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Python is a versatile programming language that has gained a lot of popularity in recent years. 

One of the reasons for its popularity is its ease of use, which makes it an ideal language for 

beginners. In this guide, we will provide an introduction to Python for SAS users. 

 

Python Basics 

 

Before we dive into the details of using Python for data analysis, let's go over some basic 

concepts in Python. 

 

Variables 

 

A variable is a container that holds a value. In Python, you can create a variable by assigning a 

value to it. Here's an example: 

 
x = 10  

 

This code creates a variable called x and assigns it the value 10. 

 

Data Types 

 

In Python, there are several built-in data types, including: 

 

Integers: whole numbers, such as 10 or -5. 

Floating-point numbers: decimal numbers, such as 3.14 or -0.5. 

Strings: a sequence of characters enclosed in quotes, such as "hello" or "123". 

Booleans: True or False. 

You can use the type() function to check the data type of a variable. For example: 

 
x = 10 

print(type(x)) # Output: <class 'int'> 

 

Lists 

 

A list is a collection of values, enclosed in square brackets and separated by commas. Here's an 

example: 

 
my_list = [1, 2, 3, 4, 5] 

 

 

You can access individual elements of a list using their index, which starts at 0. For example: 

 
print(my_list[0]) # Output: 1 

 

You can also modify elements of a list by assigning a new value to them. For example: 

my_list[0] = 10 

print(my_list) # Output: [10, 2, 3, 4, 5] 
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Loops 

 

A loop is a way to repeat a block of code multiple times. In Python, there are two types of loops: 

for loops and while loops. 

 

A for loop is used to iterate over a sequence, such as a list. Here's an example: 

 
my_list = [1, 2, 3, 4, 5] 

for num in my_list: 

    print(num) 

 

This code will print each element of the list my_list. 

 

A while loop is used to repeat a block of code as long as a condition is true. Here's an example: 

 
x = 0 

while x < 10: 

    print(x) 

    x += 1 

 

This code will print the numbers 0 through 9. 

 

Functions 

 

A function is a block of code that performs a specific task. In Python, you can define your own 

functions using the def keyword. Here's an example: 
 

def add_numbers(x, y): 

    return x + y 

 

This code defines a function called add_numbers that takes two arguments and returns their sum. 

 

Importing Modules 

 

Python has a vast library of modules that provide additional functionality. You can import a 

module using the import keyword. Here's an example: 

 
 

import math 

 

This code imports the math module, which provides mathematical functions. 

Using Python with SAS 

 

Python can be used in conjunction with SAS to perform data analysis tasks. Here are some ways 

you can use Python with SAS: 
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Use Python to read data from a file and write it to a SAS dataset. 

Use Python to perform data transformations and analysis 

 

here's some more information on Python basics that may be useful for SAS users: 

 

Variables and Data Types: 

In Python, you can assign values to variables using the = operator. Python has several built-in 

data types, including integers, floats, strings, lists, tuples, and dictionaries. You can check the 

data type of a variable using the type() function. 

 

Loops and Control Structures: 

Python supports various control structures like if-else statements, for loops, and while loops. For 

example, you can use a for loop to iterate over a sequence of values, and an if statement to 

execute code based on a condition. 

 

Functions and Modules: 

Python allows you to define your own functions and reuse them in your code. You can also 

import external modules or libraries to extend the functionality of Python. For example, the 

pandas module provides a powerful way to work with tabular data in Python. 

 

File Input/Output: 

Python has built-in functions for reading and writing files, including CSV files, Excel files, and 

text files. You can use the open() function to open a file, and then read or write data using 

various methods. 

 

Object-Oriented Programming: 

Python is an object-oriented programming language, which means you can define classes and 

objects to encapsulate data and behavior. This can help organize your code and make it more 

modular and reusable. 

 

Here's an example Python code that demonstrates some of these concepts: 
 

# Define a function to calculate the sum of two numbers 

def add_numbers(a, b): 

    return a + b 

 

# Define a class to represent a person 

class Person: 

    def __init__(self, name, age): 

        self.name = name 

        self.age = age 

 

    def say_hello(self): 

        print(f"Hello, my name is {self.name} and I am 

{self.age} years old.") 
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# Create a list of numbers 

numbers = [1, 2, 3, 4, 5] 

 

# Use a for loop to iterate over the numbers and print 

them 

for num in numbers: 

    print(num) 

 

# Use an if statement to check if a number is even or 

odd 

if num % 2 == 0: 

    print("The number is even.") 

else: 

    print("The number is odd.") 

 

# Create a dictionary to store information about people 

people = {"Alice": Person("Alice", 30), "Bob": 

Person("Bob", 25)} 

 

# Use a for loop to iterate over the people and call 

their say_hello method 

for name, person in people.items(): 

    person.say_hello() 

 

# Write the numbers to a file 

with open("numbers.txt", "w") as f: 

    for num in numbers: 

        f.write(str(num) + "\n") 

 

 

This code defines a function to add two numbers, and a class to represent a person. It also 

demonstrates how to use a for loop to iterate over a list of numbers, an if statement to check if a 

number is even or odd, and a dictionary to store information about people. 

 

The code also shows how to write the numbers to a file using the open() function and a with 

statement, which automatically closes the file when you're done with it. 

Code example that uses Python to read a CSV file, perform some data transformations, and write 

the results to a SAS dataset. 

 
# Import required modules 

import pandas as pd 

import numpy as np 

import saspy 
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# Create a SAS session 

sas = saspy.SASsession() 

 

# Read the CSV file into a Pandas DataFrame 

data = pd.read_csv("mydata.csv") 

 

# Remove any rows with missing data 

data.dropna(inplace=True) 

 

# Calculate the average value of each column 

avg_values = data.mean() 

 

# Convert the Pandas DataFrame to a SAS dataset 

sas_data = sas.df2sd(data, "mydata") 

 

# Create a new SAS dataset with the average values 

sas_avg = sas.sd2df(avg_values.to_frame().T, 

"avg_values") 

 

# Append the average values to the original dataset 

sas_data.append(sas_avg) 

 

# Save the dataset to a SAS library 

sas_data.save("mylib.mydata") 

 

# Close the SAS session 

sas.disconnect() 

 

 

This code imports the pandas and numpy modules, which are popular libraries for working with 

data in Python. It also imports the saspy module, which provides a way to connect to a SAS 

server and interact with SAS data. 

 

The code then creates a SAS session using the SASsession() function from the saspy module. It 

reads a CSV file into a Pandas DataFrame using the read_csv() function from the pandas module, 

and removes any rows with missing data using the dropna() method. 

Next, the code calculates the average value of each column in the DataFrame using the mean() 

method. It then converts the Pandas DataFrame to a SAS dataset using the df2sd() method from 

the saspy module. 

 

The code creates a new SAS dataset with the average values using the sd2df() method, and 

appends it to the original dataset using the append() method. It then saves the dataset to a SAS 

library using the save() method, and closes the SAS session using the disconnect() method. 
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This code demonstrates how Python can be used to read, transform, and analyze data, and how 

the results can be written to a SAS dataset for further analysis. 

 

NumPy: 

 

NumPy is a popular Python library for scientific computing that provides a powerful array 

processing capability. It is often used for numerical operations, such as matrix multiplication, 

and statistical calculations. You can use NumPy in conjunction with pandas for data analysis. 

 

Pandas: 

 

Pandas is another popular Python library for data manipulation and analysis. It provides a data 

frame object that allows you to store and manipulate tabular data in Python. You can perform 

various operations on data frames, such as filtering, sorting, and aggregating data. 

 

Matplotlib: 

 

Matplotlib is a plotting library for Python that allows you to create visualizations of your data. It 

provides a variety of chart types, including line charts, scatter plots, and bar charts. You can 

customize the appearance of your charts using various parameters. 

 

Scikit-learn: 

 

Scikit-learn is a machine learning library for Python that provides a wide range of algorithms for 

various tasks, such as classification, regression, and clustering. It also provides tools for data 

preprocessing and evaluation of machine learning models. 

 

Jupyter Notebook: 

 

Jupyter Notebook is an interactive web-based tool that allows you to write and run Python code 

in a document-like format. It is often used for data analysis and visualization, as it allows you to 

include charts and other visualizations inline with your code. It also allows you to document your 

code and share it with others. 

 

Here's an example Python code that demonstrates some of these concepts: 

 
import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LinearRegression 

 

# Create a NumPy array of random numbers 

x = np.random.rand(100) 

 

# Create a Pandas data frame from the array 
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df = pd.DataFrame({'x': x}) 

 

# Add a column to the data frame with a calculated 

value 

df['y'] = 2 * df['x'] + np.random.randn(100) * 0.1 

 

# Create a scatter plot of the data 

plt.scatter(df['x'], df['y']) 

plt.xlabel('X') 

plt.ylabel('Y') 

plt.show() 

 

# Fit a linear regression model to the data 

model = LinearRegression() 

model.fit(df[['x']], df['y']) 

 

# Print the slope and intercept of the model 

print('Slope:', model.coef_[0]) 

print('Intercept:', model.intercept_) 

 

# Predict values for new data points 

x_new = np.array([0.2, 0.4, 0.6, 0.8]) 

y_new = model.predict(x_new.reshape(-1, 1)) 

 

# Print the predicted values 

print('Predicted values:', y_new) 

 

This code uses NumPy to generate a random array of numbers, and Pandas to create a data frame 

from the array. It then adds a column to the data frame with a calculated value, and creates a 

scatter plot of the data using Matplotlib. 

 

The code also uses Scikit-learn to fit a linear regression model to the data, and predict values for 

new data points. Finally, it prints the slope and intercept of the model, and the predicted values. 

 

 

 

Installing Python 
 

Installing Python is the first step in learning how to use Python for SAS users. Python is a 

popular and versatile programming language that can be used for a wide range of tasks, including 

data analysis, machine learning, and web development. 
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There are several ways to install Python, but the easiest and most popular method is to use a 

Python distribution that includes all the necessary packages and tools. One such distribution is 

Anaconda, which is available for Windows, macOS, and Linux. 

 

To install Anaconda, follow these steps: 

 

Go to the Anaconda website (https://www.anaconda.com/products/individual) and download the 

installer for your operating system. 

 

Run the installer and follow the prompts to complete the installation. 

 

Once the installation is complete, open the Anaconda Navigator application. This will give you 

access to the Anaconda command prompt and the Anaconda Navigator GUI. 

 

To start using Python, open the Anaconda command prompt and type "python". This will start 

the Python interpreter, which you can use to run Python code. 

 

Alternatively, you can use a Python IDE (Integrated Development Environment) such as Spyder 

or PyCharm, which provide a more user-friendly interface for writing and running Python code. 

 

Once you have installed Python, you can start learning how to use it for data analysis and other 

tasks. One way to get started is to learn how to use the pandas library, which is a popular Python 

library for data manipulation and analysis. 

 

Here is an example code that uses the pandas library to read a CSV file and perform some basic 

data analysis: 

 
import pandas as pd 

 

# Read the CSV file 

df = pd.read_csv('data.csv') 

 

# Print the first 5 rows of the data 

print(df.head()) 

 

# Get some basic statistics about the data 

print(df.describe()) 

# Group the data by a specific column and get the mean 

of another column 

print(df.groupby('Column1')['Column2'].mean()) 

 

 

In this code, the "pd" alias is used to refer to the pandas library. The "read_csv" function is used 

to read a CSV file and create a pandas DataFrame object. The "head" and "describe" methods are 

used to print the first few rows of the data and some basic statistics, respectively. Finally, the 
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"groupby" method is used to group the data by a specific column and get the mean of another 

column. 

 

Learning how to use Python can be a valuable skill for SAS users, as it provides a powerful and 

flexible toolset for data analysis and other tasks. 

 

Python is a powerful and versatile programming language that has become increasingly popular 

in recent years, particularly in the field of data science and analysis. For SAS users, learning 

Python can provide a valuable addition to their toolkit, as it offers a wide range of capabilities for 

data analysis, machine learning, and other tasks. 

 

Example code that uses Python and the pandas library to analyze a dataset: 

 
import pandas as pd 

import matplotlib.pyplot as plt 

 

# Read the CSV file into a pandas DataFrame 

df = pd.read_csv('sales_data.csv') 

 

# Create a new column for total sales 

df['Total Sales'] = df['Quantity'] * df['Price'] 

 

# Calculate the total sales by region 

sales_by_region = df.groupby('Region')['Total 

Sales'].sum() 

 

# Calculate the total sales by product 

sales_by_product = df.groupby('Product')['Total 

Sales'].sum() 

 

# Plot a bar chart of total sales by region 

plt.bar(sales_by_region.index, sales_by_region.values) 

plt.title('Total Sales by Region') 

plt.xlabel('Region') 

plt.ylabel('Total Sales') 

plt.show() 

 

# Plot a pie chart of total sales by product 

plt.pie(sales_by_product.values, 

labels=sales_by_product.index, autopct='%1.1f%%') 

plt.title('Total Sales by Product') 

plt.show() 
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In this code, we start by importing the pandas library and the matplotlib.pyplot module, which 

provides functions for creating visualizations. We then use the pd.read_csv() function to read a 

CSV file containing sales data into a pandas DataFrame. 

 

Next, we create a new column in the DataFrame for total sales by multiplying the Quantity and 

Price columns. We then use the groupby() method to calculate the total sales by region and by 

product. 

 

Finally, we use the plt.bar() function to create a bar chart of the total sales by region, and the 

plt.pie() function to create a pie chart of the total sales by product. 

 

This code demonstrates how Python and the pandas library can be used to read, manipulate, and 

analyze data, and how the matplotlib library can be used to create visualizations. 

 

One advantage of Python over SAS is its flexibility and ease of use. Python has a simpler and 

more intuitive syntax, making it easier to learn and use, particularly for users who are new to 

programming. In addition, Python has a large and active community of developers, which means 

that there are many resources and libraries available to help users solve problems and build 

applications. 

 

Another advantage of Python for SAS users is its extensive library ecosystem. Python has a vast 

number of libraries for data manipulation, analysis, and visualization, including popular libraries 

such as NumPy, Pandas, Matplotlib, and Seaborn. These libraries provide powerful and flexible 

tools for data analysis and visualization, allowing users to quickly and easily perform complex 

data manipulations and generate high-quality visualizations. 

 

Python also has a strong focus on machine learning and artificial intelligence, with many popular 

libraries such as TensorFlow, Keras, and Scikit-learn providing powerful tools for machine 

learning and deep learning. This makes Python a popular choice for data scientists and machine 

learning engineers, who can use Python to build and deploy advanced machine learning models. 

 

In terms of integration with SAS, Python has several tools and libraries available for working 

with SAS data and environments. For example, the SASPy library allows users to connect to 

SAS environments and run SAS code from within Python, while the SAS Integration for Python 

(SASPy) package provides a bridge between Python and SAS Viya, allowing users to seamlessly 

integrate SAS analytics into their Python applications. 

Learning Python can provide a valuable addition to the toolkit of SAS users, allowing them to 

perform advanced data analysis, visualization, and machine learning tasks with ease. While there 

is a learning curve associated with learning Python, the benefits in terms of flexibility, ease of 

use, and the availability of powerful libraries make it a worthwhile investment for SAS users 

looking to expand their skillset. 

 

Here is another longer example code that shows how to use Python and the scikit-learn library to 

build and evaluate a machine learning model: 
 

import pandas as pd 
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from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, 

confusion_matrix 

 

# Read the CSV file into a pandas DataFrame 

df = pd.read_csv('iris.csv') 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(df.drop('species', axis=1), 

df['species'], test_size=0.2, random_state=42) 

 

# Build a random forest classifier model 

clf = RandomForestClassifier(n_estimators=100, 

random_state=42) 

clf.fit(X_train, y_train) 

 

# Make predictions on the test set 

y_pred = clf.predict(X_test) 

 

# Calculate the accuracy of the model 

accuracy = accuracy_score(y_test, y_pred) 

print('Accuracy:', accuracy) 

 

# Create a confusion matrix to evaluate the performance 

of the model 

cm = confusion_matrix(y_test, y_pred) 

print('Confusion Matrix:') 

print(cm) 

 

 

In this code, we start by importing the pandas library, as well as several modules from the scikit-

learn library, including train_test_split for splitting the data into training and testing sets, 

RandomForestClassifier for building a random forest classifier model, and accuracy_score and 

confusion_matrix for evaluating the performance of the model. 

 

We then use the pd.read_csv() function to read a CSV file containing iris data into a pandas 

DataFrame, and split the data into training and testing sets using the train_test_split() function. 

 

Next, we build a random forest classifier model using the RandomForestClassifier() function and 

the training data, and make predictions on the test set using the predict() method. We then 

calculate the accuracy of the model using the accuracy_score() function, and create a confusion 

matrix using the confusion_matrix() function to evaluate the performance of the model. 
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This code demonstrates how Python and the scikit-learn library can be used to build and evaluate 

a machine learning model. It shows how to split the data into training and testing sets, build a 

model using the training data, and evaluate the performance of the model using metrics such as 

accuracy and confusion matrix. 

 

 

 

Python environment 
 

Python has become an increasingly popular language in the data analytics and data science 

community due to its flexibility, ease of use, and powerful libraries. SAS users who are 

interested in learning Python can benefit from the language's vast ecosystem of libraries and 

tools that are specifically designed for data analysis and manipulation. 

 

Setting up a Python environment for data analysis and manipulation can be done in a few simple 

steps. First, download and install the latest version of Python from the official Python website 

(https://www.python.org/downloads/). Once Python is installed, you can install additional 

packages and libraries using pip, a package manager for Python. For example, to install the 

pandas library, open a terminal or command prompt and enter the following command: 
 

pip install pandas 

 

Similarly, you can install other libraries like NumPy, Matplotlib, SciPy, and scikit-learn by 

replacing "pandas" with the name of the library you want to install. 

 

SAS users who are new to Python may find it helpful to use Jupyter Notebook, a web-based 

interactive computing environment that allows users to write and execute Python code in a 

browser-based interface. Jupyter Notebook also provides support for creating interactive 

visualizations, integrating with other programming languages, and sharing notebooks with 

others. 

 

To install Jupyter Notebook, you can use pip by entering the following command: 

 
pip install jupyter 

 

Once installed, you can start Jupyter Notebook by entering the following command in a terminal 

or command prompt: 

 
jupyter notebook 

 

This will launch a web interface where you can create, open, and edit notebooks. 

 

Python users who are already familiar with SAS may find it helpful to use the SASPy library, 

which provides a Python interface to SAS. SASPy allows users to interact with SAS datasets and 
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perform SAS procedures and functions from within Python. To use SASPy, you must have a 

valid installation of SAS on your system. 

 

To install SASPy, you can use pip by entering the following command: 

 
pip install saspy 

 

Once installed, you can create a connection to a SAS server by entering the following code: 

 
import saspy 

sas = saspy.SASsession(cfgname='default') 

 

 

This will create a SAS session object that can be used to execute SAS code from within Python. 

For example, the following code creates a SAS dataset and prints the first five observations: 
 

sas.submit('data test; input x y; datalines; 1 2 3 4 5 

6 ; run;') 

sas.submit('proc print data=test (obs=5); run;') 

 

This code will execute the SAS code within the SAS session and print the first five observations 

of the "test" dataset. 

 

SAS users who are interested in learning Python can benefit from the language's powerful 

libraries and tools for data analysis and manipulation. Python can be easily installed using pip, 

and Jupyter Notebook can be used for interactive computing. SAS users who are already familiar 

with SAS may find SASPy helpful for integrating Python with SAS. 

 

Python is a general-purpose programming language that is easy to learn and use. It has a large 

and active community that has developed a vast ecosystem of libraries and tools for data 

analysis, machine learning, web development, scientific computing, and more. Python's 

flexibility and ease of use make it an ideal language for data analysis and manipulation, which is 

why it has become popular in the data science and analytics community. 

 

SAS is a powerful software suite that has been a dominant player in the data analytics industry 

for many years. SAS provides a comprehensive set of tools and features for data preparation, 

analysis, and visualization. However, some SAS users are now turning to Python for data 

analysis because of Python's versatility and growing popularity. 

 

Python and SAS have many similarities, but also some key differences. One significant 

difference is that SAS is a proprietary software suite that requires a license, while Python is open 

source and free to use. Python's open source nature means that it has a vast community of 

developers and users who contribute to its development and use. Python also has a larger 

ecosystem of libraries and tools than SAS, which means that Python users have access to a more 

extensive range of functionality and features. 
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Python's powerful libraries for data analysis and manipulation, such as NumPy, Pandas, 

Matplotlib, and SciPy, allow users to perform complex data operations with ease. NumPy 

provides powerful numerical operations, Pandas allows for flexible data manipulation and 

analysis, Matplotlib provides extensive visualization capabilities, and SciPy provides an 

extensive set of scientific computing tools. 

 

Python's machine learning libraries, such as scikit-learn, TensorFlow, and Keras, allow users to 

build and train powerful machine learning models. Scikit-learn provides a wide range of machine 

learning algorithms, TensorFlow and Keras provide powerful deep learning capabilities, and 

PyTorch provides a flexible deep learning framework for building neural networks. 

 

Python's web development frameworks, such as Django and Flask, allow users to build powerful 

and scalable web applications. Django provides a full-stack web development framework that 

includes a robust database ORM, while Flask provides a lightweight framework for building 

smaller web applications. 

 

SAS users who are interested in learning Python can start by learning the basics of Python syntax 

and data types. Once comfortable with the language basics, SAS users can explore Python 

libraries and tools for data analysis, machine learning, and web development. The Jupyter 

Notebook is an excellent tool for learning Python because it allows for interactive computing and 

code sharing. 

 

SASPy is a library that allows users to execute SAS code from within Python. SASPy provides a 

Python interface to SAS and allows users to interact with SAS datasets, perform SAS 

procedures, and call SAS functions from within Python. SASPy can be helpful for users who are 

already familiar with SAS and want to integrate Python into their workflows. 

 

Python is a powerful programming language that has become popular in the data science and 

analytics community due to its flexibility, ease of use, and powerful libraries and tools. SAS 

users who are interested in learning Python can benefit from its extensive ecosystem of libraries 

and tools for data analysis, machine learning, and web development. SASPy can be helpful for 

users who want to integrate Python into their SAS workflows. 

 

Here is an example code in Python for loading and manipulating data using the Pandas library, 

which is commonly used in data analysis: 

 
import pandas as pd 

 

# Load data from a CSV file 

data = pd.read_csv("data.csv") 

 

# View the first five rows of the data 

print(data.head()) 
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# Subset the data to include only rows where the 'age' 

column is greater than 30 

subset_data = data[data['age'] > 30] 

 

# Group the data by the 'gender' column and calculate 

the mean value of the 'salary' column 

grouped_data = data.groupby('gender')['salary'].mean() 

 

# Create a new column that combines the 'first_name' 

and 'last_name' columns 

data['full_name'] = data['first_name'] + ' ' + 

data['last_name'] 

 

# Save the modified data to a new CSV file 

data.to_csv("modified_data.csv") 

 

 

In this code, we first import the Pandas library and use the read_csv function to load data from a 

CSV file into a Pandas DataFrame. We then use the head method to view the first five rows of 

the data. 

 

Next, we use the square bracket notation to subset the data to include only rows where the 'age' 

column is greater than 30. We then group the data by the 'gender' column using the groupby 

method and calculate the mean value of the 'salary' column using the mean method. 

 

We then create a new column called 'full_name' by combining the 'first_name' and 'last_name' 

columns using string concatenation. Finally, we use the to_csv method to save the modified data 

to a new CSV file. 

 

This is just a simple example of what can be done with Pandas. The library provides a wide 

range of functions and methods for manipulating and analyzing data, including merging and 

joining datasets, handling missing data, and performing statistical analysis. 

 

In the first line of the code, we use the import keyword to import the Pandas library, which we 

give the alias pd. This alias makes it easier to refer to the library in subsequent code. 

 
import pandas as pd 

 

The next line of code uses the read_csv function to read in a CSV file called "data.csv" and store 

the contents in a Pandas DataFrame called data. 

 
data = pd.read_csv("data.csv") 

 

We then use the head method to display the first five rows of the data DataFrame. 
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print(data.head()) 

 

The next line of code uses Boolean indexing to create a new DataFrame called subset_data that 

contains only the rows where the age column is greater than 30. 

 
subset_data = data[data['age'] > 30] 

 

We then use the groupby method to group the data DataFrame by the gender column and 

calculate the mean salary for each gender using the mean method. The resulting object is a 

Pandas Series. 

 
grouped_data = data.groupby('gender')['salary'].mean() 

 

Next, we use string concatenation to create a new column in the data DataFrame called 

full_name. This column combines the first_name and last_name columns with a space between 

them. 

 

 
data['full_name'] = data['first_name'] + ' ' + 

data['last_name'] 

 

Finally, we use the to_csv method to save the modified data DataFrame to a new CSV file called 

"modified_data.csv". 

 
data.to_csv("modified_data.csv") 

 

Overall, this example demonstrates some of the basic data manipulation operations that can be 

performed using the Pandas library in Python. Pandas is a powerful and flexible library that 

allows users to work with a variety of data formats and perform complex data operations with 

ease. 

 

In the line data = pd.read_csv("data.csv"), pd.read_csv() is a function provided by the Pandas 

library that reads in data from a CSV file and returns a DataFrame object. A DataFrame is a two-

dimensional table-like data structure that can store and manipulate data in rows and columns. 

 

The head() method in the line print(data.head()) is a method provided by the DataFrame object 

that displays the first few rows of the DataFrame. By default, it displays the first five rows, but 

you can pass a parameter to specify a different number of rows to display. 

 

In the line subset_data = data[data['age'] > 30], we are using Boolean indexing to filter the 

DataFrame to only include rows where the age column is greater than 30. Boolean indexing is a 

powerful feature of Pandas that allows you to subset a DataFrame based on a condition 

expressed as a Boolean expression. 

 

In the line grouped_data = data.groupby('gender')['salary'].mean(), we are using the groupby() 

method to group the DataFrame by the gender column and then calculate the mean value of the 



25 | P a g e  

 

 

salary column for each group. The result is a Pandas Series object that stores the mean salaries 

for each gender group. 

 

In the line data['full_name'] = data['first_name'] + ' ' + data['last_name'], we are creating a new 

column in the DataFrame called full_name by concatenating the first_name and last_name 

columns with a space in between. This is a simple example of how you can use Pandas to create 

new columns from existing data. 

 

Finally, in the line data.to_csv("modified_data.csv"), we are using the to_csv() method to save 

the modified DataFrame to a new CSV file called "modified_data.csv". This method writes the 

DataFrame to a CSV file with the specified filename. 

 

This code example demonstrates some of the basic data manipulation operations that you can 

perform with Pandas. Pandas is a powerful and flexible library that provides many more features 

and functions for working with data, including data cleaning, reshaping, merging, and more. 

In the line import pandas as pd, we are importing the Pandas library and giving it the alias pd. 

This is a common convention in Python programming, as it allows you to refer to the library with 

a shorter name in your code. 

 

In the line data = pd.read_csv("data.csv"), we are using the read_csv() function provided by 

Pandas to read in a CSV file called "data.csv" and store its contents in a DataFrame object called 

data. The read_csv() function has many options for handling different types of CSV files, such as 

files with different delimiters or missing values. 

 

In the line print(data.head()), we are using the head() method of the data DataFrame to display 

the first few rows of the DataFrame. By default, head() displays the first five rows, but you can 

pass an argument to specify a different number of rows to display. 

 

In the line subset_data = data[data['age'] > 30], we are using Boolean indexing to create a new 

DataFrame called subset_data that contains only the rows where the age column is greater than 

30. Boolean indexing is a powerful feature of Pandas that allows you to filter a DataFrame based 

on a condition expressed as a Boolean expression. 

 

In the line grouped_data = data.groupby('gender')['salary'].mean(), we are using the groupby() 

method of the data DataFrame to group the data by the gender column, and then using the mean() 

method to calculate the mean value of the salary column for each group. The result is a Pandas 

Series object that stores the mean salaries for each gender group. 

 

In the line data['full_name'] = data['first_name'] + ' ' + data['last_name'], we are creating a new 

column in the data DataFrame called full_name. We do this by using string concatenation to 

combine the first_name and last_name columns, separated by a space. 

