist/myproject-0.1.0.tar.gz

This will install the package and its dependencies.

Upload the package to PyPI: PyPI is the Python Package Index, where Python packages are hosted.

To upload the package to PyPI, you need to create an account and use a package manager such as

twine. Here are the steps to upload the package:

Create an account on PyPI (https://pypi.org/account/register/)

Install twine:

pip install twine

Upload the package:

twine upload dist/*

This will upload the package to PyPI and make it available to other users.

Here are some best practices for packaging Python projects:

Use setuptools: Setuptools is a package that provides extensions to the Python distutils. It

simplifies the packaging process and provides useful features such as dependency management.

Use version control: Version control systems such as Git or SVN enable you to track changes to

your code and collaborate with other developers. They also enable you to create tags and releases

for your packages.

250 | P a g e

Include documentation: Documentation is essential for users to understand how to use your

package. Sphinx is a popular documentation tool that can be used to generate high-quality

documentation.

Use a virtual environment: Virtual environments enable you to create isolated Python

environments for your project. They prevent conflicts between different versions of packages and

ensure that your project works consistently across different machines.

Use a consistent naming convention: Use a consistent naming convention for your package,

module, and function names. This makes it easier for users to understand your code and prevents

naming conflicts with other packages.

Packaging Python projects is an essential step in software development. By following the best

practices and using the tools mentioned above, you can create high-quality packages that are easy

to distribute and install.

 Distributing Python packages

Distributing Python packages is an essential part of Python development, and it is critical to ensure

that your package is easy to install and use. In this note, we will discuss distributing Python

packages in documentation and packaging in collaboration and development.

Documentation is an integral part of any package, and it plays a vital role in the distribution

process. The documentation should be concise, clear, and easy to read, and it should provide all

the necessary information about the package, including installation instructions, API

documentation, and usage examples. One common tool used to generate documentation is Sphinx.

Packaging is the process of creating a distribution package that can be installed using standard

Python tools like pip. Python packages can be distributed in two ways: source distributions (sdist)

or binary distributions (bdist). Source distributions contain the package's source code, whereas

binary distributions contain pre-compiled code that can be installed directly on the target system.

To distribute your package, you need to create a package configuration file, setup.py, which is

used to generate the distribution package. Here's an example of a setup.py file:

from setuptools import setup, find_packages

setup(

 name='my_package',

 version='1.0.0',

 author='John Doe',

 author_email='john.doe@example.com',

251 | P a g e

 description='My Python package',

 long_description='A longer description of my Python

package',

 packages=find_packages(),

 install_requires=[

 'numpy>=1.0.0',

 'scipy>=1.0.0',

],

 classifiers=[

 'Development Status :: 5 - Production/Stable',

 'Intended Audience :: Developers',

 'License :: OSI Approved :: MIT License',

 'Programming Language :: Python :: 3',

 'Programming Language :: Python :: 3.6',

 'Programming Language :: Python :: 3.7',

 'Programming Language :: Python :: 3.8',

 'Programming Language :: Python :: 3.9',

],

)

In this example, we are using setuptools to define our package's metadata and dependencies. We

also specify the required packages using find_packages(), which automatically discovers all

packages in the project.

Once you have created your setup.py file, you can generate a distribution package by running the

following command:

python setup.py sdist bdist_wheel

This command generates both a source distribution (sdist) and a binary distribution (bdist_wheel).

The resulting files can be uploaded to a package repository such as PyPI for distribution.

Collaboration is essential in software development, and Python makes it easy to collaborate with

others. One popular tool for collaboration is Git, which allows multiple developers to work on the

same codebase simultaneously. To collaborate on a Python project, you can use a Git repository

hosting service like GitHub or GitLab.

252 | P a g e

When collaborating on a Python project, it is essential to maintain a consistent coding style and

follow best practices. Tools like Flake8 and Black can help enforce coding standards and maintain

consistency across the project.

Distributing Python packages is an essential part of Python development, and it is crucial to ensure

that your package is easy to install and use. Documentation, packaging, and collaboration are

critical components of this process, and Python provides powerful tools to help with each of these

tasks.

 Managing dependencies

Managing dependencies is an essential aspect of Python development, and it involves ensuring

that your package can work correctly with other packages it relies on. In this note, we will discuss

managing dependencies in documentation and packaging in collaboration and development.

Documentation is an essential part of any package, and it plays a vital role in the distribution

process. In the context of managing dependencies, documentation should include a clear list of all

the dependencies required to use the package. This includes any third-party packages that the

package depends on, as well as any specific versions required for compatibility. The

documentation should also provide instructions on how to install these dependencies using

package managers like pip.

To manage dependencies in your package, you can use a tool like pipenv. Pipenv is a package

manager that combines the functionality of pip and virtualenv into a single tool. It provides an easy

way to manage dependencies and virtual environments for Python projects.

Here is an example of a Pipfile created using pipenv:

[[source]]

url = "https://pypi.org/simple"

verify_ssl = true

name = "pypi"

[packages]

requests = "==2.25.1"

numpy = "==1.19.5"

pandas = "==1.2.1"

[dev-packages]

pytest = "==6.2.2"

253 | P a g e

flake8 = "==3.9.0"

In this example, we have specified the required packages in the [packages] section and the

development packages in the [dev-packages] section. We have also specified the specific versions

required using the == operator.

To install the dependencies listed in the Pipfile, you can run the following command:

pipenv install

This command creates a virtual environment and installs all the required packages specified in the

Pipfile.

Packaging is the process of creating a distribution package that can be installed using standard

Python tools like pip. When creating a package, it is essential to ensure that all the required

dependencies are included in the package. This can be achieved using tools like setuptools, which

automatically include all required packages in the distribution package.

Here's an example of a setup.py file that uses setuptools to specify the required packages:

from setuptools import setup, find_packages

setup(

 name='my_package',

 version='1.0.0',

 author='John Doe',

 author_email='john.doe@example.com',

 description='My Python package',

 long_description='A longer description of my Python

package',

 packages=find_packages(),

 install_requires=[

 'numpy>=1.0.0',

 'scipy>=1.0.0',

],

 classifiers=[

 'Development Status :: 5 - Production/Stable',

254 | P a g e

 'Intended Audience :: Developers',

 'License :: OSI Approved :: MIT License',

 'Programming Language :: Python :: 3',

 'Programming Language :: Python :: 3.6',

 'Programming Language :: Python :: 3.7',

 'Programming Language :: Python :: 3.8',

 'Programming Language :: Python :: 3.9',

],

)

In this example, we have specified the required packages using the install_requires argument,

which automatically includes these packages in the distribution package.

Collaboration is essential in software development, and Python makes it easy to collaborate with

others. When collaborating on a Python project, it is essential to ensure that all team members are

using the same dependencies and versions. This can be achieved using tools like pipenv or conda,

which provide a consistent environment for all team members.

255 | P a g e

 THE END