 

Finally, in the line data.to_csv("modified_data.csv"), we are using the to_csv() method of the 

data DataFrame to write the modified DataFrame to a new CSV file called "modified_data.csv". 

The to_csv() method has many options for specifying the format and structure of the output file, 

such as the delimiter character, the header row, and the encoding. 
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In summary, this code example demonstrates some of the basic data manipulation operations that 

you can perform with Pandas. Pandas is a widely-used and powerful library for data analysis in 

Python, and it provides many more features and functions for working with data. 

 
import pandas as pd 

 

# Load data from a CSV file 

data = pd.read_csv("data.csv") 

 

# View the first five rows of the data 

print(data.head()) 

 

# Subset the data to include only rows where the 'age' 

column is greater than 30 

subset_data = data[data['age'] > 30] 

 

# Group the data by the 'gender' column and calculate the 

mean value of the 'salary' column 

grouped_data = data.groupby('gender')['salary'].mean() 

 

# Create a new column that combines the 'first_name' and 

'last_name' columns 

data['full_name'] = data['first_name'] + ' ' + 

data['last_name'] 

 

# Save the modified data to a new CSV file 

data.to_csv("modified_data.csv") 

 

In this code example, we start by importing the Pandas library and reading in some sales data 

from a CSV file. We then use some basic Pandas methods to get information about the data, 

including its shape, columns, and data types. 

 

Next, we filter the data to only include rows where the sales amount is greater than 1000, using 

Boolean indexing. We then use the groupby() method of the DataFrame to group the data by the 

region column and calculate the mean sales amount for each region. 

 

We then create a new column in the data called total_sales, which calculates the total sales for 

each row by multiplying the sales amount by the quantity. Finally, we save the modified data to a 

new CSV file using the to_csv() method of the DataFrame. 

 

This code example demonstrates some of the basic data manipulation operations that you can 

perform with Pandas, including filtering, grouping, and creating new columns. Pandas provides 

many more features and functions for working with data, including data cleaning, merging, 

reshaping, and more. 
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In the first line of the code, we use the import keyword to import the Pandas library, which we 

give the alias pd. This alias makes it easier to refer to the library in subsequent code. 

 
import pandas as pd 

 

The next line of code uses the read_csv function to read in a CSV file called "data.csv" and store 

the contents in a Pandas DataFrame called data. 
 

data = pd.read_csv("data.csv") 

 

We then use the head method to display the first five rows of the data DataFrame. 

 
print(data.head()) 

 

The next line of code uses Boolean indexing to create a new DataFrame called subset_data that 

contains only the rows where the age column is greater than 30. 

 
subset_data = data[data['age'] > 30] 

 

We then use the groupby method to group the data DataFrame by the gender column and 

calculate the mean salary for each gender using the mean method. The resulting object is a 

Pandas Series. 
grouped_data = data.groupby('gender')['salary'].mean() 

 

 

Next, we use string concatenation to create a new column in the data DataFrame called 

full_name. This column combines the first_name and last_name columns with a space between 

them. 

 
data['full_name'] = data['first_name'] + ' ' + 

data['last_name'] 

 

 

Finally, we use the to_csv method to save the modified data DataFrame to a new CSV file called 

"modified_data.csv". 

 
data.to_csv("modified_data.csv") 

 

This example demonstrates some of the basic data manipulation operations that can be 

performed using the Pandas library in Python. Pandas is a powerful and flexible library that 

allows users to work with a variety of data formats and perform complex data operations with 

ease. 
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In the line data = pd.read_csv("data.csv"), pd.read_csv() is a function provided by the Pandas 

library that reads in data from a CSV file and returns a DataFrame object. A DataFrame is a two-

dimensional table-like data structure that can store and manipulate data in rows and columns. 

 

The head() method in the line print(data.head()) is a method provided by the DataFrame object 

that displays the first few rows of the DataFrame. By default, it displays the first five rows, but 

you can pass a parameter to specify a different number of rows to display. 

 

In the line subset_data = data[data['age'] > 30], we are using Boolean indexing to filter the 

DataFrame to only include rows where the age column is greater than 30. Boolean indexing is a 

powerful feature of Pandas that allows you to subset a DataFrame based on a condition 

expressed as a Boolean expression. 

 

In the line grouped_data = data.groupby('gender')['salary'].mean(), we are using the groupby() 

method to group the DataFrame by the gender column and then calculate the mean value of the 

salary column for each group. The result is a Pandas Series object that stores the mean salaries 

for each gender group. 

 

In the line data['full_name'] = data['first_name'] + ' ' + data['last_name'], we are creating a new 

column in the DataFrame called full_name by concatenating the first_name and last_name 

columns with a space in between. This is a simple example of how you can use Pandas to create 

new columns from existing data. 

 

Finally, in the line data.to_csv("modified_data.csv"), we are using the to_csv() method to save 

the modified DataFrame to a new CSV file called "modified_data.csv". This method writes the 

DataFrame to a CSV file with the specified filename. 

 

Here’s some more code for working with data using Pandas: 

 
import pandas as pd 

 

# Read in the data from a CSV file 

data = pd.read_csv("sales_data.csv") 

 

# Get some basic information about the data 

print("Shape of the data:", data.shape) 

print("Columns in the data:", data.columns) 

print("Data types of the columns:\n", data.dtypes) 

 

# Filter the data to only include rows where the sales 

amount is greater than 1000 

subset_data = data[data["sales_amount"] > 1000] 

 

# Group the data by the region column and calculate the 

mean sales amount for each region 
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grouped_data = 

data.groupby("region")["sales_amount"].mean() 

 

# Create a new column in the data that calculates the 

total sales for each row 

data["total_sales"] = data["sales_amount"] * 

data["quantity"] 

 

# Save the modified data to a new CSV file 

data.to_csv("modified_sales_data.csv") 

 

In this code example, we start by importing the Pandas library and reading in some sales data 

from a CSV file. We then use some basic Pandas methods to get information about the data, 

including its shape, columns, and data types. 

 

Next, we filter the data to only include rows where the sales amount is greater than 1000, using 

Boolean indexing. We then use the groupby() method of the DataFrame to group the data by the 

region column and calculate the mean sales amount for each region. 

 

We then create a new column in the data called total_sales, which calculates the total sales for 

each row by multiplying the sales amount by the quantity. Finally, we save the modified data to a 

new CSV file using the to_csv() method of the DataFrame. 

This code example demonstrates some of the basic data manipulation operations that you can 

perform with Pandas, including filtering, grouping, and creating new columns. Pandas provides 

many more features and functions for working with data, including data cleaning, merging, 

reshaping, and more. 

 

Here’s an example of setting up a Python environment using Anaconda: 

 

1. Download and install Anaconda from the Anaconda website 

(https://www.anaconda.com/products/individual) 

2. Open the Anaconda Navigator application. This will give you a graphical user interface 

for managing your Python environments and packages. 

3. Click on the "Environments" tab on the left-hand side of the window. This will show you 

a list of your existing environments. 

4. Click on the "Create" button at the bottom of the window to create a new environment. 

5. Give your environment a name, such as "myenv", and choose a Python version to use 

(e.g., Python 3.9). 

6. Choose any additional packages or libraries that you want to include in your 

environment, such as Pandas, Numpy, or Matplotlib. 

7. Click the "Create" button to create your new environment. 

8. Once your environment is created, you can activate it by clicking the "Play" button next 

to its name. This will open a new terminal window with your environment activated. 

9. You can now install additional packages or libraries using the conda package manager or 

the pip package manager. 

https://www.anaconda.com/products/individual
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Here's an example of using conda to install the Pandas library in your new environment: 

 

Open a terminal window with your environment activated. 

 

Type the following command to update the conda package manager: 

 
conda update conda 

 

Type the following command to install the Pandas library: 

 
conda install pandas 

 

Once the installation is complete, you can test that Pandas is installed correctly by opening a 

Python interpreter and importing the library: 
 

python 

import pandas as pd 

 

If you don't get any errors, then Pandas is installed correctly and you can start using it in your 

Python scripts. 

Creating a virtual environment with virtualenv 
 

# Install virtualenv using pip 

pip install virtualenv 

 

# Create a new virtual environment called myenv 

virtualenv myenv 

 

# Activate the virtual environment 

source myenv/bin/activate 

 

# Install packages in the virtual environment using pip 

pip install pandas numpy matplotlib 

 

# Deactivate the virtual environment 

 

Deactivate 

 

In this example, we're using the virtualenv package to create a new virtual environment called 

myenv. We then activate the environment using the source command and install some packages 

using pip. Finally, we deactivate the virtual environment using the deactivate command. 

 

Using pipenv to manage dependencies 

 
# Install pipenv using pip 
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pip install pipenv 

 

# Create a new project and virtual environment with 

pipenv 

pipenv install pandas numpy matplotlib 

 

# Activate the virtual environment 

pipenv shell 

 

# Install additional packages 

pipenv install requests 

 

# Deactivate the virtual environment 

Exit 

 

In this example, we're using pipenv to manage our project dependencies. We create a new project 

and virtual environment using pipenv install and specify the packages that we want to include. 

We then activate the virtual environment using pipenv shell, install additional packages using 

pipenv install, and finally exit the virtual environment using exit. 

 

Using conda to create and manage environments 

 
# Create a new environment with conda 

conda create --name myenv pandas numpy matplotlib 

 

# Activate the environment 

conda activate myenv 

 

# Install additional packages 

conda install requests 

 

# Deactivate the environment 

conda deactivate 

 

In this example, we're using conda to create and manage our environment. We create a new 

environment using conda create and specify the packages that we want to include. We then 

activate the environment using conda activate, install additional packages using conda install, 

and finally deactivate the environment using conda deactivate. 
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Python syntax and structure 
 

Python is a high-level, general-purpose programming language that is widely used in data 

analysis, machine learning, and scientific computing. This section provides an introduction to 

Python syntax and structure from the perspective of SAS users. 

 

Variables and Data Types: 

In Python, variables are created by assigning a value to a name. Unlike SAS, Python is a 

dynamically typed language, meaning that the type of a variable is determined at runtime based 

on the value that is assigned to it. Some of the commonly used data types in Python include 

integers, floating-point numbers, strings, and lists. Here are some examples: 

 
# Assigning values to variables 

x = 5 

y = 3.14 

z = 'hello' 

 

# Creating a list 

my_list = [1, 2, 3, 'four'] 

 

Operators: 

 

Python supports a variety of operators for performing arithmetic, logical, and comparison 

operations. Here are some examples: 

 
# Arithmetic operators 

x = 5 + 3  # addition 

y = 5 - 3  # subtraction 

z = 5 * 3  # multiplication 

w = 5 / 3  # division 

v = 5 % 3  # modulus (remainder) 

u = 5 ** 3 # exponentiation 

 

# Logical operators 

a = True 

b = False 

c = a and b  # logical AND 

d = a or b   # logical OR 

e = not a    # logical NOT 

 

# Comparison operators 

f = 5 == 3   # equality 

g = 5 != 3   # inequality 
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h = 5 > 3    # greater than 

i = 5 >= 3   # greater than or equal to 

j = 5 < 3    # less than 

k = 5 <= 3   # less than or equal to 

 

Conditional Statements: 

 

Python supports conditional statements, which allow you to execute different blocks of code 

depending on whether a certain condition is true or false. The syntax for a conditional statement 

in Python is similar to that in SAS: 

 
# Example of an if statement 

x = 5 

if x > 3: 

    print('x is greater than 3') 

else: 

    print('x is less than or equal to 3') 

 

Loops: 

 

Python supports two types of loops: for loops and while loops. A for loop is used to iterate over a 

sequence of values, while a while loop is used to repeat a block of code while a certain condition 

is true. Here are some examples: 

 
# Example of a for loop 

my_list = [1, 2, 3, 4, 5] 

for i in my_list: 

    print(i) 

 

# Example of a while loop 

x = 0 

while x < 5: 

    print(x) 

    x += 1 

 

Functions: 

 

Python allows you to define your own functions, which can be used to encapsulate a block of 

code and make it reusable. Here is an example: 

 
# Example of a function 

def add_numbers(x, y): 

    return x + y 

 



34 | P a g e  

 

 

# Example of calling the function 

result = add_numbers(5, 3) 

print(result)  # prints 8 

 

Modules: 

 

Python provides a large standard library, as well as many third-party libraries, that can be used to 

extend the functionality of the language. To use a module in your code, you simply need to 

import it. Here is an example: 

 
# Example of importing a module 

import math 

 

# Example of using a function from the module 

result = math.sqrt(16) 

print(result)  # prints 4.0 

`` 

 

Working with Data in Python: 

 

Python provides several libraries for working with data, including NumPy, pandas, and 

matplotlib. NumPy provides support for working with arrays and matrices, while pandas 

provides support for working with tabular data. Matplotlib provides support for creating graphs 

and visualizations. Here are some examples: 

 
# Example of using NumPy to create an array 

import numpy as np 

 

my_array = np.array([1, 2, 3, 4, 5]) 

print(my_array) 

 

# Example of using pandas to read a CSV file 

import pandas as pd 

 

my_data = pd.read_csv('my_data.csv') 

print(my_data.head()) 

 

# Example of using matplotlib to create a histogram 

import matplotlib.pyplot as plt 

 

my_data = pd.read_csv('my_data.csv') 

plt.hist(my_data['my_column']) 

plt.show() 
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Using Python with SAS: 

 

Python can be used in conjunction with SAS to perform data analysis and other tasks. SAS 

provides several ways to use Python, including the SASPy module, which allows you to run 

Python code from within a SAS program. Here is an example: 

 
/* Example of using Python with SAS */ 

options python='/usr/local/bin/python3'; 

 

/* Importing the SASPy module */ 

proc python; 

  import saspy; 

run; 

 

/* Running Python code from within a SAS program */ 

proc python; 

  submit; 

    import pandas as pd 

    my_data = pd.read_csv('my_data.csv') 

    print(my_data.head()) 

  endsubmit; 

run; 

 

Python is a powerful and versatile language that can be used for a wide range of data analysis 

and scientific computing tasks. While it may take some time to get used to the syntax and 

structure of Python, SAS users should find it relatively straightforward to learn. By using Python 

in conjunction with SAS, users can take advantage of the strengths of both languages to tackle 

complex data analysis problems. 

 

Python Syntax and Structure: 

 

1. Indentation: Python uses indentation to define blocks of code instead of using curly 

braces or other delimiters. This means that the indentation level of a line of code 

determines which block it belongs to. For example, a block of code that belongs to a 

function or conditional statement is indented by four spaces. 

2. Comments: Python supports both single-line and multi-line comments. Single-line 

comments begin with the hash symbol (#), while multi-line comments are enclosed in 

triple quotes ("""). 

3. Case sensitivity: Python is case-sensitive, meaning that variables and function names 

must be spelled exactly the same way every time they are used. 

4. Variables: Variables in Python are dynamically typed, which means that their type can 

change at runtime. To create a variable, simply assign a value to it using the equals sign 

(=). Python supports a variety of data types, including integers, floating-point numbers, 

strings, lists, and dictionaries. 
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5. Operators: Python supports a wide range of operators, including arithmetic operators (+, -

, *, /, %), comparison operators (==, !=, >, <, >=, <=), logical operators (and, or, not), 

and assignment operators (+=, -=, *=, /=, %=). 

6. Conditional statements: Python supports conditional statements, including if, elif, and 

else. These statements allow you to execute different blocks of code depending on 

whether a certain condition is true or false. 

7. Loops: Python supports two types of loops: for loops and while loops. For loops are used 

to iterate over a sequence of values, while while loops are used to repeat a block of code 

while a certain condition is true. 

8. Functions: Python allows you to define your own functions, which can be used to 

encapsulate a block of code and make it reusable. To define a function, use the def 

keyword, followed by the function name and any arguments it takes. 

9. Modules: Python provides a large standard library, as well as many third-party libraries, 

that can be used to extend the functionality of the language. To use a module in your 

code, simply import it using the import statement. 

10. Working with data: Python provides several libraries for working with data, including 

NumPy, pandas, and matplotlib. NumPy provides support for working with arrays and 

matrices, while pandas provides support for working with tabular data. Matplotlib 

provides support for creating graphs and visualizations. 

11. Using Python with SAS: Python can be used in conjunction with SAS to perform data 

analysis and other tasks. SAS provides several ways to use Python, including the SASPy 

module, which allows you to run Python code from within a SAS program. 

 

Python is a powerful and flexible language that offers many benefits to SAS users. Its syntax and 

structure may take some getting used to, but with practice, SAS users can quickly become 

proficient in Python and use it to tackle complex data analysis problems. 

 

Here’s a longer example of Python code that demonstrates some of the concepts discussed 

above: 

 
# Example of using Python to analyze data 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Load data from a CSV file 

data = pd.read_csv('data.csv') 

 

# Clean the data by removing missing values 

data = data.dropna() 

 

# Calculate some summary statistics 

mean = np.mean(data['value']) 

median = np.median(data['value']) 

std_dev = np.std(data['value']) 
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# Print out the results 

print('Mean value: ', mean) 

print('Median value: ', median) 

print('Standard deviation: ', std_dev) 

 

# Create a histogram of the data 

plt.hist(data['value'], bins=20) 

plt.title('Distribution of values') 

plt.xlabel('Value') 

plt.ylabel('Frequency') 

plt.show() 

 

# Define a function to calculate the sum of a list of 

numbers 

def sum_list(numbers): 

    result = 0 

    for num in numbers: 

        result += num 

    return result 

 

# Use the function to calculate the sum of a list of 

numbers 

numbers = [1, 2, 3, 4, 5] 

sum = sum_list(numbers) 

print('Sum of numbers:', sum) 

 

This code loads data from a CSV file using the pandas library, cleans the data by removing 

missing values, calculates some summary statistics using the NumPy library, and creates a 

histogram of the data using the matplotlib library. It also defines a function to calculate the sum 

of a list of numbers and uses that function to calculate the sum of a list of numbers. 

 

Information specifically for SAS users who are learning Python: 

 

1. Python has a syntax that is different from SAS, so it may take some time to get used to 

the new syntax. For example, instead of using a semicolon (;) to end a statement in SAS, 

Python uses a newline character or a colon (:). 

2. SAS datasets can be read and written in Python using libraries such as pandas and 

PySAS. Pandas is a popular library for data manipulation and analysis, while PySAS 

provides a bridge between SAS datasets and Python. 

3. The data step in SAS can be emulated in Python using the pandas library. The pandas 

library provides a similar functionality to the data step in SAS, including data selection, 

transformation, and aggregation. 
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4. Python is a versatile language that can be used for a wide range of tasks beyond data 

analysis, such as web development, machine learning, and scientific computing. As a 

SAS user, you may find these additional capabilities of Python useful. 

5. Python has a large and active community of developers who are constantly creating new 

libraries and tools to extend the functionality of the language. As a SAS user, you can 

leverage these libraries to enhance your data analysis capabilities. 

6. Python is often used in conjunction with SAS, and there are several ways to integrate the 

two. For example, SAS users can use the SASPy module to run Python code from within 

a SAS program or use the SAS macro language to generate Python code. 

7. Python has a strong emphasis on readability and maintainability, which can make it easier 

to collaborate on code and maintain large codebases over time. SAS users may find that 

the switch to Python results in more readable and maintainable code. 

 

While there may be some differences in syntax and structure between SAS and Python, Python 

offers a powerful and versatile toolset for data analysis that can complement and extend the 

capabilities of SAS. With some practice, SAS users can become proficient in Python and 

leverage its features to enhance their data analysis workflows. 

 

Reading and writing SAS datasets using PySAS: 
 

import pysas 

 

# Read a SAS dataset 

data = pysas.read_sas('data.sas7bdat') 

 

# Write a SAS dataset 

pysas.write_sas(data, 'output.sas7bdat') 

 

Using the data step functionality in pandas to select and transform data: 
 

import pandas as pd 

 

# Read a CSV file 

data = pd.read_csv('data.csv') 

 

# Select a subset of the data 

subset = data.loc[data['category'] == 'A'] 

 

# Transform the data by creating a new column 

subset['new_column'] = subset['value'] * 2 

 

# Aggregate the data by calculating the mean value 

mean_value = subset['value'].mean() 
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Using Python's built-in functions for mathematical 

operations: 

makefile 

Copy code 

# Calculate the square root of a number 

import math 

sqrt_value = math.sqrt(16) 

 

# Calculate the exponential of a number 

exp_value = math.exp(2) 

 

# Calculate the logarithm of a number 

log_value = math.log(10) 

 

# Generate a random number 

import random 

rand_value = random.randint(1, 100) 

 

Using Python libraries for machine learning: 

 

 
import pandas as pd 

from sklearn.linear_model import LinearRegression 

 

# Load data from a CSV file 

data = pd.read_csv('data.csv') 

 

# Split the data into training and testing sets 

train_data = data.sample(frac=0.8, random_state=1) 

test_data = data.drop(train_data.index) 

 

# Create a linear regression model 

model = LinearRegression() 

 

# Train the model using the training data 

model.fit(train_data[['x']], train_data['y']) 

 

# Evaluate the model using the testing data 

r_squared = model.score(test_data[['x']], 

test_data['y']) 

 

These examples demonstrate some of the key features of Python that may be useful for SAS 

users, including reading and writing data, data manipulation and analysis, mathematical 

operations, and machine learning. 
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Here is a more complex example of Python code that utilizes some advanced features that may 

be useful for SAS users: 

 
import pandas as pd 

from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

from sklearn.cluster import KMeans 

 

# Load data from a CSV file 

data = pd.read_csv('data.csv') 

 

# Standardize the data 

scaler = StandardScaler() 

scaled_data = scaler.fit_transform(data) 

 

# Perform principal component analysis 

pca = PCA(n_components=2) 

pca_data = pca.fit_transform(scaled_data) 

 

# Perform k-means clustering 

kmeans = KMeans(n_clusters=3) 

kmeans.fit(pca_data) 

cluster_labels = kmeans.predict(pca_data) 

 

# Create a new column in the original data with the 

cluster labels 

data['cluster'] = cluster_labels 

 

# Write the updated data to a new CSV file 

data.to_csv('output.csv') 

 

This code performs several advanced data analysis tasks: 

 

1. Standardizing the data: The StandardScaler class from the sklearn.preprocessing 

library is used to standardize the data by subtracting the mean and dividing by the 

standard deviation. This is a common preprocessing step in data analysis. 

2. Performing principal component analysis: The PCA class from the 

sklearn.decomposition library is used to perform principal component analysis, which is 

a technique for reducing the dimensionality of the data. In this case, the data is reduced to 

two dimensions for visualization purposes. 

3. Performing k-means clustering: The KMeans class from the sklearn.cluster library is 

used to perform k-means clustering on the principal component data. This is a technique 

for grouping similar data points together based on their distance in the data space. 
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4. Updating the original data with the cluster labels: The cluster labels are added as a new 

column to the original data using the data['cluster'] = cluster_labels syntax. 

5. Writing the updated data to a new CSV file: The to_csv method is used to write the 

updated data to a new CSV file. 

 

This example demonstrates some of the more advanced features of Python that may be useful for 

SAS users, such as data standardization, dimensionality reduction, clustering, and data 

visualization 

 

 

 

Variables and data types 
 

A variable is created when a value is assigned to it using the = operator. Python supports several 

data types, including integers, floating-point numbers, strings, Boolean values, and complex 

numbers. 

 

Integers are whole numbers without a decimal point. They can be positive, negative, or zero. For 

example, x = 5 assigns the value 5 to the variable x. 

 

Floating-point numbers are decimal numbers, such as 3.14 or 0.001. They can also be positive, 

negative, or zero. For example, y = 3.14 assigns the value 3.14 to the variable y. 

 

Strings are sequences of characters, enclosed in quotation marks. They can be single quotes ('...') 

or double quotes ("..."). For example, name = "John" assigns the string "John" to the variable 

name. 

Boolean values represent either True or False. They are often used in conditional statements and 

loops. For example, flag = True assigns the value True to the variable flag. 

 

Complex numbers are written in the form a + bj, where a and b are real numbers and j is the 

imaginary unit. For example, z = 3 + 4j assigns the complex number 3 + 4j to the variable z. 

 

Python is a dynamically typed language, which means that you do not need to specify the data 

type of a variable when you create it. Python will automatically assign the appropriate data type 

based on the value you assign to the variable. 

 

Here is an example of Python code that demonstrates the use of variables and data types: 

 
# Assign integer value to a variable 

x = 5 

print("x =", x) # Output: x = 5 

 

# Assign floating-point value to a variable 

y = 3.14 

print("y =", y) # Output: y = 3.14 
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# Assign string value to a variable 

name = "John" 

print("name =", name) # Output: name = John 

 

# Assign Boolean value to a variable 

flag = True 

print("flag =", flag) # Output: flag = True 

 

# Assign complex number to a variable 

z = 3 + 4j 

print("z =", z) # Output: z = (3+4j) 

 

 

In addition to the basic data types mentioned above, Python also supports several built-in data 

structures, such as lists, tuples, sets, and dictionaries. These data structures allow you to store 

multiple values in a single variable. 

 

For example, a list is a collection of items that are ordered and changeable. You can create a list 

by enclosing a comma-separated sequence of values in square brackets. Here is an example of 

Python code that demonstrates the use of a list: 

 
# Create a list of integers 

numbers = [1, 2, 3, 4, 5] 

print("numbers =", numbers) # Output: numbers = [1, 2, 

3, 4, 5] 

 

# Access individual elements of a list 

print("First element of numbers:", numbers[0]) # 

Output: First element of numbers: 1 

print("Last element of numbers:", numbers[-1]) # 

Output: Last element of numbers: 5 

 

# Change an element of a list 

numbers[2] = 10 

print("Updated numbers list:", numbers) # Output: 

Updated numbers list: [1, 2, 10, 4, 5] 

 

# Add an element to the end of a list 

numbers.append 

 

Variables and data types are essential concepts in programming languages, and Python is no 

exception. Understanding how to work with variables and data types is crucial for writing 

effective and efficient code. 
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In Python, a variable is a name that refers to a value stored in the computer's memory. The value 

assigned to a variable can be a number, a string of characters, a Boolean value, or any other data 

type. Variables can be assigned new values at any time, and Python will automatically update the 

variable's value in the computer's memory. 

 

Here are some guidelines for naming variables in Python: 

 

Variable names must start with a letter or an underscore character (_). 

Variable names cannot start with a number. 

Variable names can contain letters, numbers, and underscore characters. 

Variable names are case-sensitive. 

In Python, there are several data types that can be assigned to a variable. The most common data 

types in Python are: 

 

Integers: Integers are whole numbers, such as 1, 2, 3, 4, 5, etc. 

Floating-point numbers: Floating-point numbers are numbers with decimal points, such as 1.0, 

2.5, 3.14, etc. 

Strings: Strings are sequences of characters, such as "hello", "world", "Python", etc. 

Booleans: Booleans are either True or False. 

None: None is a special value that represents the absence of a value. 

Python is a dynamically-typed language, which means that the data type of a variable is 

determined at runtime. This is different from statically-typed languages like C++ and Java, 

where you must declare the data type of a variable before you can use it. 

 

Here are some examples of assigning values to variables in Python: 

 
# Assign an integer to a variable 

x = 10 

 

# Assign a floating-point number to a variable 

y = 3.14 

 

# Assign a string to a variable 

name = "John Smith" 

 

# Assign a Boolean value to a variable 

is_valid = True 

 

# Assign None to a variable 

result = None 

 

Python also provides several built-in data structures that can be used to store multiple values in a 

single variable. Some of the most common data structures in Python are: 

 

Lists: Lists are ordered collections of items that can be of any data type. 
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Tuples: Tuples are ordered collections of items that are immutable (i.e., cannot be changed). 

Sets: Sets are unordered collections of unique items. 

Dictionaries: Dictionaries are collections of key-value pairs. 

Here are some examples of using built-in data structures in Python: 

 
# Create a list of integers 

numbers = [1, 2, 3, 4, 5] 

 

# Create a tuple of strings 

fruits = ("apple", "banana", "cherry") 

 

# Create a set of floating-point numbers 

prices = {1.99, 2.99, 3.99} 

 

# Create a dictionary of key-value pairs 

person = {"name": "John Smith", "age": 30, "email": 

"john@example.com"} 

Variables and data types are fundamental concepts in Python programming. Understanding how 

to work with variables and data types is essential for writing effective and efficient code. Python 

provides a variety of built-in data types and data structures that can be used to store and 

manipulate data, making it a powerful and flexible programming language. 

 

Here are some longer code examples that illustrate the use of variables and data types in Python: 

 

Example 1: Simple Calculator 
 

# Ask the user to input two numbers 

num1 = float(input("Enter the first number: ")) 

num2 = float(input("Enter the second number: ")) 

 

# Perform arithmetic operations on the numbers 

sum = num1 + num2 

difference = num1 - num2 

product = num1 * num2 

quotient = num1 / num2 

 

# Print the results 

print("Sum: ", sum) 

print("Difference: ", difference) 

print("Product: ", product) 

print("Quotient: ", quotient) 

 

In this example, the user is prompted to enter two numbers, which are then stored in the num1 

and num2 variables as floating-point numbers. The program then performs basic arithmetic 
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operations on the numbers and stores the results in sum, difference, product, and quotient 

variables. Finally, the results are printed to the console. 

 

Example 2: Data Analysis 
 

# Create a list of exam scores 

scores = [85, 90, 78, 92, 88, 75, 80, 95] 

 

# Calculate the average score 

total = 0 

for score in scores: 

    total += score 

average = total / len(scores) 

 

# Determine the highest and lowest scores 

highest = max(scores) 

lowest = min(scores) 

 

# Print the results 

print("Average score: ", average) 

print("Highest score: ", highest) 

print("Lowest score: ", lowest) 

 

In this example, we have a list of exam scores stored in the scores variable. The program 

calculates the average score by iterating over the list and summing up the scores. The average is 

then computed by dividing the total by the number of scores. The program also determines the 

highest and lowest scores using the max() and min() functions. Finally, the results are printed to 

the console. 

 

Example 3: Tic-Tac-Toe Game 
 

# Create a 3x3 game board 

board = [ 

    ['_', '_', '_'], 

    ['_', '_', '_'], 

    ['_', '_', '_'] 

] 

 

# Print the game board 

def print_board(): 

    for row in board: 

        print(row) 

 

# Ask the players to make their moves 



46 | P a g e  

 

 

def make_move(player): 

    while True: 

        row = int(input("Enter the row number (0-2): 

")) 

        col = int(input("Enter the column number (0-2): 

")) 

        if board[row][col] == '_': 

            board[row][col] = player 

            break 

        else: 

            print("That space is already taken!") 

 

# Check if the game is over 

def check_game_over(player): 

    # Check rows 

    for row in board: 

        if row.count(player) == 3: 

            return True 

    # Check columns 

    for col in range(3): 

        if board[0][col] == player and board[1][col] == 

player and board[2][col] == player: 

            return True 

    # Check diagonals 

    if board[0][0] == player and board[1][1] == player 

and board[2][2] == player: 

        return True 

    if board[0][2] == player and board[1][1] == player 

and board[2][0] == player: 

        return True 

    return False 

 

# Play the game 

print("Welcome to Tic-Tac-Toe!") 

print_board() 

while True: 

    make_move('X') 

    print_board() 

    

In Python, variables are used to store values such as numbers, strings, and objects. Unlike other 

programming languages, you don't need to declare the type of a variable in Python. You can 

assign any value to a variable, and Python will automatically determine the type based on the 

value. 
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For example, you can assign an integer value to a variable like this: 

 
x = 10 

 

You can also assign a floating-point number: 

 
y = 3.14 

 

And you can assign a string: 

 
z = "Hello, World!" 

 

Data Types 

 

Python supports several data types, including integers, floating-point numbers, strings, and 

boolean values. Some of the commonly used data types in Python are: 

Integers: Integers are whole numbers with no decimal point, such as 1, 2, 3, etc. In Python, 

integers are represented using the int data type. 

 

Floating-point numbers: Floating-point numbers are decimal numbers, such as 3.14, 2.5, etc. In 

Python, floating-point numbers are represented using the float data type. 

 

Strings: Strings are a sequence of characters, such as "Hello, World!", "Python", etc. In Python, 

strings are represented using the str data type. 

 

Booleans: Booleans are either True or False. They are often used for logical comparisons and 

control flow in Python. 

 

In addition to these basic data types, Python also supports more complex data structures such as 

lists, tuples, dictionaries, and sets. 

 

 

 

Conditional statements 
 

Conditional statements are an essential part of any programming language, including Python. 

They allow the program to execute different sets of instructions based on specific conditions. In 

this article, we will explore conditional statements in Python, with a focus on how they differ 

from similar statements in SAS. 

 

IF/THEN Statements in SAS 

 

In SAS, the IF/THEN statement is used to test a condition and execute a specific set of 

statements if the condition is true. The basic syntax for an IF/THEN statement in SAS is as 

follows: 
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if condition then do; 

   statement1; 

   statement2; 

   ... 

end; 

 

Here, condition is the expression that needs to be evaluated, and statement1, statement2, etc. are 

the statements that will be executed if the condition is true. 

 

For example, let's say we want to check if a variable age is greater than 18. If it is, we print a 

message saying the person is an adult. Otherwise, we print a message saying the person is a 

minor. Here's how we would do this in SAS: 

 
data mydata; 

   set mydata; 

   if age > 18 then do; 

      put 'This person is an adult.'; 

   end; 

   else do; 

      put 'This person is a minor.'; 

   end; 

run; 

 

Conditional Statements in Python 

Python uses a similar syntax to SAS for conditional statements, with some slight differences. The 

basic syntax for an IF/THEN statement in Python is as follows: 

 
if condition: 

   statement1 

   statement2 

   ... 

 

Here, condition is the expression that needs to be evaluated, and statement1, statement2, etc. are 

the statements that will be executed if the condition is true. Notice that there is no need for an 

"end" statement in Python, and the statements to be executed if the condition is true are not 

enclosed in a "do" loop. 

 

For example, let's say we want to check if a variable age is greater than 18. If it is, we print a 

message saying the person is an adult. Otherwise, we print a message saying the person is a 

minor. Here's how we would do this in Python: 

 
if age > 18: 

   print('This person is an adult.') 

else: 

   print('This person is a minor.') 
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Notice that we use the "print" statement instead of the "put" statement in SAS. Also, the 

conditional statements in Python use colons (:) instead of semicolons (;) in SAS. 

 

IF/THEN/ELSE Statements in SAS 

 

In SAS, we can use the IF/THEN/ELSE statement to execute different sets of statements based 

on whether the condition is true or false. The basic syntax for an IF/THEN/ELSE statement in 

SAS is as follows: 

 
if condition then do; 

   statement1; 

   statement2; 

   ... 

end; 

else do; 

   statement3; 

   statement4; 

   ... 

end; 

 

Here, condition is the expression that needs to be evaluated, and statement1, statement2, etc. are 

the statements that will be executed if the condition is true. statement3, statement4, etc. are the 

statements that will be executed if the condition is false. 

 

Conditional statements are used in programming to execute different pieces of code depending 

on whether a certain condition is true or false. These statements are important in many 

programming languages, including SAS and Python. 

 

In SAS, conditional statements are used extensively in data step programming to conditionally 

process data. For example, you may want to only process observations that meet a certain 

criteria, or you may want to perform different calculations for different groups of data. SAS 

provides several conditional statements that allow you to do this, including the IF/THEN/ELSE 

and IF/THEN/ELSEIF statements. 

 

In Python, conditional statements are also used extensively in programming. Python provides 

several conditional statements, including the IF/THEN/ELSE and IF/THEN/ELIF statements that 

allow you to execute different pieces of code depending on whether a certain condition is true or 

false. 

 

One important difference between SAS and Python conditional statements is the use of 

indentation in Python. In SAS, you enclose the code to be executed for each condition in a 

DO/END block, while in Python you use indentation to define the block of code to be executed. 

The use of indentation can be challenging for SAS users who are new to Python, but it is an 

important aspect of Python programming and allows for more readable code. 
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Here are some additional examples of conditional statements in SAS and Python: 

 

Example 1 - SAS: 

 
data mydata; 

   set mydata; 

   if age >= 18 then do; 

      status = 'adult'; 

   end; 

   else do; 

      status = 'minor'; 

   end; 

run; 

In this example, we use the IF/THEN/ELSE statement to check if the age variable is greater than 

or equal to 18. If it is, we assign the value 'adult' to the status variable. Otherwise, we assign the 

value 'minor' to the status variable. 

 

Example 1 - Python: 

 
if age >= 18: 

   status = 'adult' 

else: 

   status = 'minor' 

 

In this example, we use the IF/THEN/ELSE statement in Python to check if the age variable is 

greater than or equal to 18. If it is, we assign the value 'adult' to the status variable. Otherwise, 

we assign the value 'minor' to the status variable. 

 

Example 2 - SAS: 

 
data mydata; 

   set mydata; 

   if age < 18 then do; 

      status = 'minor'; 

   end; 

   else if age >= 18 and age < 65 then do; 

      status = 'adult'; 

   end; 

   else do; 

      status = 'senior'; 

   end; 

run; 
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In this example, we use the IF/THEN/ELSEIF statement to check if the age variable falls into 

one of three categories: under 18, between 18 and 65, or over 65. We assign the value 'minor' to 

the status variable if the age is under 18, 'adult' if the age is between 18 and 65, and 'senior' if the 

age is over 65. 

 

Example 2 - Python: 

 
if age < 18: 

   status = 'minor' 

elif age >= 18 and age < 65: 

   status = 'adult' 

else: 

   status = 'senior' 

 

In this example, we use the IF/THEN/ELIF statement in Python to check if the age variable falls 

into one of three categories: under 18, between 18 and 65, or over 65. We assign the value 

'minor' to the status variable if the age is under 18, 'adult' if the age is between 18 and 65, and 

'senior' if the age is over 65. 

 

Conditional statements are an essential part of programming in both SAS and Python. They 

allow you to control the flow of your code and make it more flexible and powerful. 

Understanding how to use conditional statements is important for any programmer, whether you 

are working with SAS, Python, or another programming language. 

 

Here's an example of conditional statement code in Python: 

 
# Determine if a number is positive, negative, or zero 

x = 5 

 

if x > 0: 

    print("Positive") 

elif x < 0: 

    print("Negative") 

else: 

    print("Zero") 

 

In this example, we define a variable x with a value of 5. We then use an if statement to check if 

x is greater than 0. If it is, we print the string "Positive". If x is not greater than 0, we use an elif 

statement to check if x is less than 0. If it is, we print the string "Negative". Finally, if x is neither 

greater than 0 nor less than 0, we use an else statement to print the string "Zero". 

 

This is a simple example, but it illustrates how conditional statements can be used to make 

decisions in your code based on certain conditions. With more complex conditions, you can use 

logical operators (such as and, or, and not) to combine multiple conditions and create more 

complex decision trees. 
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Example 1: 

 
# Determine if a number is even or odd 

x = 7 

 

if x % 2 == 0: 

    print("Even") 

else: 

    print("Odd") 

 

In this example, we define a variable x with a value of 7. We then use an if statement with a 

condition that checks if x is divisible by 2 (i.e., if the remainder of x divided by 2 is equal to 0). 

If the condition is true, we print the string "Even". Otherwise, we print the string "Odd". This 

example shows how you can use conditional statements to determine if a number has a certain 

property (in this case, being even or odd). 

 

Example 2: 

 
# Determine the maximum of three numbers 

a = 5 

b = 9 

c = 3 

 

if a > b: 

    if a > c: 

        print("Max:", a) 

    else: 

        print("Max:", c) 

else: 

    if b > c: 

        print("Max:", b) 

    else: 

        print("Max:", c) 

 

In this example, we define three variables a, b, and c with values of 5, 9, and 3, respectively. We 

then use nested if statements to determine which of the three numbers is the largest. The outer if 

statement checks if a is greater than b. If it is, we use an inner if statement to check if a is greater 

than c. If it is, we print the value of a as the maximum. If a is not greater than c, we print the 

value of c as the maximum. If a is not greater than b, we use another nested if statement to check 

if b is greater than c. If it is, we print the value of b as the maximum. If b is not greater than c, we 

print the value of c as the maximum. This example shows how you can use nested conditional 

statements to create more complex decision trees. 

 

Example 3: 
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# Determine if a word is a palindrome 

word = "racecar" 

 

if word == word[::-1]: 

    print("Palindrome") 

else: 

    print("Not a palindrome") 

 

In this example, we define a variable word with a value of "racecar". We then use an if statement 

with a condition that checks if word is equal to its reverse (word[::-1]). If the condition is true, 

we print the string "Palindrome". Otherwise, we print the string "Not a palindrome". This 

example shows how you can use conditional statements to check if a string has a certain property 

(in this case, being a palindrome). 

 

Example 4: 
 

# Determine the season based on the month 

month = "April" 

 

if month in ["March", "April", "May"]: 

    print("Spring") 

elif month in ["June", "July", "August"]: 

    print("Summer") 

elif month in ["September", "October", "November"]: 

    print("Fall") 

else: 

    print("Winter") 

 

In this example, we define a variable month with a value of "April". We then use a series of if 

and elif statements with conditions that check if month is in a certain range of values. If month is 

in the range of March to May, we print the string "Spring". If it is in the range of June to August, 

we print the string "Summer". If it is in the range of September to November, we print the string 

"Fall". Otherwise, we print the string "Winter". This example shows how you can use conditional 

statements to make decisions based on a range of values. 

 

Example 5: 

 
# Determine if a year is a leap year 

year = 2020 

 

if year % 4 == 0: 

    if year % 100 == 0: 

        if year % 400 == 0: 

            print("Leap year") 
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        else: 

            print("Not a leap year") 

    else: 

        print("Leap year") 

else: 

    print("Not a leap year") 

 

In this example, we define a variable year with a value of 2020. We then use nested if statements 

to determine if year is a leap year. The outer if statement checks if year is divisible by 4. If it is, 

we use an inner if statement to check if year is divisible by 100. If it is, we use another inner if 

statement to check if year is divisible by 400. If it is, we print the string "Leap year". If year is 

not divisible by 400, we print the string "Not a leap year". If year is not divisible by 100, we 

print the string "Leap year". If year is not divisible by 4, we print the string "Not a leap year". 

This example shows how you can use nested conditional statements to create more complex 

decision trees. 

 

Example 6: 

 
# Determine if a number is positive, negative, or zero 

number = 7 

 

if number > 0: 

    print("Positive") 

elif number < 0: 

    print("Negative") 

else: 

    print("Zero") 

 

In this example, we define a variable number with a value of 7. We then use an if statement with 

a condition that checks if number is greater than 0. If it is, we print the string "Positive". If 

number is not greater than 0, we use an elif statement with a condition that checks if number is 

less than 0. If it is, we print the string "Negative". If number is not less than 0, we use an else 

statement to print the string "Zero". This example shows how you can use conditional statements 

to check the value of a variable and make decisions based on its sign. 

 

Example 7: 

 
# Determine the absolute value of a number 

number = -5 

 

if number < 0: 

    absolute_value = -number 

else: 

    absolute_value = number 
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print("The absolute value of", number, "is", 

absolute_value) 

 

In this example, we define a variable number with a value of -5. We then use an if statement with 

a condition that checks if number is less than 0. If it is, we assign the negative of number to a 

new variable absolute_value. If number is not less than 0, we assign number to absolute_value. 

We then print a message that displays the original value of number and its absolute value. This 

example shows how you can use conditional statements to perform calculations based on the 

value of a variable. 

 

Example 8: 

 
# Determine if a word is a palindrome 

word = "racecar" 

 

if word == word[::-1]: 

    print("Palindrome") 

else: 

    print("Not a palindrome") 

 

In this example, we define a variable word with a value of "racecar". We then use an if statement 

with a condition that checks if word is equal to the reverse of word (using slicing with a step of -

1 to reverse the string). If it is, we print the string "Palindrome". If word is not equal to its 

reverse, we print the string "Not a palindrome". This example shows how you can use 

conditional statements to check if a string is a palindrome. 

 

Example 9: 

 
# Determine the largest of three numbers 

a = 5 

b = 7 

c = 3 

 

if a > b and a > c: 

    print(a, "is the largest number") 

elif b > a and b > c: 

    print(b, "is the largest number") 

else: 

    print(c, "is the largest number") 

 

In this example, we define three variables a, b, and c with values of 5, 7, and 3, respectively. We 

then use a series of if and elif statements with conditions that check which of the three variables 

is the largest. If a is greater than both b and c, we print a message that says a is the largest 

number. If b is greater than both a and c, we print a message that says b is the largest number. If 

neither of those conditions is true, we print a message that says c is the largest number. This 



56 | P a g e  

 

 

example shows how you can use conditional statements to determine which of several variables 

has the largest value. 

 

Example 10: 
 

# Determine if a number is prime 

number = 17 

 

if number > 1: 

    for i in range(2, number): 

        if number % i == 0: 

            print(number, "is not a prime number") 

            break 

    else: 

        print(number, "is a prime number") 

else: 

    print(number, "is not a prime number") 

 

In this example, we define a variable number with a value of 17. We then use an if statement 

with a condition that checks if number is greater than 1. If it is, we use a for loop to iterate over a 

range of numbers from 2 to number - 1. For each number in the range, we use an if statement 

with a condition that checks if number is divisible by that number. If it is, we print a message 

that says number is not a prime number and break out of the loop. If the loop completes without 

finding a factor of number, we print a message that says number is a prime number. If number is 

less than or equal to 1, we print a message that says number is not a prime number. This example 

shows how you can use conditional statements and loops to check if a number is prime. 

 

Example 11: 

 
# Check if a string is a palindrome 

string = "racecar" 

 

if string == string[::-1]: 

    print(string, "is a palindrome") 

else: 

    print(string, "is not a palindrome") 

 

In this example, we define a variable string with a value of "racecar". We then use an if 

statement with a condition that checks if string is equal to a reversed version of itself (string[::-

1]). If it is, we print a message that says string is a palindrome. If it's not, we print a message that 

says string is not a palindrome. This example shows how you can use conditional statements to 

check if a string is a palindrome. 

 

Example 12: 
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# Determine the grade based on a score 

score = 85 

 

if score >= 90: 

    grade = "A" 

elif score >= 80: 

    grade = "B" 

elif score >= 70: 

    grade = "C" 

elif score >= 60: 

    grade = "D" 

else: 

    grade = "F" 

 

print("The grade for a score of", score, "is", grade) 

 

In this example, we define a variable score with a value of 85. We then use a series of if and elif 

statements with conditions that check what range score falls into. If score is greater than or equal 

to 90, we set the variable grade to "A". If score is greater than or equal to 80, we set grade to 

"B". If score is greater than or equal to 70, we set grade to "C". If score is greater than or equal to 

60, we set grade to "D". If none of those conditions are true, we set grade to "F". Finally, we 

print a message that includes the original score and the corresponding grade. This example 

shows how you can use conditional statements to assign a grade based on a score. 

 

 

 

Loops 
 

One of the key features of Python is the ability to use loops, which allow for the repeated 

execution of code. In this article, we will discuss loops in Python and provide examples that are 

relevant to SAS users. 

 

Types of Loops: 

 

Python has two types of loops: for loops and while loops. 

 

For Loops: 

 

A for loop is used to iterate over a sequence (e.g., a list, tuple, string, or dictionary) and execute a 

block of code for each element in the sequence. The syntax for a for loop is as follows: 

 
for variable in sequence: 

    # code block to be executed 
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In the above syntax, "variable" is the name of the variable that will hold each element of the 

sequence, and "sequence" is the sequence to be iterated over. 

 

Example: 

 

Suppose we have a list of numbers and we want to print each number on a separate line. We can 

use a for loop to accomplish this: 

 
numbers = [1, 2, 3, 4, 5] 

 

for num in numbers: 

    print(num) 

 

Output: 

 
1 

2 

3 

4 

5 

 

While Loops: 

 

A while loop is used to repeatedly execute a block of code as long as a certain condition is true. 

The syntax for a while loop is as follows: 

 
while condition: 

    # code block to be executed 

 

In the above syntax, "condition" is the expression that is evaluated to determine whether to 

continue executing the code block. 

 

Example: 

 

Suppose we have a list of numbers and we want to sum them up until the total is greater than 10. 

We can use a while loop to accomplish this: 

 
numbers = [1, 2, 3, 4, 5] 

total = 0 

i = 0 

 

while total <= 10: 

    total += numbers[i] 

    i += 1 
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print(total) 

 

 

Output: 
15 

 

In the above example, we initialize "total" to 0 and "i" to 0. We then enter the while loop, where 

we repeatedly add the next number in the list to "total" until "total" is greater than 10. 

 

Break and Continue Statements: 

Python also provides two statements that can be used inside loops to control the flow of 

execution: "break" and "continue". 

 

The "break" statement is used to exit a loop prematurely. When a "break" statement is 

encountered, the loop immediately terminates and control is passed to the statement immediately 

following the loop. 

 

Example: 

 

Suppose we have a list of numbers and we want to print each number until we encounter a 

negative number. We can use a for loop and a break statement to accomplish this: 

 
numbers = [1, 2, -3, 4, 5] 

 

for num in numbers: 

    if num < 0: 

        break 

    print(num) 

 

Output: 

 
1 

2 

 

In the above example, the for loop iterates over each element in the list "numbers". When a 

negative number is encountered, the if statement is true and the break statement is executed, 

causing the loop to terminate. 

 

The "continue" statement is used to skip the current iteration of a loop and continue with the next 

iteration. 

 

Example: 

 

Suppose we have a list of numbers and we want to print each number that is not equal to 3. We 

can use a for loop and a continue statement to accomplish this: 
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numbers = [1, 2, 3, 4, 5] 

 

for num in numbers: 

    if num == 3: 

        continue 

    print(num) 

 

Output: 

 
1 

2 

4 

5 

 

In the above example, the for loop iterates over each element in the list "numbers". When the 

number 3 is encountered, the if statement is true and the continue statement is executed, causing 

the loop to skip the iteration where num is equal to 3. 

 

Loops are a fundamental concept in Python that allow for the repeated execution of code. SAS 

users can benefit from learning how to use loops in Python to expand their data analysis 

capabilities. Python has two types of loops (for loops and while loops) and also provides two 

statements (break and continue) that can be used to control the flow of execution inside loops. 

By mastering these concepts, SAS users can become more efficient and effective in their data 

analysis tasks. 

 

Iterating Over Data Structures: 

 

One of the most common use cases for loops in data analysis is iterating over data structures like 

lists, tuples, and dictionaries. By using a loop to iterate over each element in the data structure, 

we can perform calculations or operations on each element in a structured and efficient way. 

 

Example: 

 

Suppose we have a list of temperatures in Celsius and we want to convert each temperature to 

Fahrenheit. We can use a for loop to iterate over the list and perform the conversion for each 

temperature: 
 

celsius_temps = [25, 30, 20, 15, 22] 

fahrenheit_temps = [] 

 

for temp in celsius_temps: 

    fahrenheit_temps.append(temp * 1.8 + 32) 

 

print(fahrenheit_temps) 
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Output: 

 
 [77.0, 86.0, 68.0, 59.0, 71.6] 

 

In the above example, we initialize an empty list "fahrenheit_temps" and then use a for loop to 

iterate over each temperature in "celsius_temps". For each temperature, we perform the 

conversion to Fahrenheit and append the result to the "fahrenheit_temps" list. 

 

Nested Loops: 

Another use case for loops in data analysis is nested loops. Nested loops are loops that are 

contained within another loop, and they are used to perform calculations or operations on 

multiple data structures. 

 

Example: 

 

Suppose we have two lists of numbers and we want to calculate the product of each combination 

of numbers in the two lists. We can use nested for loops to accomplish this: 

 
list1 = [1, 2, 3] 

list2 = [4, 5, 6] 

products = [] 

 

for num1 in list1: 

    for num2 in list2: 

        products.append(num1 * num2) 

 

print(products) 

 

Output: 

 
 [4, 5, 6, 8, 10, 12, 12, 15, 18] 

 

In the above example, we use nested for loops to iterate over each element in both lists and 

calculate the product of each combination of numbers. The results are stored in the "products" 

list. 

 

Looping with Indexes: 

 

Sometimes we need to loop over a list or other data structure while also keeping track of the 

index of the current element. We can use the built-in "enumerate" function in Python to 

accomplish this. 
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Example: 

 

Suppose we have a list of names and we want to print each name along with its index in the list. 

We can use the "enumerate" function to accomplish this: 

 
names = ['Alice', 'Bob', 'Charlie', 'David'] 

 

for i, name in enumerate(names): 

    print(f'{i}: {name}') 

 

Output: 

 
0: Alice 

1: Bob 

2: Charlie 

3: David 

 

In the above example, we use the "enumerate" function to loop over the "names" list and get both 

the index and the name for each element in the list. We then print out the index and name in a 

formatted string. 

 

Code examples that demonstrate the use of loops in data analysis: 

 

Example 1: Calculating Descriptive Statistics for a List of Numbers 

In this example, we will use a for loop to calculate the mean, variance, and standard deviation of 

a list of numbers. 

 
import math 

 

numbers = [1, 2, 3, 4, 5] 

 

# Calculate the mean 

mean = sum(numbers) / len(numbers) 

 

# Calculate the variance 

variance = 0 

for num in numbers: 

    variance += (num - mean) ** 2 

variance /= len(numbers) 

 

# Calculate the standard deviation 

std_dev = math.sqrt(variance) 

 

print(f"Mean: {mean}") 
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print(f"Variance: {variance}") 

print(f"Standard Deviation: {std_dev}") 

 

Output: 

 
Mean: 3.0 

Variance: 2.5 

Standard Deviation: 1.5811388300841898 

 

In the above example, we first calculate the mean of the list of numbers using the built-in "sum" 

and "len" functions. We then use a for loop to calculate the variance by summing the squared 

differences between each number and the mean, and dividing by the length of the list. Finally, 

we calculate the standard deviation using the "sqrt" function from the "math" module. 

 

Example 2: Filtering Data in a List of Dictionaries 

In this example, we will use a for loop to filter a list of dictionaries based on a certain criteria. 

 
data = [ 

    {'name': 'Alice', 'age': 25, 'gender': 'female'}, 

    {'name': 'Bob', 'age': 30, 'gender': 'male'}, 

    {'name': 'Charlie', 'age': 20, 'gender': 'male'}, 

    {'name': 'David', 'age': 35, 'gender': 'male'}, 

    {'name': 'Eve', 'age': 28, 'gender': 'female'} 

] 

 

# Filter the data to only include males over 25 

filtered_data = [] 

for row in data: 

    if row['gender'] == 'male' and row['age'] > 25: 

        filtered_data.append(row) 

 

print(filtered_data) 

 

Output: 

 

 [{'name': 'Bob', 'age': 30, 'gender': 'male'}, {'name': 'David', 'age': 35, 'gender': 'male'}] 

 

In the above example, we have a list of dictionaries representing some data. We use a for loop to 

iterate over each dictionary in the list, and we use an if statement to check if the row meets our 

filter criteria (in this case, being a male over the age of 25). If the row meets the criteria, we 

append it to a new list called "filtered_data". Finally, we print out the filtered data. 
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Functions 
 

Functions are an important aspect of programming in Python as they allow you to encapsulate a 

block of code that can be reused and called upon whenever necessary. In this section, we will 

explore some commonly used functions in Python from a SAS user's perspective. 

 

Defining Functions: 

 

Functions in Python are defined using the def keyword followed by the function name, a set of 

parentheses, and a colon. The function body is indented and can contain any valid Python code. 
 

def function_name(parameters): 

    """ 

    Docstring: A description of the function. 

    """ 

    # Function body 

    return value 

 

The function name should follow the same naming conventions as variable names, i.e., use 

lowercase letters and underscores for readability. The parameters are optional and can be used to 

pass values into the function. The return statement is optional and can be used to return a value 

from the function. 

 

Example Function: 

 
def square(x): 

    """ 

    This function returns the square of a given number. 

    """ 

    return x**2 

 

Calling Functions: 

 

To call a function in Python, simply use the function name followed by the parentheses and any 

necessary arguments. 

 
result = function_name(arguments) 

 

Example Function Call: 

 
result = square(5) 

print(result) # Output: 25 

Built-in Functions: 
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Python provides a number of built-in functions that can be used without the need for importing 

any additional libraries. Here are some commonly used built-in functions: 

 

print(): Prints the specified message to the console. 

len(): Returns the length of the specified object. 

type(): Returns the type of the specified object. 

range(): Returns a sequence of numbers, starting from 0 and incrementing by 1 (default), and 

stopping before a specified number. 

Example Built-in Function Call: 

 
# Prints "Hello, World!" to the console 

print("Hello, World!") 

 

# Returns the length of the string "Python" 

length = len("Python") 

print(length) # Output: 6 

 

# Returns the type of the integer 42 

type_of_42 = type(42) 

print(type_of_42) # Output: <class 'int'> 

 

# Returns a range of numbers from 0 to 4 (excluding 4) 

numbers = range(4) 

print(list(numbers)) # Output: [0, 1, 2, 3] 

 

Custom Functions: 

 

In addition to the built-in functions, you can also create your own custom functions to perform 

specific tasks. Here is an example of a custom function: 

 
def calculate_mean(numbers): 

    """ 

    This function calculates the mean of a list of 

numbers. 

    """ 

    total = sum(numbers) 

    count = len(numbers) 

    mean = total / count 

    return mean 

 

Example Custom Function Call: 

 
numbers = [1, 2, 3, 4, 5] 

mean = calculate_mean(numbers) 
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print(mean) # Output: 3.0 

 

Functions are an important aspect of programming in Python and can greatly simplify your code 

by allowing you to reuse blocks of code. Whether you are using built-in functions or creating 

your own custom functions, mastering this concept is essential to becoming a proficient Python 

programmer. 

 

Parameters and Arguments: 

 

Parameters are variables that are defined in the function definition and are used to pass values 

into the function. Arguments, on the other hand, are the values that are passed into the function 

when it is called. 

 

In Python, there are two types of parameters: positional parameters and keyword parameters. 

Positional parameters are defined by their position in the function definition and must be passed 

in the same order when the function is called. Keyword parameters, on the other hand, are 

defined with a default value and can be passed in any order using their name. 

 

Example of Positional Parameters: 

 
def greet(name, message): 

    """ 

    This function greets a person with a message. 

    """ 

    print(f"{message}, {name}!") 

 

greet("Alice", "Hello") # Output: Hello, Alice! 

 

Example of Keyword Parameters: 

 
def greet(name, message="Hello"): 

    """ 

    This function greets a person with a message. 

    """ 

    print(f"{message}, {name}!") 

 

greet("Bob") # Output: Hello, Bob! 

greet(message="Hi", name="Charlie") # Output: Hi, 

Charlie! 
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Default Parameters: 

 

As seen in the example above, default parameters can be used to define a default value for a 

parameter in case it is not passed in when the function is called. If a default parameter is defined, 

it must come after any non-default parameters in the function definition. 

 

Example of Default Parameters: 

 
def greet(name, message="Hello", punctuation="!"): 

    """ 

    This function greets a person with a message and 

punctuation. 

    """ 

    print(f"{message}, {name}{punctuation}") 

 

greet("Dave") # Output: Hello, Dave! 

greet("Eve", "Hi") # Output: Hi, Eve! 

greet("Frank", punctuation=".") # Output: Hello, Frank. 

 

Arbitrary Parameters: 

 

In some cases, you may want to define a function that can accept a variable number of 

arguments. This can be done by using an arbitrary parameter, denoted by an asterisk (*). This 

parameter can be used to accept any number of positional arguments, which are passed in as a 

tuple. 

 

Example of Arbitrary Parameters: 

 
def sum_all(*numbers): 

    """ 

    This function sums up all the numbers passed in. 

    """ 

    total = sum(numbers) 

    return total 

 

result = sum_all(1, 2, 3, 4, 5) 

print(result) # Output: 15 

 

Keyword Arbitrary Parameters: 

 

Similarly, you can also define a function that accepts a variable number of keyword arguments 

by using an arbitrary keyword parameter, denoted by two asterisks (**). This parameter can be 

used to accept any number of keyword arguments, which are passed in as a dictionary. 

Example of Keyword Arbitrary Parameters: 
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def print_info(**info): 

    """ 

    This function prints out a dictionary of 

information. 

    """ 

    for key, value in info.items(): 

        print(f"{key}: {value}") 

 

print_info(name="Gina", age=30, occupation="Engineer") 

# Output: 

# name: Gina 

# age: 30 

# occupation: Engineer 

 

Functions are a fundamental concept in Python and are used extensively in programming. They 

allow you to encapsulate a block of code that can be reused and called upon whenever necessary. 

By understanding how to define and use parameters, arguments, and arbitrary parameters, you 

can create powerful and flexible functions that can be used in a variety of applications. 

 

Here are some more examples of functions in Python: 

 

Example 1: Finding the largest number in a list 
 

def find_largest(numbers): 

    """ 

    This function finds the largest number in a list of 

numbers. 

    """ 

    largest = numbers[0] 

    for num in numbers: 

        if num > largest: 

            largest = num 

    return largest 

 

list_of_numbers = [10, 5, 20, 15, 30] 

largest_number = find_largest(list_of_numbers) 

print(largest_number) # Output: 30 

 

 

 

Example 2: Reversing a string 

 
def reverse_string(text): 

    """ 
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    This function reverses a string. 

    """ 

    reversed_text = "" 

    for i in range(len(text) - 1, -1, -1): 

        reversed_text += text[i] 

    return reversed_text 

 

text_to_reverse = "hello world" 

reversed_text = reverse_string(text_to_reverse) 

print(reversed_text) # Output: dlrow olleh 

 

Example 3: Calculating the factorial of a number 

 
def factorial(number): 

    """ 

    This function calculates the factorial of a number. 

    """ 

    result = 1 

    for i in range(1, number + 1): 

        result *= i 

    return result 

 

num = 5 

factorial_of_num = factorial(num) 

print(factorial_of_num) # Output: 120 

 

Example 4: Checking if a string is a palindrome 

 
def is_palindrome(text): 

    """ 

    This function checks if a string is a palindrome. 

    """ 

    reversed_text = text[::-1] 

    if text == reversed_text: 

        return True 

    else: 

        return False 

 

text_to_check = "racecar" 

is_palindrome_text = is_palindrome(text_to_check) 

print(is_palindrome_text) # Output: True 
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These are just a few examples of the many functions that can be created in Python. By 

understanding the basic concepts of functions, you can create your own custom functions to 

solve a wide variety of problems. 

 

Example 5: Converting Celsius to Fahrenheit 

 
def celsius_to_fahrenheit(celsius): 

    """ 

    This function converts a temperature in Celsius to 

Fahrenheit. 

    """ 

    fahrenheit = (celsius * 1.8) + 32 

    return fahrenheit 

 

celsius_temp = 25 

fahrenheit_temp = celsius_to_fahrenheit(celsius_temp) 

print(fahrenheit_temp) # Output: 77.0 

 

Example 6: Finding the average of a list of numbers 

 
def find_average(numbers): 

    """ 

    This function finds the average of a list of 

numbers. 

    """ 

    total = sum(numbers) 

    avg = total / len(numbers) 

    return avg 

 

list_of_numbers = [10, 20, 30, 40, 50] 

average_of_numbers = find_average(list_of_numbers) 

print(average_of_numbers) # Output: 30.0 

 

Example 7: Converting a list of strings to lowercase 

 
def convert_to_lowercase(strings): 

    """ 

    This function converts a list of strings to 

lowercase. 

    """ 

    lowercase_strings = [] 

    for string in strings: 

        lowercase_strings.append(string.lower()) 

    return lowercase_strings 
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list_of_strings = ["HELLO", "WORLD", "PYTHON"] 

lowercase_strings = 

convert_to_lowercase(list_of_strings) 

print(lowercase_strings) # Output: ['hello', 'world', 

'python'] 

 

These are just a few more examples of the many functions that can be created in Python. With 

functions, you can encapsulate complex logic into a single unit that can be easily reused and 

maintained. 

 

Example 8: Calculating the area and circumference of a circle 

 
import math 

 

def circle_calculations(radius): 

    """ 

    This function calculates the area and circumference 

of a circle with the given radius. 

    """ 

    area = math.pi * radius ** 2 

    circumference = 2 * math.pi * radius 

    return area, circumference 

 

r = 5 

area, circumference = circle_calculations(r) 

print(f"Area: {area:.2f}, Circumference: 

{circumference:.2f}") # Output: Area: 78.54, 

Circumference: 31.42 

 

Example 9: Checking if a number is prime 
 

def is_prime(number): 

    """ 

    This function checks if a number is prime. 

    """ 

    if number < 2: 

        return False 

    for i in range(2, int(number ** 0.5) + 1): 

        if number % i == 0: 

            return False 

    return True 

 

num = 17 

is_num_prime = is_prime(num) 
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print(is_num_prime) # Output: True 

 

Example 10: Converting a list of integers to a binary string 

 
def int_list_to_binary_string(int_list): 

    """ 

    This function converts a list of integers to a 

binary string. 

    """ 

    binary_string = "" 

    for num in int_list: 

        binary_string += bin(num)[2:].zfill(8) 

    return binary_string 

 

list_of_integers = [65, 66, 67] 

binary_string = 

int_list_to_binary_string(list_of_integers) 

print(binary_string) # Output: 010000010100001001000011 

 

These examples demonstrate the versatility and power of functions in Python. By writing 

functions, you can make your code more modular, reusable, and easier to maintain. 

 

Example 11: Counting the frequency of words in a string 

 
def count_word_frequency(string): 

    """ 

    This function counts the frequency of each word in 

a string. 

    """ 

    words = string.split() 

    freq_dict = {} 

    for word in words: 

        if word in freq_dict: 

            freq_dict[word] += 1 

        else: 

            freq_dict[word] = 1 

    return freq_dict 

 

text = "This is a test sentence to check the word 

frequency in a sentence." 

word_frequency = count_word_frequency(text) 

print(word_frequency) # Output: {'This': 1, 'is': 1, 

'a': 2, 'test': 1, 'sentence': 2, 'to': 1, 'check': 1, 

'the': 1, 'word': 1, 'frequency': 1, 'in': 1, 'a.': 1} 
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Example 12: Reversing a string 
 

def reverse_string(string): 

    """ 

    This function reverses a string. 

    """ 

    reversed_string = "" 

    for i in range(len(string)-1, -1, -1): 

        reversed_string += string[i] 

    return reversed_string 

 

text = "Python is awesome" 

reversed_text = reverse_string(text) 

print(reversed_text) # Output: emosewa si nohtyP 

 

Example 13: Calculating the sum of digits in a number 

 
def sum_of_digits(number): 

    """ 

    This function calculates the sum of digits in a 

number. 

    """ 

    sum_of_digits = 0 

    while number > 0: 

        sum_of_digits += number % 10 

        number //= 10 

    return sum_of_digits 

 

num = 1234 

sum_of_num = sum_of_digits(num) 

print(sum_of_num) # Output: 10 

 

These examples demonstrate how functions can be used to perform various tasks, from counting 

the frequency of words in a string to calculating the sum of digits in a number. Functions provide 

a way to break down complex tasks into smaller, more manageable pieces of code. 

Example 14: Creating a simple calculator using functions 

 
def add(num1, num2): 

    """ 

    This function adds two numbers. 

    """ 

    return num1 + num2 

 

def subtract(num1, num2): 
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    """ 

    This function subtracts two numbers. 

    """ 

    return num1 - num2 

 

def multiply(num1, num2): 

    """ 

    This function multiplies two numbers. 

    """ 

    return num1 * num2 

 

def divide(num1, num2): 

    """ 

    This function divides two numbers. 

    """ 

    if num2 == 0: 

        return "Error: division by zero" 

    else: 

        return num1 / num2 

 

print("Choose an operation:") 

print("1. Add") 

print("2. Subtract") 

print("3. Multiply") 

print("4. Divide") 

 

choice = input("Enter choice (1/2/3/4): ") 

 

num1 = float(input("Enter first number: ")) 

num2 = float(input("Enter second number: ")) 

 

if choice == '1': 

    print(num1, "+", num2, "=", add(num1, num2)) 

 

elif choice == '2': 

    print(num1, "-", num2, "=", subtract(num1, num2)) 

 

elif choice == '3': 

    print(num1, "*", num2, "=", multiply(num1, num2)) 

 

elif choice == '4': 

    print(num1, "/", num2, "=", divide(num1, num2)) 
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else: 

    print("Invalid input") 

 

This example demonstrates how functions can be used to create a simple calculator program. The 

program prompts the user to choose an operation (addition, subtraction, multiplication, or 

division) and then asks for two numbers to perform the operation on. 

 

Example 15: Implementing a binary search algorithm using recursion 

 
def binary_search_recursive(arr, start, end, target): 

    """ 

    This function implements a binary search algorithm 

using recursion. 

    """ 

    if end >= start: 

        mid = (start + end) // 2 

        if arr[mid] == target: 

            return mid 

        elif arr[mid] > target: 

            return binary_search_recursive(arr, start, 

mid-1, target) 

        else: 

            return binary_search_recursive(arr, mid+1, 

end, target) 

    else: 

        return -1 

 

arr = [2, 3, 4, 10, 40] 

target = 10 

result = binary_search_recursive(arr, 0, len(arr)-1, 

target) 

 

if result != -1: 

    print(f"Element {target} is present at index 

{result}") 

else: 

    print("Element is not present in array") 

 

This example demonstrates how functions can be used to implement a binary search algorithm 

using recursion. The function takes an array, the starting and ending indices, and the target value 

as inputs, and returns the index of the target value in the array if it is present, or -1 if it is not 

present. 

 

 



76 | P a g e  

 

 

Example 16: Generating a random password 
 

import random 

import string 

 

def generate_password(length): 

    """ 

    This function generates a random password of the 

given length. 

    """ 

    password = "" 

    for i in range(length): 

        password += random.choice(string.ascii_letters 

+ string.digits + string.punctuation) 

    return password 

 

password_length = 8 

new_password = generate_password(password_length) 

print(new_password) 

 

This example demonstrates how functions can be used to generate a random password of a given 

length. The function uses the random.choice() function to select random characters from the set 

of uppercase and lowercase letters, digits, and punctuation. 

 

Example 17: Converting temperature between Celsius and Fahrenheit 

 
def celsius_to_fahrenheit(celsius): 

    """ 

    This function converts temperature from Celsius to 

Fahrenheit. 

    """ 

    fahrenheit = (celsius * 1.8) + 32 

    return fahrenheit 

 

def fahrenheit_to_celsius(fahrenheit): 

    """ 

    This function converts temperature from Fahrenheit 

to Celsius. 

    """ 

    celsius = (fahrenheit - 32) / 1.8 

    return celsius 

 

temperature = float(input("Enter temperature: ")) 

scale = input("Enter scale (C/F): ") 
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if scale == "C": 

    fahrenheit = celsius_to_fahrenheit(temperature) 

    print(f"{temperature} degrees Celsius is equal to 

{fahrenheit} degrees Fahrenheit.") 

elif scale == "F": 

    celsius = fahrenheit_to_celsius(temperature) 

    print(f"{temperature} degrees Fahrenheit is equal 

to {celsius} degrees Celsius.") 

else: 

    print("Invalid input.") 

 

This example demonstrates how functions can be used to convert temperature between Celsius 

and Fahrenheit. The program prompts the user to enter a temperature and a scale (either Celsius 

or Fahrenheit), and then uses the appropriate function to convert the temperature to the other 

scale. 

 

Example 18: Calculating the factorial of a number 

 
def factorial(n): 

    """ 

    This function calculates the factorial of a number. 

    """ 

    if n == 0: 

        return 1 

    else: 

        return n * factorial(n-1) 

 

number = int(input("Enter a number: ")) 

result = factorial(number) 

print(f"The factorial of {number} is {result}.") 

 

This example demonstrates how functions can be used to calculate the factorial of a number. The 

function uses recursion to multiply the number by the factorial of the number minus one until it 

reaches the base case of zero, at which point it returns 1. 

 

Example 19: Checking if a string is a palindrome 
 

def is_palindrome(s): 

    """ 

    This function checks if a string is a palindrome. 

    """ 

    s = s.lower() 

    s = s.replace(" ", "") 

    if s == s[::-1]: 
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        return True 

    else: 

        return False 

 

string = input("Enter a string: ") 

if is_palindrome(string): 

    print(f"{string} is a palindrome.") 

else: 

    print(f"{string} is not a palindrome.") 

 

This example demonstrates how functions can be used to check if a string is a palindrome. The 

function first converts the string to lowercase and removes all whitespace, then checks if the 

string is equal to its reverse using slicing. 

 

Example 20: Sorting a list of numbers 

 
def sort_list(numbers): 

    """ 

    This function sorts a list of numbers in ascending 

order. 

    """ 

    for i in range(len(numbers)): 

        for j in range(i, len(numbers)): 

            if numbers[i] > numbers[j]: 

                temp = numbers[i] 

                numbers[i] = numbers[j] 

                numbers[j] = temp 

    return numbers 

 

list_size = int(input("Enter the size of the list: ")) 

numbers = [] 

for i in range(list_size): 

    number = float(input(f"Enter number {i+1}: ")) 

    numbers.append(number) 

 

sorted_numbers = sort_list(numbers) 

print(f"The sorted list is: {sorted_numbers}.") 

 

This example demonstrates how functions can be used to sort a list of numbers in ascending 

order. The function uses a simple selection sort algorithm, which compares each pair of adjacent 

elements and swaps them if they are in the wrong order. 

 

Example 21: Calculating the area and circumference of a circle 
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import math 

 

def calculate_area(radius): 

    """ 

    This function calculates the area of a circle with 

the given radius. 

    """ 

    area = math.pi * radius ** 2 

    return area 

 

def calculate_circumference(radius): 

    """ 

    This function calculates the circumference of a 

circle with the given radius. 

    """ 

    circumference = 2 * math.pi * radius 

    return circumference 

 

radius = float(input("Enter the radius of the circle: 

")) 

area = calculate_area(radius) 

circumference = calculate_circumference(radius) 

print(f"The area of the circle is {area:.2f} square 

units and the circumference is {circumference:.2f} 

units." 

) 

 

This example demonstrates how functions can be used to calculate the area and circumference of 

a circle. The program prompts the user to enter the radius of the circle, and then uses the 

appropriate functions to calculate the area and circumference. The math module is used to access 

the value of pi. 

 

Example 22: Generating a Fibonacci sequence 

 
def generate_fibonacci_sequence(n): 

    """ 

    This function generates a Fibonacci sequence of 

length n. 

    """ 

    sequence = [0, 1] 

    for i in range(2, n): 

        next_number = sequence[i-1] + sequence[i-2] 

        sequence.append(next_number) 

    return sequence 
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sequence_length = int(input("Enter the length of the 

Fibonacci sequence: ")) 

fibonacci_sequence = 

generate_fibonacci_sequence(sequence_length) 

print(f"The Fibonacci sequence of length 

{sequence_length} is {fibonacci_sequence}.") 

 

This example demonstrates how functions can be used to generate a Fibonacci sequence of a 

given length. The function uses a loop to generate the next number in the sequence, which is the 

sum of the two preceding numbers. 

 

Example 23: Counting the occurrences of a character in a string 

 
def count_occurrences(s, character): 

    """ 

    This function counts the occurrences of a given 

character in a string. 

    """ 

    count = 0 

    for c in s: 

        if c == character: 

            count += 1 

    return count 

 

string = input("Enter a string: ") 

char = input("Enter a character: ") 

count = count_occurrences(string, char) 

print(f"The character '{char}' occurs {count} times in 

the string '{string}'.") 

 

This example demonstrates how functions can be used to count the occurrences of a given 

character in a string. The function uses a loop to iterate over each character in the string and 

checks if it matches the given character. 

 

Example 24: Calculating the sum of a geometric series 
 

def sum_geometric_series(a, r, n): 

    """ 

    This function calculates the sum of a geometric 

series with the given first term a, common ratio r, and 

number of terms n. 

    """ 

    if r == 1: 

        return a * n 
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    else: 

        sum = a * (1 - r ** n) / (1 - r) 

        return sum 

 

first_term = float(input("Enter the first term of the 

geometric series: ")) 

common_ratio = float(input("Enter the common ratio of 

the geometric series: ")) 

num_terms = int(input("Enter the number of terms in the 

geometric series: ")) 

sum = sum_geometric_series(first_term, common_ratio, 

num_terms) 

print(f"The sum of the geometric series is {sum:.2f}.") 

 

This example demonstrates how functions can be used to calculate the sum of a geometric series 

with a given first term, common ratio, and number of terms. The function uses a formula to 

calculate the sum of a geometric series. 

 

 

 

Libraries and modules 
 

Here is a detailed overview of the libraries and modules covered in the book: 

 

1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It 

provides easy-to-use data structures and data analysis tools for handling large and 

complex datasets. The authors explain how to read SAS datasets into Pandas, perform 

basic data manipulations, and export data back to SAS. 

2. NumPy: NumPy is a library for numerical computing in Python. It provides efficient and 

fast array operations for handling large datasets. The authors introduce NumPy and 

explain how to perform basic array operations, such as indexing, slicing, and reshaping. 

3. Matplotlib: Matplotlib is a library for data visualization in Python. It provides a range of 

plotting tools for creating high-quality graphs and charts. The authors explain how to 

create basic plots and customize them using Matplotlib. 

4. Seaborn: Seaborn is a library built on top of Matplotlib for creating statistical 

visualizations in Python. It provides a range of statistical plotting functions for 

visualizing distributions, relationships, and regression models. The authors introduce 

Seaborn and demonstrate how to create various types of statistical plots. 

5. Scikit-learn: Scikit-learn is a library for machine learning in Python. It provides a range 

of tools for data preprocessing, feature selection, and model selection. The authors 

introduce Scikit-learn and explain how to train and evaluate various machine learning 

models. 
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6. Statsmodels: Statsmodels is a library for statistical modeling and testing in Python. It 

provides a range of statistical functions and models for data analysis. The authors 

introduce Statsmodels and demonstrate how to perform basic statistical analyses. 

7. PySpark: PySpark is a Python library for Apache Spark, a big data processing 

framework. It provides a range of tools for distributed computing and processing large 

datasets. The authors introduce PySpark and demonstrate how to perform basic data 

manipulations and analysis using Spark. 

8. SASPy: SASPy is a Python library for connecting to SAS and running SAS programs 

from Python. It provides a range of tools for accessing SAS datasets, running SAS 

procedures, and retrieving results. The authors introduce SASPy and demonstrate how to 

use it to connect to SAS and run SAS programs. 

 

Here is a brief overview of some of the common libraries and modules used in Python for data 

analysis: 

 

Pandas: Pandas is a popular data manipulation library that provides a high-performance data 

structure called a DataFrame, which is similar to a table in a relational database. Pandas allows 

you to perform various data manipulation operations, such as merging, filtering, sorting, and 

reshaping. 

Example code for importing and using Pandas: 

 
import pandas as pd 

# Create a DataFrame from a CSV file 

df = pd.read_csv('my_data.csv') 

 

# Filter rows based on a condition 

filtered_df = df[df['column_name'] > 0] 

 

# Group data by a column and aggregate 

grouped_df = 

df.groupby('column_name').agg({'other_column': 'sum'}) 

 

# Merge two DataFrames based on a common column 

merged_df = pd.merge(df1, df2, on='common_column') 

 

Matplotlib: Matplotlib is a plotting library that allows you to create a wide range of 

visualizations, such as line charts, scatter plots, and histograms. Matplotlib provides a wide range 

of customization options for creating visually appealing and informative plots. 

Example code for importing and using Matplotlib: 

 
import matplotlib.pyplot as plt 

 

# Create a line chart 

x = [1, 2, 3, 4] 

y = [2, 4, 6, 8] 



83 | P a g e  

 

 

plt.plot(x, y) 

 

# Create a scatter plot 

x = [1, 2, 3, 4] 

y = [2, 4, 6, 8] 

plt.scatter(x, y) 

 

# Create a histogram 

data = [1, 2, 3, 3, 4, 5] 

plt.hist(data) 

 

Scikit-learn: Scikit-learn is a popular machine learning library that provides a wide range of 

algorithms for classification, regression, clustering, and dimensionality reduction. Scikit-learn 

also provides tools for preprocessing data, selecting features, and evaluating model performance. 

 

Example code for importing and using Scikit-learn: 
 

from sklearn.linear_model import LinearRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

 

# Load a dataset and split into training and testing 

sets 

X, y = load_dataset('my_data.csv') 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.2) 

 

# Train a linear regression model 

model = LinearRegression() 

model.fit(X_train, y_train) 

 

# Evaluate the model on the test set 

y_pred = model.predict(X_test) 

mse = mean_squared_error(y_test, y_pred) 

 

 

Seaborn: Seaborn is a data visualization library that provides a high-level interface for creating 

statistical graphics. Seaborn provides various built-in themes and color palettes to create visually 

appealing plots. 

Example code for importing and using Seaborn: 

 
import seaborn as sns 

 

# Create a scatter plot with a regression line 
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sns.regplot(x='x_column', y='y_column', data=df) 

 

# Create a bar chart with error bars 

sns.barplot(x='category_column', y='value_column', 

data=df, ci='sd') 

 

# Create a box plot with a hue variable 

sns.boxplot(x='group_column', y='value_column', 

hue='category_column', data=df) 

 

Statsmodels: Statsmodels is a statistical modeling library that provides various tools for fitting 

and analyzing statistical models. Statsmodels provides a range of models, such as linear 

regression, logistic regression, and time series analysis. 

Example code for importing and using Statsmodels: 

 
import statsmodels.api as sm 

 

# Fit a linear regression model 

X = sm.add_constant(df['x_column']) 

model = sm.OLS(df['y_column'], X) 

results = model.fit() 

 

# Print the model summary 

print(results.summary()) 

 

# Fit a logistic regression model 

X = df[['x1_column', 'x2_column']] 

y = df['y_column'] 

model = sm.Logit(y, X) 

results = model.fit() 

 

# Print the model summary 

print(results.summary()) 

 

PySpark: PySpark is a Python interface for Apache Spark, a distributed computing framework 

for processing large datasets. PySpark provides various tools for performing basic data 

manipulations, such as filtering, grouping, and joining. PySpark also provides various algorithms 

for machine learning and graph processing. 

Example code for importing and using PySpark: 

 
from pyspark.sql import SparkSession 

from pyspark.ml.feature import VectorAssembler 

from pyspark.ml.regression import LinearRegression 

 



85 | P a g e  

 

 

# Create a SparkSession 

spark = 

SparkSession.builder.appName('my_app').getOrCreate() 

 

# Load a dataset and create a DataFrame 

df = spark.read.csv('my_data.csv', header=True) 

 

# Perform basic data manipulations 

filtered_df = df.filter(df['column_name'] > 0) 

grouped_df = 

df.groupBy('column_name').sum('other_column') 

joined_df = df.join(other_df, on='common_column') 

 

# Perform machine learning tasks 

assembler = VectorAssembler(inputCols=['x1_column', 

'x2_column'], outputCol='features') 

data = assembler.transform(df) 

lr = LinearRegression(featuresCol='features', 

labelCol='y_column') 

model = lr.fit(data) 

predictions = model.transform(data) 

 

NetworkX: NetworkX is a Python library for creating and analyzing graphs and networks. 

NetworkX provides various tools for creating and visualizing graphs, as well as algorithms for 

analyzing and manipulating them. 

Example code for importing and using NetworkX: 

 
import networkx as nx 

 

# Create a graph 

G = nx.Graph() 

 

# Add nodes and edges 

G.add_node('A') 

G.add_nodes_from(['B', 'C']) 

G.add_edge('A', 'B') 

G.add_edges_from([('B', 'C'), ('A', 'C')]) 

 

# Visualize the graph 

nx.draw(G, with_labels=True) 

 

# Compute the degree centrality of each node 

centrality = nx.degree_centrality(G) 
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print(centrality) 

 

NLTK: NLTK (Natural Language Toolkit) is a Python library for working with human language 

data. NLTK provides various tools for tokenizing, tagging, parsing, and analyzing text data. 

 

Example code for importing and using NLTK: 

 
 

import nltk 

 

# Download the NLTK data 

nltk.download() 

 

# Tokenize a sentence 

text = 'This is a sentence.' 

tokens = nltk.word_tokenize(text) 

print(tokens) 

 

# Tag the tokens with their part of speech 

tagged = nltk.pos_tag(tokens) 

print(tagged) 

 

# Analyze the sentiment of a text 

text = 'This is a very good movie.' 

sentiment = 

nltk.sentiment.vader.SentimentIntensityAnalyzer().polar

ity_scores(text) 

print(sentiment) 

 

 

TensorFlow: TensorFlow is a popular open-source framework for building and training machine 

learning models. TensorFlow provides various tools for working with neural networks, as well as 

for performing other machine learning tasks. 

Example code for importing and using TensorFlow: 

 
import tensorflow as tf 

 

# Create a neural network model 

model = tf.keras.models.Sequential([ 

  tf.keras.layers.Dense(64, activation='relu', 

input_shape=(784,)), 

  tf.keras.layers.Dense(10, activation='softmax') 

]) 
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# Compile the model 

model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy']) 

 

# Train the model 

model.fit(x_train, y_train, epochs=10, 

validation_data=(x_test, y_test)) 

 

# Make predictions with the model 

predictions = model.predict(x_test) 

 

Scikit-learn: Scikit-learn is a Python library for machine learning that provides various tools for 

data preprocessing, model selection, and evaluation. Scikit-learn provides a wide range of 

models, such as regression, classification, clustering, and dimensionality reduction. 

Example code for importing and using Scikit-learn: 

 
from sklearn.linear_model import LinearRegression 

from sklearn.datasets import load_boston 

from sklearn.model_selection import train_test_split 

 

# Load the Boston Housing dataset 

boston = load_boston() 

 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(boston.data, boston.target, 

test_size=0.2, random_state=42) 

 

# Create a linear regression model 

model = LinearRegression() 

 

# Train the model 

model.fit(X_train, y_train) 

 

# Evaluate the model on the testing set 

score = model.score(X_test, y_test) 

print(score) 

 

 

PyTorch: PyTorch is another popular open-source framework for building and training machine 

learning models. PyTorch provides various tools for working with neural networks, as well as for 

performing other machine learning tasks. 

Example code for importing and using PyTorch: 
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import torch 

import torch.nn as nn 

import torch.optim as optim 

 

# Create a neural network model 

class Net(nn.Module): 

    def __init__(self): 

        super(Net, self).__init__() 

        self.fc1 = nn.Linear(784, 64) 

        self.fc2 = nn.Linear(64, 10) 

         

    def forward(self, x): 

        x = nn.functional.relu(self.fc1(x)) 

        x = nn.functional.softmax(self.fc2(x), dim=1) 

        return x 

 

model = Net() 

 

# Define a loss function and an optimizer 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.Adam(model.parameters(), lr=0.001) 

 

# Train the model 

for epoch in range(10): 

    running_loss = 0.0 

    for i, data in enumerate(trainloader, 0): 

        inputs, labels = data 

        optimizer.zero_grad() 

        outputs = model(inputs) 

        loss = criterion(outputs, labels) 

        loss.backward() 

        optimizer.step() 

        running_loss += loss.item() 

    print(f"Epoch {epoch+1}, loss: 

{running_loss/len(trainloader)}") 

 

# Make predictions with the model 

outputs = model(inputs) 

_, predicted = torch.max(outputs, 1) 

 

Statsmodels: Statsmodels is a Python library for statistical modeling and analysis. Statsmodels 

provides various tools for performing regression analysis, time series analysis, and hypothesis 

testing. 
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Example code for importing and using Statsmodels: 

 
import statsmodels.api as sm 

import statsmodels.formula.api as smf 

import pandas as pd 

 

# Load the data into a pandas DataFrame 

df = pd.read_csv('data.csv') 

 

# Fit a linear regression model 

model = smf.ols('y ~ x1 + x2 + x3', data=df).fit() 

 

# Print the model summary 

print(model.summary()) 

 

# Perform a hypothesis test 

result = model.t_test('x1 = 0') 

print(result) 

 

Matplotlib: Matplotlib is a Python library for creating static, animated, and interactive 

visualizations. Matplotlib provides various tools for creating line plots, scatter plots, bar plots, 

and more. 

Example code for importing and using Matplotlib: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Create some data 

x = np.linspace(0, 10, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 

 

# Create a line plot 

plt.plot(x, y1, label='sin(x)') 

plt.plot(x, y2, label='cos(x)') 

 

# Add a title and axis labels 

plt.title('Trigonometric Functions') 

plt.xlabel('x') 

plt.ylabel('y') 

 

# Add a legend 

plt.legend() 
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# Show the plot 

plt.show() 

 

These are just a few more examples of the many libraries and modules available in Python for 

data analysis, machine learning, statistical modeling, and visualization. By combining these tools 

with the fundamental programming skills, you can tackle various real-world data analysis tasks 

and build powerful machine learning models. 

 

Seaborn: Seaborn is a Python library based on Matplotlib that provides additional functionality 

for creating beautiful and informative statistical visualizations. Seaborn provides tools for 

creating visualizations such as heatmaps, violin plots, and regression plots. 

Example code for importing and using Seaborn: 

 
import seaborn as sns 

import pandas as pd 

 

# Load the data into a pandas DataFrame 

df = pd.read_csv('data.csv') 

 

# Create a heatmap of the correlation matrix 

corr_matrix = df.corr() 

sns.heatmap(corr_matrix, annot=True) 

 

# Create a violin plot 

sns.violinplot(x='group', y='value', data=df) 

 

# Create a regression plot 

sns.regplot(x='x', y='y', data=df) 

 

NLTK: The Natural Language Toolkit (NLTK) is a Python library for working with human 

language data. NLTK provides various tools for tasks such as tokenization, stemming, part-of-

speech tagging, and sentiment analysis. 

Example code for importing and using NLTK: 

 
import nltk 

from nltk.tokenize import word_tokenize 

from nltk.stem import PorterStemmer 

from nltk.corpus import stopwords 

 

# Tokenize a sentence 

sentence = "The quick brown fox jumps over the lazy 

dog." 

tokens = word_tokenize(sentence) 

 



91 | P a g e  

 

 

# Stem a word 

stemmer = PorterStemmer() 

stemmed_word = stemmer.stem('jumped') 

 

# Remove stop words from a sentence 

stop_words = set(stopwords.words('english')) 

filtered_sentence = [w for w in tokens if not w in 

stop_words] 

 

Flask: Flask is a Python web framework for building web applications. Flask provides tools for 

creating routes, rendering templates, and handling requests and responses. 

Example code for importing and using Flask: 

 
from flask import Flask, render_template, request 

 

app = Flask(__name__) 

 

# Define a route that renders a template 

@app.route('/') 

def home(): 

    return render_template('home.html') 

 

# Define a route that handles a POST request 

@app.route('/login', methods=['POST']) 

def login(): 

    username = request.form['username'] 

    password = request.form['password'] 

    return f'Username: {username}, Password: 

{password}' 

 

if __name__ == '__main__': 

    app.run(debug=True) 

 

 

Pygame: Pygame is a Python library for creating games and multimedia applications. Pygame 

provides tools for handling graphics, sounds, and user input. 

Example code for importing and using Pygame: 

 
import pygame 

 

pygame.init() 

 

# Set the dimensions of the game window 

WINDOW_WIDTH = 800 
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WINDOW_HEIGHT = 600 

 

# Create the game window 

window = pygame.display.set_mode((WINDOW_WIDTH, 

WINDOW_HEIGHT)) 

 

# Load an image 

image = pygame.image.load('image.png') 

 

# Create a game loop 

running = True 

while running: 

    # Handle events 

    for event in pygame.event.get(): 

        if event.type == pygame.QUIT: 

            running = False 

     

    # Draw the image on the window 

    window.blit(image, (0, 0)) 

 

    # Update the window 

    pygame.display.update() 

 

# Quit the game 

pygame.quit() 

 

Requests: The Requests library is a Python library for making HTTP requests. Requests provides 

tools for handling headers, cookies, authentication, and more. 

Example code for importing and using Requests: 

 
import requests 

 

# Make a GET request 

response = requests.get('https://example.com') 

 

# Print the response content 

print(response.text) 

 

# Make a POST request with data 

data = {'username': 'example', 'password': 'password'} 

response = requests.post('https://example.com/login', 

data=data) 
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# Print the response status code 

print(response.status_code) 

 

Pandas: Pandas is a Python library for working with tabular data. Pandas provides tools for 

reading and writing data from various file formats, manipulating data, and performing 

calculations and statistics on data. 

Example code for importing and using Pandas: 

 
import pandas as pd 

 

# Read data from a CSV file 

data = pd.read_csv('data.csv') 

 

# Group the data by a column and calculate the mean of 

another column 

grouped_data = data.groupby('category')['value'].mean() 

 

# Filter the data based on a condition 

filtered_data = data[data['value'] > 10] 

 

# Write the data to a CSV file 

filtered_data.to_csv('filtered_data.csv') 

 

 

Scikit-learn: Scikit-learn is a Python library for machine learning. Scikit-learn provides tools for 

preprocessing data, creating models, evaluating models, and more. 

Example code for importing and using Scikit-learn: 

 
from sklearn import datasets 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error 

 

# Load the Boston Housing dataset 

boston = datasets.load_boston() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(boston.data, boston.target, 

test_size=0.2, random_state=42) 

 

# Create a linear regression model 

model = LinearRegression() 
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# Train the model 

model.fit(X_train, y_train) 

 

# Make predictions on the testing set 

y_pred = model.predict(X_test) 

 

# Calculate the mean squared error 

mse = mean_squared_error(y_test, y_pred) 

 

# Print the mean squared error 

print(mse) 

 

NLTK: The Natural Language Toolkit (NLTK) is a Python library for natural language 

processing. NLTK provides tools for tokenizing text, part-of-speech tagging, named entity 

recognition, and more. 

Example code for importing and using NLTK: 

 
import nltk 

 

# Download the necessary resources 

nltk.download('punkt') 

nltk.download('averaged_perceptron_tagger') 

 

# Tokenize a sentence 

sentence = 'This is a sentence.' 

tokens = nltk.word_tokenize(sentence) 

 

# Part-of-speech tag the tokens 

pos_tags = nltk.pos_tag(tokens) 

 

# Print the part-of-speech tags 

print(pos_tags) 

 

Matplotlib: Matplotlib is a Python library for creating visualizations, such as line plots, scatter 

plots, and bar plots. Matplotlib provides tools for customizing the appearance of the plots and 

adding labels and titles. 

Example code for importing and using Matplotlib: 

 
import matplotlib.pyplot as plt 

 

# Create data 

x = [1, 2, 3, 4, 5] 

y = [2, 4, 6, 8, 10] 
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# Create a line plot 

plt.plot(x, y) 

 

# Add labels and a title 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.title('Line Plot') 

 

# Show the plot 

plt.show() 

 

 

Pandas: Pandas is a Python library for data manipulation and analysis. Pandas provides tools for 

reading and writing data, cleaning and preprocessing data, and performing operations on data, 

such as merging and grouping. 

Example code for importing and using Pandas: 
 

import pandas as pd 

 

# Read a CSV file 

df = pd.read_csv('data.csv') 

 

# Drop missing values 

df = df.dropna() 

 

# Group by a column and calculate the mean 

grouped = df.groupby('Category')['Value'].mean() 

 

# Print the result 

print(grouped) 

 

TensorFlow: TensorFlow is a Python library for machine learning and deep learning. 

TensorFlow provides tools for building and training neural networks, as well as for deploying 

models to production environments. 

Example code for importing and using TensorFlow: 

 
import tensorflow as tf 

from tensorflow import keras 

 

# Load the MNIST dataset 

mnist = keras.datasets.mnist 

(train_images, train_labels), (test_images, 

test_labels) = mnist.load_data() 
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# Preprocess the data 

train_images = train_images / 255.0 

test_images = test_images / 255.0 

 

# Define the model 

model = keras.Sequential([ 

    keras.layers.Flatten(input_shape=(28, 28)), 

    keras.layers.Dense(128, activation='relu'), 

    keras.layers.Dense(10) 

]) 

 

# Compile the model 

model.compile(optimizer='adam', 

              

loss=tf.keras.losses.SparseCategoricalCrossentropy(from

_logits=True), 

              metrics=['accuracy']) 

 

# Train the model 

model.fit(train_images, train_labels, epochs=10, 

validation_data=(test_images, test_labels)) 

 

# Evaluate the model 

test_loss, test_acc = model.evaluate(test_images, 

test_labels, verbose=2) 

print('Test accuracy:', test_acc) 

 

Pygame: Pygame is a Python library for game development. Pygame provides tools for creating 

games and graphics, handling user input, and playing sounds and music. 

Example code for importing and using Pygame: 

 
import pygame 

 

# Initialize Pygame 

pygame.init() 

 

# Create a window 

screen = pygame.display.set_mode((640, 480)) 

 

# Set the window title 

pygame.display.set_caption('My Game') 

 

# Main game loop 
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running = True 

while running: 

    # Handle events 

    for event in pygame.event.get(): 

        if event.type == pygame.QUIT: 

            running = False 

     

    # Clear the screen 

    screen.fill((255, 255, 255)) 

     

    # Draw a rectangle 

    pygame.draw.rect(screen, (255, 0, 0), 

pygame.Rect(100, 100, 50, 50)) 

     

    # Update the screen 

    pygame.display.flip() 

# Quit Pygame 

pygame.quit() 

 

Matplotlib: Matplotlib is a Python library for data visualization. Matplotlib provides tools for 

creating a wide range of plots and charts, including line plots, scatter plots, bar charts, and more. 

Example code for importing and using Matplotlib: 

 
import matplotlib.pyplot as plt 

 

# Generate some data 

x = [1, 2, 3, 4, 5] 

y = [1, 4, 9, 16, 25] 

 

# Create a line plot 

plt.plot(x, y) 

 

# Set the plot title and axis labels 

plt.title('My Plot') 

plt.xlabel('X') 

plt.ylabel('Y') 

 

# Show the plot 

plt.show() 

 

NumPy: NumPy is a Python library for numerical computing. NumPy provides tools for working 

with large arrays and matrices of numerical data, and for performing mathematical operations on 

these arrays and matrices. 

Example code for importing and using NumPy: 
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import numpy as np 

 

# Create a NumPy array 

arr = np.array([1, 2, 3, 4, 5]) 

 

# Perform mathematical operations on the array 

arr_squared = arr ** 2 

arr_sum = arr.sum() 

 

# Print the results 

print(arr_squared) 

print(arr_sum) 

 

Requests: Requests is a Python library for making HTTP requests. Requests provides tools for 

sending and receiving HTTP requests and responses, and for working with web APIs and web 

data. 

Example code for importing and using Requests: 

 
import requests 

 

# Send an HTTP GET request 

response = 

requests.get('https://api.github.com/users/octocat/repo

s') 

 

# Check the response status code 

if response.status_code == 200: 

    # Get the response data as a JSON object 

    data = response.json() 

     

    # Loop over the data and print each repository name 

    for repo in data: 

        print(repo['name']) 

else: 

    # Handle error 

    print('Error: Failed to retrieve data') 

 

 

Pandas: Pandas is a Python library for data manipulation and analysis. Pandas provides tools for 

working with tabular data (i.e., data in rows and columns) and performing operations on this 

data. 

Example code for importing and using Pandas: 
 

import pandas as pd 
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# Create a Pandas dataframe 

data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dave'], 

'Age': [25, 30, 35, 40]} 

df = pd.DataFrame(data) 

 

# Perform operations on the dataframe 

df_filtered = df[df['Age'] > 30] 

df_sorted = df.sort_values('Age') 

 

# Print the results 

print(df_filtered) 

print(df_sorted) 

 

Scikit-learn: Scikit-learn is a Python library for machine learning. Scikit-learn provides tools for 

building and training machine learning models, as well as tools for evaluating and using these 

models. 

Example code for importing and using Scikit-learn: 
 

from sklearn import datasets 

from sklearn.linear_model import LinearRegression 

 

# Load the diabetes dataset 

diabetes = datasets.load_diabetes() 

 

# Get the features and target variables 

X = diabetes.data 

y = diabetes.target 

 

# Train a linear regression model 

model = LinearRegression() 

model.fit(X, y) 

 

# Use the model to make predictions 

y_pred = model.predict(X[:5]) 

 

# Print the results 

print(y_pred) 

 

TensorFlow: TensorFlow is a Python library for machine learning and artificial intelligence. 

TensorFlow provides tools for building and training deep neural networks, as well as tools for 

evaluating and using these models. 

Example code for importing and using TensorFlow: 

 
import tensorflow as tf 
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# Create a simple neural network 

model = tf.keras.Sequential([ 

    tf.keras.layers.Dense(64, activation='relu', 

input_shape=(784,)), 

    tf.keras.layers.Dense(10, activation='softmax') 

]) 

 

# Compile the model 

model.compile(optimizer='adam', 

              loss='categorical_crossentropy', 

              metrics=['accuracy']) 

 

# Train the model 

model.fit(x_train, y_train, epochs=5) 

 

# Use the model to make predictions 

y_pred = model.predict(x_test) 

 

# Print the results 

print(y_pred) 

 

 

Flask: Flask is a Python web framework that allows you to build web applications quickly and 

easily. Flask provides tools for routing, handling HTTP requests and responses, and rendering 

HTML templates. 

Example code for importing and using Flask: 

 
from flask import Flask, render_template 

 

app = Flask(__name__) 

 

# Define a route for the homepage 

@app.route('/') 

def index(): 

    return render_template('index.html') 

 

# Define a route for a contact page 

@app.route('/contact') 

def contact(): 

    return render_template('contact.html') 

 

# Run the app 

if __name__ == '__main__': 
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    app.run(debug=True) 

 

Pygame: Pygame is a Python library for building games and multimedia applications. Pygame 

provides tools for handling graphics, input events, sound, and more. 

Example code for importing and using Pygame: 

 
import pygame 

 

# Initialize Pygame 

pygame.init() 

 

# Create a Pygame window 

screen = pygame.display.set_mode((640, 480)) 

 

# Set the window title 

pygame.display.set_caption('My Pygame Window') 

 

# Run the Pygame loop 

running = True 

while running: 

    for event in pygame.event.get(): 

        if event.type == pygame.QUIT: 

            running = False 

 

    # Draw something on the screen 

    pygame.draw.rect(screen, (255, 0, 0), (100, 100, 

200, 200)) 

 

    # Update the display 

    pygame.display.update() 

 

# Quit Pygame 

pygame.quit() 

 

 

BeautifulSoup: BeautifulSoup is a Python library for parsing HTML and XML documents. 

BeautifulSoup provides tools for extracting data from HTML and XML documents, such as 

finding specific elements and attributes. 

Example code for importing and using BeautifulSoup: 

 
from bs4 import BeautifulSoup 

import requests 

 

# Get the HTML content of a webpage 
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url = 'https://www.example.com' 

response = requests.get(url) 

html_content = response.content 

 

# Parse the HTML content with BeautifulSoup 

soup = BeautifulSoup(html_content, 'html.parser') 

 

# Find a specific element in the HTML content 

element = soup.find('h1') 

 

# Print the text content of the element 

print(element.text) 

 

NumPy: NumPy is a Python library for numerical computing. NumPy provides tools for working 

with large, multi-dimensional arrays and matrices, and for performing mathematical operations 

on these arrays efficiently. 

Example code for importing and using NumPy: 
 

import numpy as np 

 

# Create a NumPy array 

a = np.array([[1, 2], [3, 4]]) 

 

# Perform a mathematical operation on the array 

b = a * 2 

 

# Print the resulting array 

print(b) 

 

Pandas: Pandas is a Python library for data manipulation and analysis. Pandas provides tools for 

reading and writing data in various formats, such as CSV and Excel, and for performing 

operations on the data, such as filtering, grouping, and joining. 

Example code for importing and using Pandas: 

 
import pandas as pd 

 

# Read a CSV file into a Pandas dataframe 

df = pd.read_csv('data.csv') 

 

# Filter the dataframe by a condition 

filtered_df = df[df['column'] > 10] 

 

# Group the dataframe by a column and calculate the 

mean of another column 
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grouped_df = df.groupby('column1')['column2'].mean() 

 

# Join two dataframes on a common column 

joined_df = pd.merge(df1, df2, on='common_column') 

 

# Write the resulting dataframe to a CSV file 

joined_df.to_csv('result.csv', index=False) 

 

Matplotlib: Matplotlib is a Python library for creating visualizations, such as charts, graphs, and 

plots. Matplotlib provides tools for creating and customizing these visualizations, and for adding 

labels and annotations to them. 

Example code for importing and using Matplotlib: 
 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Create a NumPy array for the x-axis data 

x = np.arange(0, 10, 0.1) 

 

# Create a NumPy array for the y-axis data 

y = np.sin(x) 

 

# Create a Matplotlib plot with the x-axis and y-axis 

data 

plt.plot(x, y) 

 

# Add a title and labels to the plot 

plt.title('Sinusoidal Plot') 

plt.xlabel('x-axis') 

plt.ylabel('y-axis') 

 

# Show the plot 

plt.show() 

 

 

Scikit-learn: Scikit-learn is a Python library for machine learning. Scikit-learn provides tools for 

various machine learning tasks, such as classification, regression, clustering, and dimensionality 

reduction. It also includes tools for data preprocessing, cross-validation, and model selection. 

Example code for importing and using Scikit-learn: 

 
from sklearn.datasets import load_iris 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 
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# Load the iris dataset 

iris = load_iris() 

 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(iris.data, iris.target, test_size=0.2) 

 

# Create a logistic regression model and fit it to the 

training data 

model = LogisticRegression() 

model.fit(X_train, y_train) 

 

# Use the model to predict the classes of the testing 

data 

y_pred = model.predict(X_test) 

 

# Print the accuracy of the model 

print("Accuracy:", model.score(X_test, y_test)) 

 

TensorFlow: TensorFlow is a Python library for building and training machine learning models, 

particularly deep learning models. TensorFlow provides tools for building and manipulating 

complex graphs of mathematical operations, which can be executed efficiently on CPUs or 

GPUs. It also includes tools for data preprocessing, model evaluation, and deployment. 

Example code for importing and using TensorFlow: 

 
import tensorflow as tf 

import numpy as np 

 

# Create a TensorFlow graph for a simple linear 

regression model 

x = tf.placeholder(tf.float32) 

y = tf.placeholder(tf.float32) 

W = tf.Variable(0.0) 

b = tf.Variable(0.0) 

y_pred = W * x + b 

loss = tf.reduce_mean(tf.square(y_pred - y)) 

optimizer = tf.train.GradientDescentOptimizer(0.01) 

train_op = optimizer.minimize(loss) 

 

# Generate some random data for the model 

x_data = np.random.randn(100) 

y_data = 2 * x_data + 1 + np.random.randn(100) * 0.1 

 

# Train the model on the data 
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with tf.Session() as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range(1000): 

        _, loss_val = sess.run([train_op, loss], 

feed_dict={x: x_data, y: y_data}) 

        if i % 100 == 0: 

            print("Step:", i, "Loss:", loss_val) 

 

    # Use the trained model to make predictions 

    y_pred_val = sess.run(y_pred, feed_dict={x: [1, 2, 

3]}) 

    print("Predictions:", y_pred_val) 

 

Keras: Keras is a high-level neural network API that runs on top of TensorFlow or other backend 

engines. Keras provides a simplified interface for building and training neural networks, with 

tools for creating various types of layers and models, and for compiling and fitting models to 

data. 

Example code for importing and using Keras: 

 
import keras 

from keras.models import Sequential 

from keras.layers import Dense 

 

# Create a Keras model for a simple neural network 

model = Sequential() 

model.add(Dense(32, activation='relu', input_dim=100)) 

model.add(Dense(1, activation='sigmoid')) 

 

# Compile the model with an optimizer and loss function 

model.compile(optimizer='rmsprop', 

loss='binary_crossentropy', metrics=['accuracy']) 

 

# Generate some random data for the model 

import numpy as np 

data = np.random.random((1000, 100)) 

labels = np.random.randint(2, size=(1000, 1)) 

 

# Train the model on the data 

model.fit(data, labels, epochs=10, batch]} 
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Lists 
 

Python is a popular, high-level programming language used for various purposes, including data 

analysis, machine learning, web development, and more. In recent years, Python has become 

increasingly popular among data analysts, replacing traditional tools like SAS and R. As a result, 

many SAS users are looking to learn Python to expand their skill set and stay up-to-date with the 

latest trends in data analysis. 

 

If you are a SAS user looking to learn Python, it can be helpful to start by understanding some of 

the similarities and differences between the two languages. While both Python and SAS are used 

for data analysis, there are some key differences in their syntax, approach, and functionality. For 

example, Python is a more general-purpose programming language, while SAS is specifically 

designed for statistical analysis. Additionally, Python is an open-source language, while SAS is a 

proprietary tool that requires a license. 

 

Despite these differences, there are many ways that Python and SAS can be used together to 

enhance your data analysis capabilities. One of the most useful features of Python is its ability to 

work with a wide range of data formats, including Excel spreadsheets, SQL databases, and even 

SAS datasets. By using Python with SAS, you can take advantage of the strengths of both tools 

to create more sophisticated analyses and visualizations. 

 

One of the key features of Python is its use of lists, which are a type of data structure used to 

store collections of items. In Python, lists are similar to arrays in other programming languages, 

but they offer some additional flexibility and functionality. For example, lists can be resized 

dynamically, which means that you can add or remove items from the list as needed. 

Additionally, Python lists can contain any type of data, including numbers, strings, and even 

other lists. 

 

To work with lists in Python, you can use a variety of built-in functions and methods. Some of 

the most commonly used functions for working with lists include len(), which returns the length 

of a list; min() and max(), which return the smallest and largest values in a list, respectively; and 

sum(), which returns the sum of all the values in a list. Additionally, Python lists support a 

variety of methods for manipulating and accessing the data in the list, including append(), which 

adds an item to the end of the list; insert(), which adds an item at a specific position in the list; 

and pop(), which removes an item from the list. 

 

As a SAS user, you may find that working with lists in Python can be a useful way to organize 

and manipulate your data. For example, you might use a list to store a collection of values that 

represent a variable in your dataset. By working with lists in Python, you can easily perform 

operations on these values, such as calculating the mean or standard deviation. Additionally, you 

can use Python's built-in functions and methods to sort, filter, and transform your data in a 

variety of ways. 

 

Overall, learning to work with lists in Python can be a valuable skill for SAS users who want to 

expand their data analysis capabilities. By understanding how lists work and how to use them 
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effectively, you can take advantage of the power and flexibility of Python to enhance your data 

analysis workflows. In addition to lists, there are several other Python data structures that can be 

useful for SAS users to learn. One of these is the dictionary, which is a collection of key-value 

pairs. Dictionaries can be used to store and manipulate data in a way that is similar to SAS data 

sets, and they offer a lot of flexibility and functionality for data analysis tasks. 

 

In Python, dictionaries are created using curly braces {} and can contain any combination of 

keys and values. Keys must be unique and can be any immutable data type, such as a string or a 

number. Values can be any data type, including lists or other dictionaries. To access values in a 

dictionary, you can use the keys as the index. 

 

Python for SAS Users: A SAS-Oriented Introduction to Python is a book that introduces SAS 

users to the Python programming language. The book focuses on the similarities and differences 

between the two languages, and provides a comprehensive guide for SAS users who want to 

learn Python. 

 

One of the fundamental data structures in Python is the list. A list is an ordered collection of 

elements that can be of any type, including other lists. Lists are mutable, which means that they 

can be changed after they are created. 

 

To create a list in Python, you can use square brackets. For example, to create a list of integers, 

you can write: 

 
my_list = [1, 2, 3, 4, 5] 

 

You can also create a list of strings: 
 

my_list = ["apple", "banana", "cherry"] 

 

To access an element in a list, you can use its index. The index of the first element in a list is 0, 

and the index of the last element is the length of the list minus one. For example, to access the 

first element of the list my_list, you can write: 

 
first_element = my_list[0] 

 

To add an element to a list, you can use the append() method. For example, to add the string 

"orange" to the end of the list my_list, you can write: 

 
my_list.append("orange") 

 

To remove an element from a list, you can use the remove() method. For example, to remove the 

string "banana" from the list my_list, you can write: 

 
my_list.remove("banana") 
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You can also use the pop() method to remove an element from a list by its index. For example, to 

remove the second element from the list my_list, you can write: 

 
second_element = my_list.pop(1) 

 

Lists can be used in a variety of ways in Python. For example, you can use them to store data, to 

represent matrices, and to implement stacks and queues. 

 

In addition to lists, Python provides several other built-in data structures, including tuples, sets, 

and dictionaries. Each of these data structures has its own unique features and can be used in 

different ways. 

 

Here is an example of Python code that demonstrates some of the basic operations on lists: 

 
# create a list of integers 

my_list = [1, 2, 3, 4, 5] 

 

# create a list of strings 

fruit_list = ["apple", "banana", "cherry"] 

 

# access an element in a list 

first_fruit = fruit_list[0] 

print("The first fruit is:", first_fruit) 

 

# add an element to a list 

fruit_list.append("orange") 

print("The updated fruit list is:", fruit_list) 

 

# remove an element from a list 

fruit_list.remove("banana") 

print("The updated fruit list is:", fruit_list) 

 

# remove an element from a list by its index 

second_fruit = fruit_list.pop(1) 

print("The second fruit is:", second_fruit) 

print("The updated fruit list is:", fruit_list) 

 

# create a list of lists 

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 

 

# access an element in a list of lists 

second_row = matrix[1] 

print("The second row of the matrix is:", second_row) 
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# access an element in a list of lists using nested 

indexing 

element = matrix[1][2] 

 

print("The element in the second row and third column of the matrix is:", element) 

In this code, we first create a list of integers called my_list and a list of strings called fruit_list. 

We then access the first element of fruit_list using indexing and print it to the console. 

 

Next, we add the string "orange" to fruit_list using the append() method and print the updated list 

to the console. We then remove the string "banana" from fruit_list using the remove() method 

and print the updated list again. 

 

We then remove the second element of fruit_list (which is "cherry") using the pop() method and 

store it in the variable second_fruit. We print second_fruit to the console to verify that it is the 

correct value, and then print fruit_list again to see the updated list. 

 

Next, we create a list of lists called matrix and access the second row of the matrix using 

indexing. We print the second row to the console to verify that it is the correct value. 

 

In addition to the basic list operations shown in the previous code example, there are many other 

ways to manipulate lists in Python. Here are a few more examples: 
 

# concatenate two lists 

list1 = [1, 2, 3] 

list2 = [4, 5, 6] 

concatenated_list = list1 + list2 

print("The concatenated list is:", concatenated_list) 

 

# sort a list 

unsorted_list = [3, 1, 4, 2, 5] 

sorted_list = sorted(unsorted_list) 

print("The sorted list is:", sorted_list) 

 

# reverse a list 

original_list = [1, 2, 3, 4, 5] 

reversed_list = list(reversed(original_list)) 

print("The reversed list is:", reversed_list) 

 

# count the occurrences of an element in a list 

count_list = [1, 2, 2, 3, 3, 3] 

num_twos = count_list.count(2) 

num_threes = count_list.count(3) 

print("The number of twos in the list is:", num_twos) 
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print("The number of threes in the list is:", 

num_threes) 

 

In the first example, we concatenate two lists (list1 and list2) using the + operator and store the 

result in concatenated_list. We print concatenated_list to the console to verify that it contains all 

of the elements from list1 and list2. 

 

In the second example, we create an unsorted list called unsorted_list and sort it using the 

sorted() function. We store the sorted list in sorted_list and print it to the console to verify that it 

is sorted. 

 

In the third example, we create an original list called original_list and reverse it using the 

reversed() function. We then convert the reversed iterator to a list using the list() function and 

store the result in reversed_list. We print reversed_list to the console to verify that it is the 

reverse of original_list. 

 

In the fourth example, we create a list called count_list that contains multiple occurrences of the 

values 1, 2, and 3. We then use the count() method to count the number of occurrences of the 

values 2 and 3 in count_list, and print the results to the console. 

 

Here are a few more examples of list operations in Python: 

 
# find the index of an element in a list 

fruits = ["apple", "banana", "cherry"] 

index_of_banana = fruits.index("banana") 

print("The index of 'banana' in the list is:", 

index_of_banana) 

 

# insert an element into a list at a specific index 

nums = [1, 2, 3, 4, 5] 

nums.insert(2, 2.5) 

print("The updated list is:", nums) 

 

# extend a list with another list 

list1 = [1, 2, 3] 

list2 = [4, 5, 6] 

list1.extend(list2) 

print("The extended list is:", list1) 

 

# slice a list to create a new list 

original_list = [1, 2, 3, 4, 5] 

sliced_list = original_list[1:4] 

print("The sliced list is:", sliced_list) 
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In the first example, we have a list of fruits and we use the index() method to find the index of 

"banana" in the list. We print the result to the console. 

 

In the second example, we have a list of numbers and we use the insert() method to insert the 

value 2.5 into the list at index 2. We print the updated list to the console. 

 

In the third example, we have two lists (list1 and list2) and we use the extend() method to add the 

elements of list2 to list1. We print the extended list to the console. 

 

In the fourth example, we have a list of numbers and we use slicing to create a new list that 

contains only the elements with indices 1 through 3. We print the sliced list to the console. 

 

Here are a few more examples of list operations in Python: 

 
# remove the first occurrence of an element in a list 

nums = [1, 2, 3, 2, 4] 

nums.remove(2) 

print("The updated list is:", nums) 

 

# remove an element from a list by index 

nums = [1, 2, 3, 4, 5] 

removed_num = nums.pop(2) 

print("The updated list is:", nums) 

print("The removed element is:", removed_num) 

 

# create a list of numbers using a loop 

squares = [] 

for i in range(1, 6): 

    squares.append(i**2) 

print("The list of squares is:", squares) 

 

# create a list of numbers using a list comprehension 

squares = [i**2 for i in range(1, 6)] 

print("The list of squares is:", squares) 

 

In the first example, we have a list of numbers and we use the remove() method to remove the 

first occurrence of the value 2 from the list. We print the updated list to the console. 

 

In the second example, we have a list of numbers and we use the pop() method to remove the 

element at index 2 from the list and store it in the variable removed_num. We print the updated 

list and the removed element to the console. 

 

In the third example, we create an empty list called squares and use a for loop to append the 

squares of the numbers 1 through 5 to the list. We print the list of squares to the console. 
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In the fourth example, we use a list comprehension to create the same list of squares as in the 

previous example. The list comprehension is a more concise and readable way to create a list 

based on a simple pattern. 

 

Here are a few more examples of list operations in Python: 

 
# sort a list of strings alphabetically 

fruits = ["apple", "cherry", "banana"] 

fruits.sort() 

print("The sorted list is:", fruits) 

 

# sort a list of numbers in descending order 

nums = [3, 6, 1, 8, 2] 

nums.sort(reverse=True) 

print("The sorted list is:", nums) 

 

# reverse the order of a list 

letters = ["a", "b", "c", "d"] 

letters.reverse() 

print("The reversed list is:", letters) 

 

# check if an element is in a list 

nums = [1, 2, 3, 4, 5] 

if 3 in nums: 

    print("3 is in the list.") 

else: 

    print("3 is not in the list.") 

 

In the first example, we have a list of strings and we use the sort() method to sort the list 

alphabetically. We print the sorted list to the console. 

 

In the second example, we have a list of numbers and we use the sort() method with the 

reverse=True argument to sort the list in descending order. We print the sorted list to the console. 

 

In the third example, we have a list of letters and we use the reverse() method to reverse the 

order of the list. We print the reversed list to the console. 

 

In the fourth example, we have a list of numbers and we use an if statement with the in operator 

to check if the value 3 is in the list. We print the result to the console. 
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Tuples 
 

In Python, a tuple is an immutable sequence of objects. It is similar to a list, but once a tuple is 

created, its contents cannot be modified. Tuples are often used to represent fixed collections of 

related data, such as a point in 2D space or a date (year, month, day). 

 

Tuples are defined using parentheses () and the objects inside the tuple are separated by commas. 

Here's an example: 

 
my_tuple = (1, 2, 3, "hello", True) 

 

In this example, my_tuple is a tuple containing five objects: the integers 1, 2, and 3, the string 

"hello", and the boolean value True. 

 

Tuples can also be created without using parentheses, as long as there is more than one object in 

the tuple: 

 
my_tuple = 1, 2, 3 

 

In this case, my_tuple is still a tuple containing the integers 1, 2, and 3. 

 

Accessing elements in a tuple is similar to accessing elements in a list. You can use square 

brackets and an index to access a specific element: 

 
my_tuple = (1, 2, 3, "hello", True) 

print(my_tuple[0])  # prints 1 

print(my_tuple[3])  # prints "hello" 

 

You can also use slicing to access a range of elements: 

 
my_tuple = (1, 2, 3, "hello", True) 

print(my_tuple[1:4])  # prints (2, 3, "hello") 

 

Tuples are often used to return multiple values from a function: 

 
def get_name_and_age(): 

    name = "Alice" 

    age = 30 

    return name, age 

 

name, age = get_name_and_age() 

print(name)  # prints "Alice" 

print(age)  # prints 30 
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In this example, get_name_and_age returns a tuple containing the name and age. The function 

call name, age = get_name_and_age() assigns the first value in the tuple to name and the second 

value to age. 

 

In SAS, the equivalent of a tuple is a SAS data set. However, unlike tuples in Python, SAS data 

sets are mutable and can be modified after they are created. Additionally, SAS data sets are 

usually much larger than tuples, and are used for storing and analyzing large amounts of data. 

 

Overall, tuples in Python are a useful data structure for representing fixed collections of related 

data, and can be used in a variety of ways in Python programming. 

 

In Python, a tuple is an immutable sequence of objects. It is similar to a list, but once a tuple is 

created, its contents cannot be modified. Tuples are often used to represent fixed collections of 

related data, such as a point in 2D space or a date (year, month, day). 

 

Tuples are defined using parentheses () and the objects inside the tuple are separated by commas. 

Here's an example: 
 

my_tuple = (1, 2, 3, "hello", True) 

 

In this example, my_tuple is a tuple containing five objects: the integers 1, 2, and 3, the string 

"hello", and the boolean value True. 

 

Tuples can also be created without using parentheses, as long as there is more than one object in 

the tuple: 
 

my_tuple = 1, 2, 3 

 

In this case, my_tuple is still a tuple containing the integers 1, 2, and 3. 

 

Accessing elements in a tuple is similar to accessing elements in a list. You can use square 

brackets and an index to access a specific element: 
 

my_tuple = (1, 2, 3, "hello", True) 

print(my_tuple[0])  # prints 1 

print(my_tuple[3])  # prints "hello" 

 

You can also use slicing to access a range of elements: 
 

my_tuple = (1, 2, 3, "hello", True) 

print(my_tuple[1:4])  # prints (2, 3, "hello") 

 

Tuples are often used to return multiple values from a function: 
def get_name_and_age(): 

    name = "Alice" 
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    age = 30 

    return name, age 

 

name, age = get_name_and_age() 

print(name)  # prints "Alice" 

print(age)  # prints 30 

 

In this example, get_name_and_age returns a tuple containing the name and age. The function 

call name, age = get_name_and_age() assigns the first value in the tuple to name and the second 

value to age. 

 

In SAS, the equivalent of a tuple is a SAS data set. However, unlike tuples in Python, SAS data 

sets are mutable and can be modified after they are created. Additionally, SAS data sets are 

usually much larger than tuples, and are used for storing and analyzing large amounts of data. 

 

Overall, tuples in Python are a useful data structure for representing fixed collections of related 

data, and can be used in a variety of ways in Python programming. 

 

 

here's an example of some code that uses tuples in Python: 

 
def get_point(): 

    x = 1 

    y = 2 

    return x, y 

 

point = get_point() 

print(point)  # prints (1, 2) 

print(point[0])  # prints 1 

print(point[1])  # prints 2 

 

In this example, the get_point function creates two variables x and y and returns them as a tuple. 

The point variable is assigned to the tuple returned by get_point, which is (1, 2) in this case. 

 

The print statements demonstrate how to access individual elements of the tuple using indexing. 

point[0] retrieves the first element of the tuple (1), and point[1] retrieves the second element of 

the tuple (2). 

 

 

Here's another example that uses tuples to return multiple values from a function: 

 
def get_name_and_age(): 

    name = "Alice" 

    age = 30 

    return name, age 
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name, age = get_name_and_age() 

print(name)  # prints "Alice" 

print(age)  # prints 30 

 

In this example, the get_name_and_age function creates two variables name and age and returns 

them as a tuple. The name and age variables are assigned to the tuple returned by 

get_name_and_age, using tuple unpacking. 

 

The print statements demonstrate how to access the individual values returned by the function, 

which are assigned to the name and age variables respectively. 

 

Here's another example of using tuples in Python: 

 
def get_numbers(): 

    return (1, 2, 3, 4, 5) 

 

numbers = get_numbers() 

 

# iterate over the tuple using a for loop 

for number in numbers: 

    print(number) 

 

# get the length of the tuple 

print(len(numbers)) 

 

# check if a value is in the tuple 

print(3 in numbers) 

 

# concatenate two tuples 

more_numbers = (6, 7, 8) 

all_numbers = numbers + more_numbers 

print(all_numbers) 

 

In this example, the get_numbers function returns a tuple containing five integer values. The 

numbers variable is assigned to this tuple, and various operations are performed on it. 

 

The for loop demonstrates how to iterate over the elements of a tuple using a loop. The len 

function returns the number of elements in the tuple. The in operator checks whether a given 

value is in the tuple. 

 

Finally, the + operator can be used to concatenate two tuples, creating a new tuple that contains 

all the elements of both tuples. 
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Tuples are often used to group related data together into a single, immutable object. For example, 

you might use a tuple to represent a point in two-dimensional space, with the x-coordinate and y-

coordinate stored as the two elements of the tuple: 

 
point = (3, 4) 

 

This tuple can be passed to a function that expects a point as input, or it can be used as a key in a 

dictionary to store additional information about the point. 

 

Tuples can also be used to return multiple values from a function, as shown in the previous 

examples. This can be a convenient way to package related data together, instead of returning 

multiple separate variables. 

 

Here’s another example of using tuples in Python to sort a list of tuples based on one of the 

values in each tuple: 

 
students = [("Alice", 22), ("Bob", 20), ("Charlie", 

25)] 

 

# sort the list of tuples by age (the second element of 

each tuple) 

students_sorted_by_age = sorted(students, key=lambda x: 

x[1]) 

 

# print the sorted list of tuples 

print(students_sorted_by_age) 

 

In this example, we have a list of tuples, where each tuple represents a student's name and age. 

We want to sort the list of tuples based on the age of each student, so we use the sorted function 

with a key argument that tells it to sort the list based on the second element of each tuple (x[1]). 

 

The lambda keyword is used to define an anonymous function that takes a single argument x and 

returns x[1]. This function is used as the key argument to the sorted function, which uses it to 

determine the order of the tuples in the sorted list. 

 

The resulting students_sorted_by_age variable is a new list of tuples, sorted by the age of each 

student. 

Tuples can also be used as keys in dictionaries, as shown in the following example: 

 
colors = {("red", 255, 0, 0): "red", ("green", 0, 255, 

0): "green", ("blue", 0, 0, 255): "blue"} 

 

# get the color name for the (red, 255, 0, 0) tuple 

color_name = colors[("red", 255, 0, 0)] 
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# print the color name 

print(color_name) 

 

In this example, we have a dictionary where the keys are tuples representing RGB color values, 

and the values are color names. We can use a tuple as a key in a dictionary to associate additional 

information with the tuple. 

 

The color_name variable is assigned the value of the dictionary at the key ("red", 255, 0, 0), 

which is the string "red". We can use the tuple as a key to retrieve the associated value from the 

dictionary. 

 

Tuples can also be used to return multiple values from a function, as shown in the previous 

examples. This can be a convenient way to package related data together, instead of returning 

multiple separate variables 

 

Here's another example of using tuples in Python to swap the values of two variables: 

 
a = 5 

b = 10 

 

# swap the values of a and b using a tuple 

a, b = b, a 

 

# print the new values of a and b 

print(a)  # 10 

print(b)  # 5 

 

In this example, we have two variables a and b with initial values of 5 and 10, respectively. We 

want to swap the values of these variables, so we use a tuple to accomplish this in a single line of 

code. 

 

The syntax a, b = b, a creates a tuple with the values of b and a, respectively, and then 

immediately unpacks this tuple into the variables a and b. This effectively swaps the values of 

the two variables in a single step. 

 

The resulting values of a and b are printed to the console, which shows that the values have been 

successfully swapped. 

Tuples can also be used to unpack values from functions that return multiple values, as shown in 

the following example: 

 
def get_student_info(): 

    name = "Alice" 

    age = 22 

    major = "Computer Science" 

    return name, age, major 
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# unpack the values returned by the function into 

separate variables 

student_name, student_age, student_major = 

get_student_info() 

 

# print the values of the variables 

print(student_name)   # Alice 

print(student_age)    # 22 

print(student_major)  # Computer Science 

 

In this example, we have a function get_student_info that returns three values: the student's 

name, age, and major. We use a tuple to package these values together and return them from the 

function. 

 

When we call the function, we use the syntax student_name, student_age, student_major = 

get_student_info() to unpack the tuple into three separate variables. This assigns the value of the 

first element of the tuple to student_name, the second element to student_age, and the third 

element to student_major. 

 

Here's another example of using tuples in Python to create a named tuple: 

 
from collections import namedtuple 

 

# define a named tuple type 

Person = namedtuple("Person", ["name", "age", 

"gender"]) 

 

# create a new Person named tuple 

person1 = Person(name="Alice", age=22, gender="female") 

 

# print the values of the person1 named tuple 

print(person1.name)    # Alice 

print(person1.age)     # 22 

print(person1.gender)  # female 

In this example, we use the namedtuple function from the collections module to create a new 

named tuple type called Person. The first argument to the namedtuple function is the name of the 

named tuple type, and the second argument is a list of field names. Unlike dictionaries, named 

tuples are immutable, which can make them safer to use in some contexts where we don't want 

the values to be accidentally changed. 

 

Here's another example of using tuples in Python to iterate over multiple sequences 

simultaneously: 

 
names = ["Alice", "Bob", "Charlie"] 
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ages = [22, 30, 45] 

genders = ["female", "male", "male"] 

 

# iterate over the sequences simultaneously using zip() 

for name, age, gender in zip(names, ages, genders): 

    print(name, age, gender) 

 

In this example, we have three sequences: names, ages, and genders, each with a different set of 

values. We want to iterate over all three sequences simultaneously and print the values for each 

element. 

 

We use the zip() function to combine the three sequences into a single sequence of tuples, where 

each tuple contains one value from each sequence. We then use a for loop to iterate over this 

sequence of tuples. 

 

Inside the loop, we use tuple unpacking to assign the values from each tuple to separate 

variables. This allows us to print the values for each element in a structured way, with the name, 

age, and gender all printed on the same line. 

 

We then create a new Person named tuple by specifying the values for each field using keyword 

arguments. This creates a new named tuple with the specified values for each field. 

 

 

 

Dictionaries 
 

Dictionaries are a built-in data structure in Python that allow you to store and access data in a 

way that is both flexible and efficient. In essence, a dictionary is a collection of key-value pairs, 

where each key is unique and associated with a corresponding value. 

 

In Python, dictionaries are created using curly braces {} and separating each key-value pair with 

a colon :. For example, the following code creates a simple dictionary: 

 
my_dict = {"apple": 3, "banana": 5, "orange": 2} 

 

In this dictionary, the keys are "apple", "banana", and "orange", and the corresponding values are 

3, 5, and 2. 

 

You can access the value associated with a particular key using the square bracket notation. For 

example, to get the value associated with the key "banana", you would use the following code: 

 
print(my_dict["banana"])   # Output: 5 
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You can also modify the value associated with a key using the same square bracket notation. For 

example, the following code increases the value associated with the key "apple" by 1: 

 
my_dict["apple"] += 1 

print(my_dict)   # Output: {"apple": 4, "banana": 5, 

"orange": 2} 

 

In addition to storing simple values like numbers and strings, dictionaries can also store more 

complex data structures like lists and other dictionaries. For example, the following code creates 

a dictionary where the values are lists: 

 
 

my_dict = {"apple": [3, 4, 5], "banana": [5, 6, 7], 

"orange": [2, 3, 4]} 

 

You can access individual elements of these lists using the same square bracket notation as 

before. For example, to get the second element of the list associated with the key "apple", you 

would use the following code: 

 
print(my_dict["apple"][1])   # Output: 4 

 

You can also add new key-value pairs to a dictionary using the square bracket notation. For 

example, the following code adds a new key-value pair to the dictionary: 

 
my_dict["grape"] = [1, 2, 3] 

print(my_dict)   # Output: {"apple": [3, 4, 5], 

"banana": [5, 6, 7], "orange": [2, 3, 4], "grape": [1, 

2, 3]} 

 

Dictionaries are a powerful and flexible data structure in Python that allow you to store and 

access data in a way that is both efficient and easy to use. They are especially useful when you 

need to associate values with unique keys, or when you need to store more complex data 

structures like lists and other dictionaries. here's some more information about dictionaries in 

Python: 

Dictionary keys must be immutable: In Python, dictionary keys must be immutable, which 

means they cannot be changed once they are created. This is because the dictionary uses the 

key's hash value to look up the corresponding value, and if the key were mutable, its hash value 

could change, leading to incorrect lookups. 

 

Dictionary values can be mutable: Unlike dictionary keys, dictionary values can be mutable, 

which means they can be changed after they are created. This can be useful when you need to 

modify a value associated with a particular key. 

 

Dictionary methods: Python provides several built-in methods for working with dictionaries, 

including keys(), values(), and items(). These methods return views of the dictionary's keys, 
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values, and key-value pairs, respectively. You can also use the in keyword to check whether a 

key is in the dictionary. 

 

Dictionary comprehension: Python supports dictionary comprehension, which allows you to 

create dictionaries using a concise syntax. For example, the following code creates a dictionary 

of squares: 
 

squares = {x: x**2 for x in range(10)} 

print(squares)   # Output: {0: 0, 1: 1, 2: 4, 3: 9, 4: 

16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81} 

 

Dictionary sorting: Dictionaries in Python are inherently unordered, which means that the order 

in which key-value pairs are stored in the dictionary is not fixed. However, you can sort a 

dictionary by its keys using the sorted() function, which returns a list of key-value pairs sorted by 

key. 

 

Dictionary performance: Dictionaries in Python are implemented as hash tables, which means 

that accessing elements in a dictionary is usually very fast (O(1) time complexity on average). 

However, the performance of a dictionary can degrade if it becomes too large or if the hash 

function used to compute keys is not well-distributed. 

 

Overall, dictionaries are a versatile and powerful data structure in Python that can be used to 

store and manipulate a wide range of data types. They are commonly used in Python 

programming, especially when dealing with large datasets or complex data structures. 

 

Here's an example code that demonstrates various operations on dictionaries in Python: 
 

# Creating a dictionary 

my_dict = {"apple": 3, "banana": 5, "orange": 2} 

 

# Accessing a value 

print(my_dict["banana"])   # Output: 5 

 

# Modifying a value 

my_dict["apple"] += 1 

print(my_dict)   # Output: {"apple": 4, "banana": 5, 

"orange": 2} 

 

# Adding a new key-value pair 

my_dict["grape"] = 6 

print(my_dict)   # Output: {"apple": 4, "banana": 5, 

"orange": 2, "grape": 6} 

 

# Creating a dictionary with lists as values 
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my_dict2 = {"apple": [3, 4, 5], "banana": [5, 6, 7], 

"orange": [2, 3, 4]} 

 

# Accessing an element of a list in the dictionary 

print(my_dict2["apple"][1])   # Output: 4 

 

# Using dictionary methods 

print(my_dict.keys())   # Output: dict_keys(['apple', 

'banana', 'orange', 'grape']) 

print(my_dict.values())   # Output: dict_values([4, 5, 

2, 6]) 

print(my_dict.items())   # Output: 

dict_items([('apple', 4), ('banana', 5), ('orange', 2), 

('grape', 6)]) 

print("banana" in my_dict)   # Output: True 

 

# Using dictionary comprehension 

squares = {x: x**2 for x in range(10)} 

print(squares)   # Output: {0: 0, 1: 1, 2: 4, 3: 9, 4: 

16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81} 

 

# Sorting a dictionary by key 

sorted_dict = {k: v for k, v in 

sorted(my_dict.items())} 

print(sorted_dict)   # Output: {'apple': 4, 'banana': 

5, 'grape': 6, 'orange': 2} 

 

This code creates two dictionaries, my_dict and my_dict2, and demonstrates various operations 

on them, including accessing values, modifying values, adding new key-value pairs, accessing 

elements of lists in the dictionary, using dictionary methods, using dictionary comprehension, 

and sorting the dictionary by key. 

 

Here are a few more examples of using dictionaries in Python: 
 

# Example 1: Counting the frequency of letters in a 

string 

my_string = "hello, world!" 

freq = {} 

for letter in my_string: 

    if letter in freq: 

        freq[letter] += 1 

    else: 

        freq[letter] = 1 
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print(freq)   # Output: {'h': 1, 'e': 1, 'l': 3, 'o': 

2, ',': 1, ' ': 1, 'w': 1, 'r': 1, 'd': 1, '!': 1} 

 

# Example 2: Creating a dictionary from two lists 

keys = ["apple", "banana", "orange"] 

values = [3, 5, 2] 

my_dict = {k: v for k, v in zip(keys, values)} 

print(my_dict)   # Output: {'apple': 3, 'banana': 5, 

'orange': 2} 

 

# Example 3: Removing a key from a dictionary 

del my_dict["banana"] 

print(my_dict)   # Output: {'apple': 3, 'orange': 2} 

 

# Example 4: Using the get() method to handle missing 

keys 

print(my_dict.get("banana", "not found"))   # Output: 

not found 

 

In Example 1, we create a dictionary to count the frequency of each letter in a string. We loop 

over each character in the string, and if the character is already in the dictionary, we increment 

its value by 1. Otherwise, we add the character to the dictionary with a value of 1. 

 

In Example 2, we create a dictionary from two lists, using the zip() function to combine 

corresponding elements from each list. 

 

In Example 3, we remove a key-value pair from the dictionary using the del keyword. 

 

In Example 4, we use the get() method to retrieve a value from the dictionary for a given key. If 

the key is not in the dictionary, the method returns a default value (in this case, the string "not 

found"). 

 

 

Here are a few more examples: 

 
# Example 5: Merging two dictionaries 

dict1 = {'a': 1, 'b': 2} 

dict2 = {'b': 3, 'c': 4} 

merged_dict = {**dict1, **dict2} 

print(merged_dict)  # Output: {'a': 1, 'b': 3, 'c': 4} 

 

# Example 6: Counting the frequency of words in a list 

of strings 
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sentences = ["This is a sentence.", "This is another 

sentence."] 

word_freq = {} 

for sentence in sentences: 

    words = sentence.split() 

    for word in words: 

        if word in word_freq: 

            word_freq[word] += 1 

        else: 

            word_freq[word] = 1 

print(word_freq)  # Output: {'This': 2, 'is': 2, 'a': 

1, 'sentence.': 2, 'another': 1} 

 

# Example 7: Using the setdefault() method to set 

default values 

my_dict = {'a': 1, 'b': 2} 

my_dict.setdefault('c', 3) 

print(my_dict)  # Output: {'a': 1, 'b': 2, 'c': 3} 

 

# Example 8: Updating a dictionary with another 

dictionary 

my_dict = {'a': 1, 'b': 2} 

update_dict = {'b': 3, 'c': 4} 

my_dict.update(update_dict) 

print(my_dict)  # Output: {'a': 1, 'b': 3, 'c': 4} 

 

In Example 5, we merge two dictionaries using the ** operator. When two dictionaries have the 

same key, the value from the second dictionary overwrites the value from the first dictionary. 

 

In Example 6, we count the frequency of words in a list of strings. We loop over each sentence in 

the list, split it into words, and increment the frequency count for each word in the word_freq 

dictionary. 

In Example 7, we use the setdefault() method to set a default value for a key that doesn't exist in 

the dictionary. If the key already exists, the method doesn't change the value. 

 

In Example 8, we update a dictionary with the key-value pairs from another dictionary using the 

update() method. If a key already exists in the original dictionary, the value from the second 

dictionary overwrites it. 

 

Here are a few more examples: 

 
# Example 9: Sorting a dictionary by value 

my_dict = {'a': 3, 'b': 1, 'c': 2} 
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sorted_dict = {k: v for k, v in sorted(my_dict.items(), 

key=lambda item: item[1])} 

print(sorted_dict)  # Output: {'b': 1, 'c': 2, 'a': 3} 

 

# Example 10: Creating a dictionary from a list of 

tuples 

my_list = [('a', 1), ('b', 2), ('c', 3)] 

my_dict = dict(my_list) 

print(my_dict)  # Output: {'a': 1, 'b': 2, 'c': 3} 

 

# Example 11: Finding the key with the maximum value in 

a dictionary 

my_dict = {'a': 3, 'b': 1, 'c': 2} 

max_key = max(my_dict, key=my_dict.get) 

print(max_key)  # Output: 'a' 

 

# Example 12: Creating a nested dictionary 

my_dict = {'a': {'x': 1, 'y': 2}, 'b': {'x': 3, 'y': 

4}} 

print(my_dict['a']['x'])  # Output: 1 

 

In Example 9, we sort a dictionary by its values in ascending order using the sorted() function 

and a lambda function as the key. We then create a new dictionary with the same key-value pairs 

in the sorted order. 

 

In Example 10, we create a dictionary from a list of tuples using the dict() constructor. 

 

In Example 11, we find the key in a dictionary with the maximum value using the max() function 

and the get() method as the key function. 

 

In Example 12, we create a nested dictionary, where each value is another dictionary. We can 

access values in the nested dictionary using multiple keys. 

 
# Example 13: Flattening a dictionary 

my_dict = {'a': {'x': 1, 'y': 2}, 'b': {'x': 3, 'y': 

4}} 

flat_dict = {} 

for key, value in my_dict.items(): 

    for sub_key, sub_value in value.items(): 

        flat_dict[sub_key] = sub_value 

print(flat_dict)  # Output: {'x': 3, 'y': 4} 

 

# Example 14: Filtering a dictionary using a 

comprehension 



128 | P a g e  

 

 

my_dict = {'a': 1, 'b': 2, 'c': 3} 

filtered_dict = {k: v for k, v in my_dict.items() if v 

% 2 == 0} 

print(filtered_dict)  # Output: {'b': 2} 

 

# Example 15: Removing a key from a dictionary 

my_dict = {'a': 1, 'b': 2, 'c': 3} 

del my_dict['b'] 

print(my_dict)  # Output: {'a': 1, 'c': 3} 

 

# Example 16: Checking if a key exists in a dictionary 

my_dict = {'a': 1, 'b': 2, 'c': 3} 

if 'b' in my_dict: 

    print("Key 'b' exists in the dictionary.") 

else: 

    print("Key 'b' does not exist in the dictionary.") 

# Output: Key 'b' exists in the dictionary. 

 

In Example 13, we flatten a nested dictionary by iterating over each key-value pair, then iterating 

over each sub-key and sub-value pair in the nested dictionary. We add each sub-key and sub-

value pair to the new dictionary. 

 

In Example 14, we filter a dictionary using a dictionary comprehension. We create a new 

dictionary with only the key-value pairs that satisfy a certain condition. 

 

In Example 15, we remove a key from a dictionary using the del statement. 

 

In Example 16, we check if a key exists in a dictionary using the in operator. If the key exists, we 

print a message indicating that it does. Otherwise, we print a message indicating that it does not. 

 
# Example 17: Merging two dictionaries 

dict1 = {'a': 1, 'b': 2} 

dict2 = {'c': 3, 'd': 4} 

merged_dict = {**dict1, **dict2} 

print(merged_dict)  # Output: {'a': 1, 'b': 2, 'c': 3, 

'd': 4} 

 

# Example 18: Updating a dictionary 

my_dict = {'a': 1, 'b': 2} 

my_dict.update({'a': 3, 'c': 4}) 

print(my_dict)  # Output: {'a': 3, 'b': 2, 'c': 4} 

 

# Example 19: Getting a list of keys from a dictionary 

my_dict = {'a': 1, 'b': 2, 'c': 3} 
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key_list = list(my_dict.keys()) 

print(key_list)  # Output: ['a', 'b', 'c'] 

 

# Example 20: Getting a list of values from a 

dictionary 

my_dict = {'a': 1, 'b': 2, 'c': 3} 

value_list = list(my_dict.values()) 

print(value_list)  # Output: [1, 2, 3] 

 

In Example 17, we merge two dictionaries into a single dictionary using the unpacking operator 

(**). The key-value pairs from dict1 and dict2 are added to the new dictionary. 

 

In Example 18, we update a dictionary with new key-value pairs using the update() method. If a 

key already exists in the dictionary, its value is updated with the new value. 

 

In Example 19, we get a list of keys from a dictionary using the keys() method. We then convert 

the resulting view object to a list. 

 

In Example 20, we get a list of values from a dictionary using the values() method. We then 

convert the resulting view object to a list. 

 
# Example 21: Getting the length of a dictionary 

my_dict = {'a': 1, 'b': 2, 'c': 3} 

print(len(my_dict))  # Output: 3 

 

# Example 22: Getting a default value for a missing key 

my_dict = {'a': 1, 'b': 2, 'c': 3} 

default_value = my_dict.get('d', 0) 

print(default_value)  # Output: 0 

 

# Example 23: Sorting a dictionary by key 

my_dict = {'b': 2, 'c': 3, 'a': 1} 

sorted_dict = dict(sorted(my_dict.items())) 

print(sorted_dict)  # Output: {'a': 1, 'b': 2, 'c': 3} 

 

# Example 24: Sorting a dictionary by value 

my_dict = {'b': 2, 'c': 3, 'a': 1} 

sorted_dict = dict(sorted(my_dict.items(), key=lambda 

item: item[1])) 

print(sorted_dict)  # Output: {'a': 1, 'b': 2, 'c': 3} 

 

In Example 21, we get the length of a dictionary using the len() function. 
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In Example 22, we get a default value for a missing key in a dictionary using the get() method. If 

the key is not present in the dictionary, it returns the default value provided as the second 

argument. 

 

In Example 23, we sort a dictionary by key using the sorted() function. We convert the resulting 

list of key-value pairs back to a dictionary using the dict() constructor. 

 

In Example 24, we sort a dictionary by value using the sorted() function and a lambda function 

as the key argument. The lambda function specifies that we want to sort the dictionary by the 

second element in each key-value pair (i.e., the value). We convert the resulting list of key-value 

pairs back to a dictionary using the dict() constructor. 

 
# Example 25: Removing a key-value pair from a 

dictionary 

my_dict = {'a': 1, 'b': 2, 'c': 3} 

del my_dict['b'] 

print(my_dict)  # Output: {'a': 1, 'c': 3} 

 

# Example 26: Removing all key-value pairs from a 

dictionary 

my_dict = {'a': 1, 'b': 2, 'c': 3} 

my_dict.clear() 

print(my_dict)  # Output: {} 

 

# Example 27: Creating a dictionary with a 

comprehension 

my_dict = {x: x**2 for x in range(5)} 

print(my_dict)  # Output: {0: 0, 1: 1, 2: 4, 3: 9, 4: 

16} 

 

# Example 28: Filtering a dictionary with a 

comprehension 

my_dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4} 

filtered_dict = {k: v for k, v in my_dict.items() if v 

% 2 == 0} 

print(filtered_dict)  # Output: {'b': 2, 'd': 4} 

In Example 25, we remove a key-value pair from a 

dictionary using the del statement. 

 

In Example 26, we remove all key-value pairs from a dictionary using the clear() method. 

 

In Example 27, we create a dictionary using a dictionary comprehension. This is a concise way 

to create a new dictionary by iterating over some iterable (in this case, range(5)) and defining the 

key-value pairs in a single line of code. 
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In Example 28, we filter a dictionary using a dictionary comprehension. We iterate over the key-

value pairs in the dictionary and include only those where the value is even. The resulting 

dictionary only contains the key-value pairs where the value is even. 
 

# Example 29: Merging two dictionaries 

dict1 = {'a': 1, 'b': 2} 

dict2 = {'c': 3, 'd': 4} 

merged_dict = {**dict1, **dict2} 

print(merged_dict)  # Output: {'a': 1, 'b': 2, 'c': 3, 

'd': 4} 

 

# Example 30: Updating a dictionary with another 

dictionary 

my_dict = {'a': 1, 'b': 2, 'c': 3} 

my_dict.update({'b': 4, 'd': 5}) 

print(my_dict)  # Output: {'a': 1, 'b': 4, 'c': 3, 'd': 

5} 

 

# Example 31: Creating a dictionary from two lists 

keys = ['a', 'b', 'c'] 

values = [1, 2, 3] 

my_dict = dict(zip(keys, values)) 

print(my_dict)  # Output: {'a': 1, 'b': 2, 'c': 3} 

 

# Example 32: Creating a dictionary from a list of 

tuples 

my_list = [('a', 1), ('b', 2), ('c', 3)] 

my_dict = dict(my_list) 

print(my_dict)  # Output: {'a': 1, 'b': 2, 'c': 3} 

 

In Example 29, we merge two dictionaries into a single dictionary using the unpacking operator 

(**). This creates a new dictionary that contains all the key-value pairs from both dictionaries. 

 

In Example 30, we update a dictionary with another dictionary using the update() method. This 

adds any new key-value pairs from the second dictionary to the first dictionary, and updates the 

values for any keys that are already present. 

 

In Example 31, we create a dictionary from two lists using the zip() function and the dict() 

constructor. The zip() function combines the elements from each list into tuples, and the dict() 

constructor converts the list of tuples to a dictionary. 

 

In Example 32, we create a dictionary from a list of tuples using the dict() constructor. The list of 

tuples contains the key-value pairs for the dictionary. 
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Sets 
 

Sets are a fundamental data structure in Python that allow you to store and manipulate 

collections of unique elements. They are often used in Python for tasks such as removing 

duplicates from a list, performing set operations like union and intersection, and checking 

membership. 

 

In SAS, sets are often represented using the MERGE statement, which combines two or more 

data sets based on the values of one or more common variables. In Python, sets are a built-in data 

type that can be created using the set() function or by using curly braces {} around a comma-

separated sequence of elements. 

 

For example, to create a set of unique numbers in Python, you can use the set() function like this: 
 

>>> numbers = [1, 2, 3, 4, 5, 5, 4, 3, 2, 1] 

>>> unique_numbers = set(numbers) 

>>> unique_numbers 

{1, 2, 3, 4, 5} 

 

In this example, the list of numbers contains duplicates, but the resulting set only contains the 

unique elements. 

 

You can perform a variety of operations on sets in Python, such as adding and removing 

elements, performing set arithmetic operations like union, intersection, and difference, and 

checking membership. 

 
>>> set1 = {1, 2, 3} 

>>> set2 = {3, 4, 5} 

>>> union = set1.union(set2) 

>>> intersection = set1.intersection(set2) 

>>> difference = set1.difference(set2) 

>>> print(union) 

{1, 2, 3, 4, 5} 

>>> print(intersection) 

{3} 

>>> print(difference) 

{1, 2} 

 

In this example, we create two sets (set1 and set2), and then use the union(), intersection(), and 

difference() methods to perform set operations on those sets. The union() method returns a new 

set that contains all elements from both sets, the intersection() method returns a new set that 

contains only the elements that are common to both sets, and the difference() method returns a 

new set that contains only the elements that are in set1 but not in set2. 
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Sets are also mutable, which means you can add and remove elements from them. For example: 

 
>>> set1 = {1, 2, 3} 

>>> set1.add(4) 

>>> print(set1) 

{1, 2, 3, 4} 

>>> set1.remove(2) 

>>> print(set1) 

{1, 3, 4} 

 

In this example, we add the element 4 to set1 using the add() method, and then remove the 

element 2 using the remove() method. 

 

In conclusion, sets are a powerful and flexible data structure in Python that allow you to perform 

a variety of operations on collections of unique elements. If you are a SAS user transitioning to 

Python, understanding sets and their operations can be a valuable tool in your programming 

arsenal. 

 

Here are some additional details about sets in Python: 

 

1. Sets are unordered: Unlike lists and tuples, sets do not maintain any order of their 

elements. This means that you cannot access the elements of a set using an index. 

2. Sets cannot contain duplicates: One of the defining characteristics of a set is that it only 

contains unique elements. If you try to add an element to a set that already exists in the 

set, it will simply be ignored. 

3. Sets can be created using curly braces or the set() function: You can create a set in 

Python by enclosing a comma-separated sequence of elements within curly braces, like 

this: {1, 2, 3}. Alternatively, you can use the set() function to create a set from any 

iterable, like a list or tuple. 

4. Sets support set arithmetic operations: Python provides a number of built-in methods for 

performing set operations like union, intersection, and difference. These methods are 

used to combine or compare two or more sets. 

5. Sets can be used to remove duplicates from a list: If you have a list with duplicate 

elements, you can easily remove them by converting the list to a set using the set() 

function, and then converting it back to a list using the list() function. 

6. Sets are mutable: You can add and remove elements from a set using the add(), remove(), 

and discard() methods. You can also use the update() method to add elements from 

another set, list, or tuple to an existing set. 

7. Frozensets are immutable: If you need a set that cannot be modified, you can use a 

frozenset instead. A frozenset is simply a set that cannot be modified once it has been 

created. 

 

Overall, sets are a versatile and powerful data structure in Python that can be used for a variety 

of tasks. Whether you need to remove duplicates from a list, perform set operations, or store a 

collection of unique elements, sets can be a useful tool in your programming toolbox. 
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Here's an example of some code that demonstrates the use of sets in Python: 

 
# Creating a set using curly braces 

my_set = {1, 2, 3, 4, 5} 

 

# Creating a set using the set() function 

my_other_set = set([3, 4, 5, 6, 7]) 

 

# Printing the sets 

print("my_set: ", my_set) 

print("my_other_set: ", my_other_set) 

 

# Adding an element to a set 

my_set.add(6) 

print("After adding 6 to my_set: ", my_set) 

 

# Removing an element from a set 

my_other_set.remove(7) 

print("After removing 7 from my_other_set: ", 

my_other_set) 

 

# Performing set operations 

union_set = my_set.union(my_other_set) 

print("Union of my_set and my_other_set: ", union_set) 

 

intersection_set = my_set.intersection(my_other_set) 

print("Intersection of my_set and my_other_set: ", 

intersection_set) 

 

difference_set = my_set.difference(my_other_set) 

print("Difference of my_set and my_other_set: ", 

difference_set) 

 

# Converting a list to a set to remove duplicates 

my_list = [1, 2, 3, 4, 5, 5, 4, 3, 2, 1] 

unique_elements = set(my_list) 

print("Unique elements in my_list: ", unique_elements) 

 

# Creating a frozenset 

frozen_set = frozenset([1, 2, 3, 4, 5]) 

print("frozen_set: ", frozen_set) 
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# Trying to modify a frozenset (will result in an 

error) 

# frozen_set.add(6) 

# frozen_set.remove(1) 

 

This code demonstrates several common operations with sets in Python. First, we create two sets 

using both the curly brace notation and the set() function. We then add an element to one set and 

remove an element from the other set. We also perform set operations like union, intersection, 

and difference on the two sets. 

 

Next, we demonstrate how sets can be used to remove duplicates from a list. We convert a list 

with duplicate elements to a set using the set() function, which automatically removes the 

duplicates, and then print out the resulting unique elements. 
 

# Example of adding and removing elements from a set 

my_set = {1, 2, 3, 4, 5} 

print("Initial set: ", my_set) 

 

# Adding elements to the set 

my_set.add(6) 

my_set.update([7, 8]) 

print("After adding elements: ", my_set) 

 

# Removing elements from the set 

my_set.remove(3) 

my_set.discard(9)  # this does not result in an error 

print("After removing elements: ", my_set) 

 

# Example of using sets in a loop 

set1 = {1, 2, 3} 

set2 = {2, 3, 4} 

 

for item in set1: 

    if item in set2: 

        print("Intersection found: ", item) 

    else: 

        print("No intersection: ", item) 

 

# Example of set comprehension 

set3 = {x for x in range(10) if x % 2 == 0} 

print("Set with even numbers: ", set3) 

 

This code continues to demonstrate different aspects of sets in Python. First, we add and remove 

elements from a set using the add(), update(), remove(), and discard() methods. We also show 
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that the discard() method does not result in an error if the element to be removed is not in the set, 

while the remove() method does. 

 

Next, we show an example of using sets in a loop to find the intersection of two sets. We loop 

over the elements of one set and check if they are in the other set using the 'in' keyword. 
 

# Example of using sets to remove duplicates from a 

list 

my_list = [1, 2, 3, 2, 4, 3, 5, 6, 4, 7] 

my_set = set(my_list) 

print("List with duplicates: ", my_list) 

print("Set without duplicates: ", my_set) 

 

# Example of checking if a set is a subset or superset 

of another set 

set1 = {1, 2, 3, 4, 5} 

set2 = {2, 3, 4} 

set3 = {6, 7, 8} 

 

print("set2 is a subset of set1: ", 

set2.issubset(set1)) 

print("set1 is a superset of set2: ", 

set1.issuperset(set2)) 

print("set3 is a subset of set1: ", 

set3.issubset(set1)) 

print("set1 is a superset of set3: ", 

set1.issuperset(set3)) 

 

# Example of finding the symmetric difference between 

two sets 

set4 = {1, 2, 3, 4, 5} 

set5 = {4, 5, 6, 7, 8} 

symmetric_diff = set4.symmetric_difference(set5) 

print("Symmetric difference of set4 and set5: ", 

symmetric_diff) 

 

# Example of using sets to remove elements from a list 

my_list = [1, 2, 3, 4, 5, 6, 7] 

elements_to_remove = {2, 4, 6} 

my_list = [x for x in my_list if x not in 

elements_to_remove] 

print("List after removing elements: ", my_list) 
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# Example of using sets to find unique elements between 

two lists 

list1 = [1, 2, 3, 4, 5] 

list2 = [4, 5, 6, 7, 8] 

unique_elements = 

set(list1).symmetric_difference(set(list2)) 

print("Unique elements between list1 and list2: ", 

unique_elements) 

 

In this code, we first demonstrate how to use sets to remove duplicates from a list. We convert a 

list with duplicates to a set using the set() function, which automatically removes the duplicates. 

 

Next, we show examples of using the issubset() and issuperset() methods to check if one set is a 

subset or superset of another set. We also show an example of finding the symmetric difference 

between two sets, which is the set of elements that are in one set or the other, but not both. 

 

We also show an example of using sets to remove elements from a list. We create a set of 

elements to remove and then use a list comprehension to create a new list that does not contain 

those elements. 

 
# Example of using sets to perform mathematical 

operations 

set1 = {1, 2, 3, 4, 5} 

set2 = {4, 5, 6, 7, 8} 

 

# Union of two sets 

union = set1.union(set2) 

print("Union of set1 and set2: ", union) 

 

# Intersection of two sets 

intersection = set1.intersection(set2) 

print("Intersection of set1 and set2: ", intersection) 

 

# Difference between two sets 

difference = set1.difference(set2) 

print("Difference between set1 and set2: ", difference) 

 

# Example of using sets to find common elements in 

multiple lists 

list1 = [1, 2, 3, 4, 5] 

list2 = [4, 5, 6, 7, 8] 

list3 = [3, 4, 5, 6, 7] 
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common_elements = set(list1).intersection(set(list2), 

set(list3)) 

print("Common elements in list1, list2, and list3: ", 

common_elements) 

 

# Example of using sets to check if two lists have any 

common elements 

list4 = [1, 2, 3] 

list5 = [4, 5, 6] 

list6 = [2, 5, 7] 

 

has_common_elements = 

bool(set(list4).intersection(set(list5), set(list6))) 

print("Do list4, list5, and list6 have any common 

elements?: ", has_common_elements) 

 

In this code, we show examples of using sets to perform mathematical operations, such as union, 

intersection, and difference. These operations can be useful for combining or comparing sets of 

data. 

 

We also show an example of using sets to find common elements in multiple lists. We create sets 

from each list and use the intersection() method to find the common elements between the sets. 

 
# Example of using sets to remove duplicates from a 

list 

list7 = [1, 2, 3, 3, 4, 5, 5] 

unique_elements = set(list7) 

print("Unique elements in list7: ", unique_elements) 

 

# Example of using sets to check if a list contains 

only unique elements 

has_duplicates = len(list7) != len(set(list7)) 

print("Does list7 have any duplicates?: ", 

has_duplicates) 

 

# Example of using sets to find the symmetric 

difference between two sets 

set3 = {1, 2, 3} 

set4 = {2, 3, 4} 

symmetric_difference = set3.symmetric_difference(set4) 

print("Symmetric difference between set3 and set4: ", 

symmetric_difference) 
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# Example of using sets to check if one set is a subset 

of another set 

set5 = {1, 2, 3, 4} 

set6 = {2, 3} 

is_subset = set6.issubset(set5) 

print("Is set6 a subset of set5?: ", is_subset) 

 

# Example of using sets to check if one set is a 

superset of another set 

is_superset = set5.issuperset(set6) 

print("Is set5 a superset of set6?: ", is_superset) 

 

In this code, we show an example of using sets to remove duplicates from a list. We create a set 

from the list, which automatically removes any duplicates, and then convert the set back to a list 

to get the unique elements. 

 

We also show an example of using sets to check if a list contains only unique elements. We 

compare the length of the list to the length of the set, which will be different if there are 

duplicates in the list. 

 

We then demonstrate how to find the symmetric difference between two sets using the 

symmetric_difference() method. 

 
# Example of using sets to find the Cartesian product 

of two sets 

set7 = {1, 2} 

set8 = {'a', 'b'} 

cartesian_product = {(i, j) for i in set7 for j in 

set8} 

print("Cartesian product of set7 and set8: ", 

cartesian_product) 

 

# Example of using sets to create a set comprehension 

set9 = {x for x in range(1, 11) if x % 2 == 0} 

print("set9: ", set9) 

 

# Example of using sets to modify a set in place 

set10 = {1, 2, 3} 

set10.update([3, 4, 5]) 

print("Modified set10: ", set10) 

 

# Example of using sets to remove an element from a set 

set11 = {1, 2, 3, 4, 5} 

set11.discard(4) 
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print("Set11 with 4 removed: ", set11) 

 

In this code, we show an example of using sets to find the Cartesian product of two sets using set 

comprehension. The resulting set contains all possible ordered pairs of elements from the two 

sets. 

 

We also demonstrate how to use sets to create a set comprehension. In this example, we create a 

set of even numbers from 1 to 10 using a set comprehension. 

 

We then show an example of how to modify a set in place using the update() method. In this 

example, we add the elements [3, 4, 5] to the set10. 

 
# Example of using sets to create a union of sets 

set12 = {1, 2, 3} 

set13 = {3, 4, 5} 

union = set12.union(set13) 

print("Union of set12 and set13: ", union) 

 

# Example of using sets to create an intersection of 

sets 

intersection = set12.intersection(set13) 

print("Intersection of set12 and set13: ", 

intersection) 

 

# Example of using sets to create a difference of sets 

difference = set12.difference(set13) 

print("Difference between set12 and set13: ", 

difference) 

 

# Example of using sets to create a symmetric 

difference of sets 

symmetric_difference = 

set12.symmetric_difference(set13) 

print("Symmetric difference between set12 and set13: ", 

symmetric_difference) 

 

# Example of using sets to check for disjoint sets 

set14 = {1, 2, 3} 

set15 = {4, 5, 6} 

is_disjoint = set14.isdisjoint(set15) 

print("Are set14 and set15 disjoint?: ", is_disjoint) 
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In this code, we show examples of using sets to create a union, intersection, difference, and 

symmetric difference of sets. We use the union(), intersection(), difference(), and 

symmetric_difference() methods, respectively, to perform these set operations. 

 
# Example of using sets to check for subset and 

superset relationships 

set16 = {1, 2, 3} 

set17 = {1, 2} 

set18 = {1, 2, 3, 4, 5} 

is_subset = set17.issubset(set16) 

print("Is set17 a subset of set16?: ", is_subset) 

is_superset = set18.issuperset(set16) 

print("Is set18 a superset of set16?: ", is_superset) 

 

# Example of using sets to remove all elements except 

those in a specified set 

set19 = {1, 2, 3, 4, 5} 

set19.intersection_update({3, 4, 6}) 

print("Set19 after intersection update: ", set19) 

 

# Example of using sets to remove all elements in a 

specified set 

set20 = {1, 2, 3, 4, 5} 

set20.difference_update({3, 4, 6}) 

print("Set20 after difference update: ", set20) 

 

In this code, we show examples of using sets to check for subset and superset relationships 

between sets using the issubset() and issuperset() methods, respectively. We also show how to 

modify a set in place using the intersection_update() and difference_update() methods. The 

intersection_update() method removes all elements from the set that are not in a specified set, 

while the difference_update() method removes all elements that are in a specified set. 

 
# Example of using sets to find the maximum and minimum 

values in a set 

set21 = {10, 5, 7, 3, 8} 

max_value = max(set21) 

min_value = min(set21) 

print("Maximum value in set21: ", max_value) 

print("Minimum value in set21: ", min_value) 

 

# Example of using sets to convert a list to a set 

list1 = [1, 2, 3, 4, 5] 

set22 = set(list1) 

print("Set22: ", set22) 
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# Example of using sets to convert a string to a set of 

unique characters 

string1 = "hello world" 

set23 = set(string1) 

print("Set23: ", set23) 

 

In this code, we show examples of using sets to find the maximum and minimum values in a set 

using the max() and min() functions, respectively. We also demonstrate how to convert a list to a 

set using the set() function and how to convert a string to a set of unique characters using the 

set() function. 

 

 

 

Indexing and slicing 
 

Indexing and slicing are important concepts in programming, including Python. They refer to 

ways of accessing specific elements in a sequence or collection of data. In Python, indexing and 

slicing are commonly used when working with lists, tuples, and strings. 

 

Indexing in Python starts at 0, meaning that the first element in a sequence is referred to as index 

0. To access a specific element in a sequence, you can use square brackets with the index 

number. For example, if you have a list of numbers called my_list, you can access the first 

element like this: 
 

my_list = [1, 2, 3, 4, 5] 

print(my_list[0]) # Output: 1 

 

Slicing in Python allows you to extract a portion of a sequence or collection. To slice a sequence, 

you can use square brackets with two index numbers separated by a colon. The first index 

number is the starting point of the slice, and the second index number is the end point of the slice 

(not inclusive). For example, to slice the first three elements from my_list, you can do: 

 
my_list = [1, 2, 3, 4, 5] 

print(my_list[0:3]) # Output: [1, 2, 3] 

 

In addition to the two index numbers, you can also include a third number to specify the step size 

of the slice. For example, to slice every other element from my_list, you can do: 

 
 

my_list = [1, 2, 3, 4, 5] 

print(my_list[0:5:2]) # Output: [1, 3, 5] 
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When working with strings, you can also use indexing and slicing to access specific characters or 

substrings. For example, if you have a string called my_string, you can access the first character 

like this: 

 

 
my_string = "hello world" 

print(my_string[0]) # Output: h 

 

To slice a substring from my_string, you can do: 
 

my_string = "hello world" 

print(my_string[0:5]) # Output: hello 

 

Python also supports negative indexing and slicing, which allows you to access elements or 

substrings from the end of a sequence or string. For example, to access the last element in 

my_list, you can do: 

 
my_list = [1, 2, 3, 4, 5] 

print(my_list[-1]) # Output: 5 

 

To slice the last three elements from my_list, you can do: 

 
my_list = [1, 2, 3, 4, 5] 

print(my_list[-3:]) # Output: [3, 4, 5] 

 

 

In Python, indexing and slicing are not limited to just lists, tuples, and strings. They can also be 

used with other sequence types such as arrays and NumPy ndarrays. Here are some examples: 

 
import numpy as np 

 

# Create a NumPy ndarray 

my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

 

# Indexing 

print(my_array[0]) # Output: [1 2 3] 

print(my_array[1, 2]) # Output: 6 

 

# Slicing 

print(my_array[:, 1]) # Output: [2 5 8] 

print(my_array[1:3, :2]) # Output: [[4 5], [7 8]] 
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When indexing or slicing with multiple dimensions, you can use a comma-separated sequence of 

index or slice objects. For example, to slice a 2D NumPy ndarray, you can use two index or slice 

objects separated by a comma: 

 
 

import numpy as np 

 

# Create a 2D NumPy ndarray 

my_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

 

# Slicing 

print(my_array[1:3, :2]) # Output: [[4 5], [7 8]] 

You can also use ellipses (...) to represent all possible dimensions in a slice object. For example: 

 
import numpy as np 

 

# Create a 3D NumPy ndarray 

my_array = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 

8]]]) 

 

# Slicing 

print(my_array[..., 1]) # Output: [[2 4], [6 8]] 

 

Finally, it's worth noting that indexing and slicing in Python can also be used with objects that 

define their own __getitem__() method. This method allows objects to behave like sequences, 

even if they are not implemented as such. For example: 

 
class MyClass: 

    def __init__(self): 

        self.my_list = [1, 2, 3, 4, 5] 

 

    def __getitem__(self, index): 

        return self.my_list[index] 

 

# Create an instance of MyClass 

my_instance = MyClass() 

 

# Indexing 

print(my_instance[0]) # Output: 1 

 

# Slicing 

print(my_instance[1:4]) # Output: [2, 3, 4] 

List comprehension 
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Here are some additional points to keep in mind when working with indexing and slicing in 

Python: 

 

Indexing and slicing both start at index 0. That is, the first element in a sequence has an index of 

0, not 1. For example: 
 

my_list = [1, 2, 3, 4, 5] 

print(my_list[0]) # Output: 1 

 

Negative indices can be used to index or slice from the end of a sequence. That is, an index of -1 

refers to the last element in a sequence, an index of -2 refers to the second-to-last element, and so 

on. For example: 
 

my_list = [1, 2, 3, 4, 5] 

print(my_list[-1]) # Output: 5 

print(my_list[-2:]) # Output: [4, 5] 

Sorting and filtering data 

 

Here's a detailed explanation of indexing and slicing in Python: 

 

Indexing: 

Indexing refers to accessing individual elements within a sequence, such as a string, list or tuple. 

In Python, indexing starts from 0, meaning that the first element in a sequence has an index of 0, 

the second element has an index of 1, and so on. To access an element at a specific index in a 

sequence, you can use square brackets [ ] with the index number inside the brackets. 

 

For example, let's say we have a list of numbers called "my_list": 

 
 

my_list = [10, 20, 30, 40, 50] 

 

To access the second element in the list (which has an index of 1), we can use the following 

code: 

 
second_element = my_list[1] 

print(second_element)   # Output: 20 

 

Slicing: 

Slicing refers to extracting a portion of a sequence, such as a substring from a string or a sub-list 

from a list. In Python, slicing is done using the colon (:) operator. The syntax for slicing is as 

follows: 

 
sequence[start_index:stop_index:step] 

where: 
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"start_index" is the index of the first element to 

include in the slice (inclusive). 

"stop_index" is the index of the last element to 

include in the slice (exclusive). 

"step" is the number of elements to skip between each 

element in the slice (default is 1). 

 

Note that the "stop_index" is exclusive, meaning that the element at that index is not included in 

the slice. 

 

For example, let's say we have a string called "my_string": 

 
my_string = "Hello, world!" 

 

To extract the substring "world" from the string, we can use the following code: 

 
my_slice = my_string[7:12] 

print(my_slice)   # Output: world 

To extract every other character from the string, we can use the following code: 

 
my_slice = my_string[::2] 

print(my_slice)   # Output: Hlo ol! 

 

Notice that we omitted the "start_index" and "stop_index" values, which defaults to the 

beginning and end of the sequence, respectively. 

 

 
# create a string 

my_string = "Hello, world!" 

 

# create a list 

my_list = [10, 20, 30, 40, 50] 

 

# indexing example 

print(my_string[0])     # Output: H 

print(my_list[2])       # Output: 30 

 

# slicing examples 

print(my_string[0:5])   # Output: Hello 

print(my_list[1:4])     # Output: [20, 30, 40] 

print(my_string[::2])   # Output: Hlo,wrld 

print(my_list[::2])     # Output: [10, 30, 50] 

 

In the first part of the code, we create a string called "my_string" and a list called "my_list". 



147 | P a g e  

 

 

Next, we demonstrate indexing by accessing the first element of the string using "my_string[0]" 

and the third element of the list using "my_list[2]". 

 

Finally, we demonstrate slicing by extracting the first 5 characters of the string using 

"my_string[0:5]", the second through fourth elements of the list using "my_list[1:4]", every other 

character in the string using "my_string[::2]", and every other element in the list using 

"my_list[::2]". 
# create a string 

my_string = "Python is a great programming language" 

 

# create a list 

my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

 

# slicing examples 

print(my_string[7:])            # Output: is a great 

programming language 

print(my_string[:6])            # Output: Python 

print(my_string[::3])           # Output: Ph sgetormi 

ag 

print(my_string[7:23:2])        # Output: isagr rormi 

print(my_string[::-1])          # Output: egaugnal 

gnimmargorp taerg a si nohtyP 

print(my_list[1::2])            # Output: [2, 4, 6, 8, 

10] 

print(my_list[2::3])            # Output: [3, 6, 9] 

print(my_list[4:8])             # Output: [5, 6, 7, 8] 

 

In this example, we create a string called "my_string" and a list called "my_list". 

 

Next, we demonstrate slicing by extracting a substring of the string starting from the 7th index 

using "my_string[7:]", the first 6 characters of the string using "my_string[:6]", every third 

character of the string using "my_string[::3]", every other character of the string between the 7th 

and 23rd indices using "my_string[7:23:2]", and reversing the string using "my_string[::-1]". 

 

For the list, we demonstrate slicing by extracting every other element starting from the second 

element using "my_list[1::2]", every third element starting from the third element using 

"my_list[2::3]", and a sub-list containing elements from the 5th to 8th indices (inclusive) using 

"my_list[4:8]". 

 
# create a list 

my_list = [10, 20, 30, 40, 50] 

 

# modify list using indexing 

my_list[2] = 35 
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print(my_list)                  # Output: [10, 20, 35, 

40, 50] 

 

# modify list using slicing 

my_list[1:4] = [15, 25, 45] 

print(my_list)                  # Output: [10, 15, 25, 

45, 50] 

 

# delete elements from list using slicing 

my_list[2:4] = [] 

print(my_list)                  # Output: [10, 15, 50] 

 

# insert elements into list using slicing 

my_list[1:1] = [5, 6, 7] 

print(my_list)                  # Output: [10, 5, 6, 7, 

15, 50] 

 

# replace elements using slicing 

my_list[2:5] = [20, 30, 40] 

print(my_list)                  # Output: [10, 5, 20, 

30, 40] 

 

In this example, we create a list called "my_list". 

 

First, we modify the element at index 2 by setting it to 35 using "my_list[2] = 35". 

 

Next, we modify elements 1 through 4 using slicing by replacing them with the list [15, 25, 45] 

using "my_list[1:4] = [15, 25, 45]". 

 

Then, we delete elements 2 through 4 using slicing by setting them to an empty list using 

"my_list[2:4] = []". 

 

After that, we insert elements 5, 6, and 7 before element 1 using slicing by setting "my_list[1:1]" 

to the list [5, 6, 7] using "my_list[1:1] = [5, 6, 7]". 

 

Finally, we replace elements 2 through 4 with the list [20, 30, 40] using "my_list[2:5] = [20, 30, 

40]". 

 

 
# create a list 

my_list = [10, 20, 30, 40, 50] 

 

# negative indexing 

print(my_list[-1])              # Output: 50 
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print(my_list[-2])              # Output: 40 

 

# negative slicing 

print(my_list[-3:])             # Output: [30, 40, 50] 

print(my_list[:-2])             # Output: [10, 20, 30] 

print(my_list[-3:-1])           # Output: [30, 40] 

print(my_list[::-1])            # Output: [50, 40, 30, 

20, 10] 

 

In this example, we create a list called "my_list". 

We then use negative indexing to access the last element of the list using "-1" and the second-to-

last element of the list using "-2". 

 

Next, we use negative slicing to access the last three elements of the list using "-3:" and all but 

the last two elements of the list using ":-2". We also use negative slicing to access the elements 

from the third-to-last index to the last index using "-3:-1". Lastly, we use negative slicing with a 

step size of -1 to reverse the order of the list using "[::-1]". 

 
# create a nested list 

my_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 

 

# access elements using indexing 

print(my_list[0][1])            # Output: 2 

print(my_list[1][2])            # Output: 6 

print(my_list[2][0])            # Output: 7 

 

# access elements using slicing 

print(my_list[0][1:])           # Output: [2, 3] 

print(my_list[1][:2])           # Output: [4, 5] 

print(my_list[:2])              # Output: [[1, 2, 3], 

[4, 5, 6]] 

 

In this example, we create a nested list called "my_list" containing three lists with three elements 

each. 

 

We use indexing to access specific elements in the nested list. For example, we access the 

element at row 0, column 1 (which has the value 2) using "my_list[0][1]". 

 

We also use slicing to access certain sections of the nested list. For example, we access the 

elements in row 0, columns 1 and 2 (which have the values 2 and 3) using "my_list[0][1:]". We 

access the elements in row 1, columns 0 and 1 (which have the values 4 and 5) using 

"my_list[1][:2]". We also access the first two rows of the nested list using "my_list[:2]". 
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List comprehension 
 

List comprehension is a powerful and concise way of creating lists in Python. It allows you to 

create a new list by iterating over an existing list or other iterable, and applying an expression to 

each element of the iterable. The resulting list is created in a single line of code, making it a 

useful tool for data manipulation and analysis. 

 

In SAS, similar functionality can be achieved using the DATA step or PROC SQL, but list 

comprehension provides a more concise and readable way of achieving the same results in 

Python. 

 

The basic syntax of a list comprehension is as follows: 

 
new_list = [expression for variable in iterable if 

condition] 

 

Here, new_list is the new list being created, expression is the operation to be performed on each 

element of the iterable, variable is a variable that takes on each value in the iterable, and iterable 

is the original list or other iterable. 

 

The if statement is optional and allows you to apply a condition to the elements of the iterable 

before they are added to the new list. 

 

For example, suppose you have a list of numbers and you want to create a new list that contains 

only the even numbers from the original list. Here is how you could use list comprehension to 

achieve this: 

 
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

even_numbers = [x for x in numbers if x % 2 == 0] 

 

In this example, x takes on each value in the numbers list, and the expression x % 2 == 0 tests 

whether x is even. If x is even, it is added to the even_numbers list. 

 

List comprehension can also be used to create lists of tuples, dictionaries, or other complex data 

structures. For example, suppose you have a list of strings representing names and ages, and you 

want to create a list of dictionaries where each dictionary has a "name" key and an "age" key. 

Here is how you could use list comprehension to achieve this: 

 
names_and_ages = ["Alice, 25", "Bob, 30", "Charlie, 

35"] 

people = [{"name": name_age.split(",")[0], "age": 

int(name_age.split(",")[1])} for name_age in 

names_and_ages] 

 



151 | P a g e  

 

 

In this example, the name_age variable takes on each value in the names_and_ages list, and the 

expression name_age.split(",")[0] extracts the name from the string, while 

int(name_age.split(",")[1]) extracts the age and converts it to an integer. The resulting 

dictionaries are added to the people list. 

 

Overall, list comprehension is a powerful tool for creating lists in Python. It allows you to write 

concise and readable code that can be easily understood by others, and it can be used to create 

complex data structures with just a few lines of code. As a SAS user, learning list comprehension 

can help you to transition to Python and take advantage of its many data manipulation and 

analysis tools. 

 

Here are some additional details about list comprehension in Python: 

 

List comprehension can be nested: You can use one or more loops and conditions inside a list 

comprehension to create a nested list. For example, if you have a list of lists and you want to 

flatten it, you can use a nested list comprehension: 

 
nested_list = [[1, 2], [3, 4, 5], [6, 7]] 

flattened_list = [x for sublist in nested_list for x in 

sublist] 

 

In this example, sublist takes on each value in the nested_list, and the inner loop iterates over 

each element in sublist, adding it to the flattened_list. 

 

List comprehension can be used with other data structures: In addition to lists, you can use list 

comprehension with other iterable data structures such as tuples, sets, and generators. For 

example: 

 
my_tuple = (1, 2, 3, 4) 

squared_numbers = [x**2 for x in my_tuple] 

 

In this example, x takes on each value in the my_tuple tuple, and the expression x**2 squares 

each value, creating a new list of squared numbers. 

 

List comprehension can be faster than traditional loops: List comprehension is often faster than 

using traditional loops because it is optimized for performance. However, this depends on the 

size of the data and the complexity of the expression used in the list comprehension. 

 

List comprehension can be used with functions: You can use functions inside list comprehension 

to perform operations on each element of the iterable. For example: 

 
def is_even(x): 

    return x % 2 == 0 

 

numbers = [1, 2, 3, 4, 5, 6] 
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even_numbers = [x for x in numbers if is_even(x)] 

 

In this example, the is_even function is used inside the list comprehension to test whether each 

number in the numbers list is even. 

 

List comprehension is a concise way of creating a list in Python. It provides a way to create a 

new list by applying a transformation to each element of an existing iterable object, such as a list, 

tuple, or set. List comprehension can be a powerful tool for data manipulation and analysis, 

especially for SAS users who are familiar with the data step. 

 

In Python, list comprehension is written in a compact syntax, enclosed by square brackets []. The 

general structure of list comprehension is: 

 

Here’s an example of using list comprehension in Python to create a new list of squared 

numbers: 

 
# create a list of numbers 

numbers = [1, 2, 3, 4, 5] 

 
# use list comprehension to create a new list of 

squared numbers 

squared_numbers = [num**2 for num in numbers] 

 

# print the new list of squared numbers 

print(squared_numbers) 

 

Output: 

 
 [1, 4, 9, 16, 25] 

 

In this example, we first create a list of numbers [1, 2, 3, 4, 5]. We then use list comprehension to 

create a new list of squared numbers. The expression in the list comprehension is num**2, which 

raises each number to the power of 2. The for loop iterates over each number in the original list, 

and the resulting squared numbers are added to the new list. Finally, we print the new list of 

squared numbers. 

 

Here's another example that uses list comprehension to create a new list of even numbers: 
 

# create a list of numbers 

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

 

# use list comprehension to create a new list of even 

numbers 

even_numbers = [num for num in numbers if num % 2 == 0] 

# print the new list of even numbers 



153 | P a g e  

 

 

print(even_numbers) 

 

Output: 
 

 [2, 4, 6, 8, 10] 

 

In this example, we create a list of numbers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. We then use list 

comprehension to create a new list of even numbers. The if condition in the list comprehension 

(num % 2 == 0) filters out any numbers that are not even. The resulting even numbers are added 

to the new list, which is then printed. 

 

These are just a few examples of how list comprehension can be used in Python. With list 

comprehension, you can easily manipulate and transform data in a concise and efficient way. 

 

The expression is the transformation applied to each element of the iterable, the variable is the 

name given to each element of the iterable, and the condition is an optional filter that restricts 

which elements are included in the new list. 

 

For example, suppose we have a list of integers, and we want to create a new list that contains 

only the even numbers multiplied by 2. We can use list comprehension as follows: 

 
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

new_numbers = [num * 2 for num in numbers if num % 2 == 

0] 

print(new_numbers) 

 

The output will be: 

 
 [4, 8, 12, 16, 20] 

 

In this example, the expression is "num * 2", the variable is "num", and the condition is "num % 

2 == 0", which ensures that only even numbers are included in the new list. 

 

List comprehension can also be used with nested loops and multiple conditions. For example, 

suppose we have two lists, and we want to create a new list that contains the product of each pair 

of elements where the first element is from the first list and the second element is from the 

second list, but only if the product is greater than 10. We can use list comprehension as follows: 

 
list1 = [1, 2, 3] 

list2 = [4, 5, 6] 

new_list = [x * y for x in list1 for y in list2 if x * 

y > 10] 

print(new_list) 

The output will be: 
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 [12, 15, 18] 

 

In this example, we use two nested loops to iterate over each pair of elements from the two lists, 

and the condition "x * y > 10" filters out pairs whose product is less than or equal to 10. 

 

list comprehension is a powerful and concise way of creating new lists in Python by applying a 

transformation to each element of an existing iterable object, with the option to include a filter 

condition. SAS users can benefit from list comprehension to manipulate and analyze data in a 

similar way to the data step. here's another example of using list comprehension in Python to 

create a new list of tuples that represent the Cartesian product of two lists: 

 
# create two lists 

list1 = ['A', 'B', 'C'] 

list2 = [1, 2, 3] 

 

# use list comprehension to create a new list of tuples 

representing the Cartesian product of the two lists 

cartesian_product = [(x, y) for x in list1 for y in 

list2] 

 

# print the new list of tuples 

print(cartesian_product) 

 

Output: 

 
 [('A', 1), ('A', 2), ('A', 3), ('B', 1), ('B', 2), 

('B', 3), ('C', 1), ('C', 2), ('C', 3)] 

 

In this example, we first create two lists: list1 containing the letters 'A', 'B', and 'C', and list2 

containing the numbers 1, 2, and 3. We then use list comprehension to create a new list of tuples 

representing the Cartesian product of the two lists. The for loops in the list comprehension iterate 

over each element of list1 and list2, and each pair of elements is added to the new list as a tuple 

(x, y). Finally, we print the new list of tuples. 

 

Here's another example of using list comprehension in Python to create a new list of strings by 

concatenating the corresponding elements of two lists: 

 
# create two lists 

names = ['Alice', 'Bob', 'Charlie'] 

ages = [25, 30, 35] 

 

# use list comprehension to create a new list of 

strings by concatenating the corresponding elements of 

the two lists 
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string_list = [name + ' is ' + str(age) + ' years old' 

for name, age in zip(names, ages)] 

 

# print the new list of strings 

print(string_list) 

 

Output: 

 
 ['Alice is 25 years old', 'Bob is 30 years old', 

'Charlie is 35 years old'] 

 

In this example, we first create two lists: names containing the names 'Alice', 'Bob', and 'Charlie', 

and ages containing the corresponding ages 25, 30, and 35. We then use list comprehension to 

create a new list of strings by concatenating the corresponding elements of the two lists. The zip 

function is used to iterate over both lists simultaneously, and the for loop unpacks each pair of 

elements into the variables name and age. The resulting strings are added to the new list, which 

is then printed. 

 

Here's another example of using list comprehension in Python to create a new list of dictionaries: 

 
# create a list of keys and a list of values 

keys = ['a', 'b', 'c'] 

values = [1, 2, 3] 

 

# use list comprehension to create a new list of 

dictionaries 

dict_list = [{key: value} for key, value in zip(keys, 

values)] 

 

# print the new list of dictionaries 

print(dict_list) 

 

Output: 

 
 [{'a': 1}, {'b': 2}, {'c': 3}] 

 

In this example, we first create two lists: keys containing the keys 'a', 'b', and 'c', and values 

containing the corresponding values 1, 2, and 3. We then use list comprehension to create a new 

list of dictionaries, where each dictionary contains a single key-value pair from the two input 

lists. The zip function is used to iterate over both lists simultaneously, and the for loop unpacks 

each pair of elements into the variables key and value. The resulting dictionaries are added to the 

new list, which is then printed. 

 

Here's another example of using list comprehension in Python to create a new list of sets by 

combining the elements of two lists: 
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# create two lists 

list1 = [1, 2, 3] 

list2 = [2, 3, 4] 

 

# use list comprehension to create a new list of sets 

by combining the elements of the two lists 

set_list = [{x, y} for x in list1 for y in list2] 

 

# print the new list of sets 

print(set_list) 

 

Output: 

 
 [{1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {3, 

2}, {3, 3}, {3, 4}] 

 

In this example, we first create two lists: list1 containing the numbers 1, 2, and 3, and list2 

containing the numbers 2, 3, and 4. We then use list comprehension to create a new list of sets by 

combining the elements of the two lists. The for loops in the list comprehension iterate over each 

element of list1 and list2, and each pair of elements is added to the new list as a set {x, y}. 

 
# create a list of numbers 

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

 

# use list comprehension to filter even numbers from 

the list 

even_numbers = [x for x in numbers if x % 2 == 0] 

 

# print the new list of even numbers 

print(even_numbers) 

 

Output: 

 

 
[2, 4, 6, 8, 10] 

 

In this example, we first create a list of numbers from 1 to 10. We then use list comprehension to 

create a new list of even numbers by filtering elements from the original list based on the 

condition x % 2 == 0, which checks if x is even. The resulting even numbers are added to the 

new list, which is then printed. 
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Sorting and filtering data 
 

Sorting and filtering data are important operations in data analysis, and they can be performed 

using Python in a similar manner as in SAS. In this article, we will provide an introduction to 

sorting and filtering data in Python for SAS users. 

 

Sorting Data 

 

In SAS, we use the SORT procedure to sort data sets based on one or more variables. In Python, 

we can use the sorted() function to sort lists or arrays based on one or more elements. The 

function returns a new sorted list, leaving the original list unchanged. Here's an example: 

 
>>> numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5] 

>>> sorted_numbers = sorted(numbers) 

>>> print(sorted_numbers) 

[1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 9] 

 

We can also use the sort() method of a list to sort it in place: 

 
>>> numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5] 

>>> numbers.sort() 

>>> print(numbers) 

[1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 9] 

 

To sort a list of dictionaries based on a particular key, we can use the key argument of the 

sorted() function: 

 
>>> students = [ 

...     {"name": "Alice", "age": 20}, 

...     {"name": "Bob", "age": 18}, 

...     {"name": "Charlie", "age": 22}, 

... ] 

>>> sorted_students = sorted(students, key=lambda 

student: student["age"]) 

>>> print(sorted_students) 

[{'name': 'Bob', 'age': 18}, {'name': 'Alice', 'age': 

20}, {'name': 'Charlie', 'age': 22}] 

 

In this example, we sort the list of dictionaries based on the "age" key. The lambda function 

returns the value of the "age" key for each dictionary. 
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Filtering Data 

 

In SAS, we use the WHERE statement to select observations that meet certain criteria. In 

Python, we can use list comprehension to filter lists or arrays based on a condition. For example: 

 
>>> numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5] 

>>> odd_numbers = [n for n in numbers if n % 2 == 1] 

>>> print(odd_numbers) 

[3, 1, 1, 5, 9, 5, 3, 5] 

 

In this example, we use list comprehension to create a new list that contains only the odd 

numbers in the original list. 

 

We can also use the filter() function to filter a list or array based on a function that returns True 

or False. For example: 

 
>>> def is_odd(n): 

...     return n % 2 == 1 

... 

>>> odd_numbers = list(filter(is_odd, numbers)) 

>>> print(odd_numbers) 

[3, 1, 1, 5, 9, 5, 3, 5] 

 

In this example, we define a function is_odd() that returns True if a number is odd. We then use 

the filter() function to create a new list that contains only the odd numbers in the original list. 

 

Sorting Data 

 

In addition to sorting lists, we can also sort pandas DataFrames, which are similar to SAS data 

sets. Pandas provides the sort_values() method to sort a DataFrame based on one or more 

columns. Here's an example: 
 

import pandas as pd 

 

# create a DataFrame 

df = pd.DataFrame({ 

    'name': ['Alice', 'Bob', 'Charlie', 'Dave'], 

    'age': [25, 30, 35, 40], 

    'score': [80, 70, 90, 85] 

}) 

# sort by age in ascending order 

df_sorted = df.sort_values(by='age') 

 

print(df_sorted) 
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This will output: 

 
       name  age  score 

0     Alice   25     80 

1       Bob   30     70 

2   Charlie   35     90 

3      Dave   40     85 

 

We can also sort by multiple columns: 

 
# sort by age in descending order, then score in 

ascending order 

df_sorted = df.sort_values(by=['age', 'score'], 

ascending=[False, True]) 

 

print(df_sorted) 

 

This will output: 

 
       name  age  score 

3      Dave   40     85 

2   Charlie   35     90 

1       Bob   30     70 

0     Alice   25     80 

 

Filtering Data 

 

In addition to filtering lists, we can also filter pandas DataFrames using boolean indexing. 

Boolean indexing allows us to select rows based on a condition. Here's an example: 

 
# filter by age greater than 30 

df_filtered = df[df['age'] > 30] 

 

print(df_filtered) 

 

This will output: 
      name  age  score 

2  Charlie   35     90 

3     Dave   40     85 
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Chapter 3:  

Reading and Writing Data 
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Python is a popular programming language that is widely used in data analysis, machine 

learning, and scientific computing. It has a rich set of libraries and frameworks that make it easy 

to read and write data in a variety of formats, including CSV, Excel, SQL, and SAS. In this 

article, we will provide a SAS-oriented introduction to Python, focusing on how SAS users can 

use Python to read and write data. 

 

Reading Data 

 

There are several ways to read data in Python, depending on the format of the data. We will 

discuss some of the most commonly used methods below. 

 

Reading CSV files: The most common format for data files is CSV (comma-separated values). 

Python has a built-in CSV module that makes it easy to read and write CSV files. Here's an 

example of how to read a CSV file using the CSV module: 
 

import csv 

 
with open('data.csv', 'r') as file: 

    reader = csv.reader(file) 

    for row in reader: 

        print(row) 

 

In this example, we use the open() function to open the CSV file in read mode. We then pass the 

file object to the csv.reader() function, which returns a reader object that we can use to iterate 

over the rows in the file. Each row is returned as a list of strings. 

 

Reading Excel files: Another common format for data files is Excel. Python has a library called 

pandas that makes it easy to read and write Excel files. Here's an example of how to read an 

Excel file using pandas: 
 

import pandas as pd 

 

df = pd.read_excel('data.xlsx') 

print(df) 

 

In this example, we use the read_excel() function from the pandas library to read the Excel file. 

The function returns a pandas DataFrame object, which is a two-dimensional table of data with 

rows and columns. 

 

Reading SQL databases: If your data is stored in a SQL database, you can use Python's built-in 

sqlite3 module to read the data. Here's an example of how to read data from a SQLite database: 
 

import sqlite3 

 

conn = sqlite3.connect('mydatabase.db') 
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cursor = conn.cursor() 

cursor.execute('SELECT * FROM mytable') 

rows = cursor.fetchall() 

for row in rows: 

    print(row) 

 

In this example, we use the connect() function from the sqlite3 module to connect to the SQLite 

database. We then create a cursor object and use it to execute a SQL query to select all rows 

from the mytable table. We then use the fetchall() method to retrieve all rows from the query 

result. 
 

import csv 

 

data = [ 

    ['Name', 'Age', 'Gender'], 

    ['John', 25, 'Male'], 

    ['Jane', 30, 'Female'], 

    ['Bob', 40, 'Male'] 

] 

 

with open('data.csv', 'w', newline='') as file: 

    writer = csv.writer(file) 

    writer.writerows(data) 

 

In this example, we define a list of lists called data that contains the data we want to write to the 

CSV file. We then use the open() function to open the file in write mode and pass the file object 

to the csv.writer() function. We then use the writerows() method to write all rows of data to the 

CSV file. 

 

Writing Excel files: To write data to an Excel file, you can use the pandas library. Here's an 

example of how to write data to an Excel file: 

 
import pandas as pd 

 

data = { 

    'Name': ['John', 'Jane', 'Bob'], 

    'Age': [25, 30, 40], 

    'Gender': ['Male', 'Female', 'Male'] 

} 

 

df = pd.DataFrame(data) 

df.to_excel('data.xlsx', index=False) 

In this example, we define a dictionary called data that contains the data we want to write to the 

Excel file. We then use the DataFrame() function from the pandas library to create a DataFrame 
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object from the dictionary. We then use the to_excel() method to write the DataFrame to an 

Excel file. 

 

Writing SQL databases: To write data to a SQL database, you can use the execute() method of 

the cursor object from the sqlite3 module. Here's an example of how to write data to a SQLite 

database: 
 

import sqlite3 

 

conn = sqlite3.connect('mydatabase.db') 

cursor = conn.cursor() 

cursor.execute('''CREATE TABLE mytable (Name TEXT, Age 

INTEGER, Gender TEXT)''') 

data = [('John', 25, 'Male'), ('Jane', 30, 'Female'), 

('Bob', 40, 'Male')] 

cursor.executemany('INSERT INTO mytable VALUES 

(?,?,?)', data) 

conn.commit() 

 

In this example, we first create a connection object to the SQLite database using the connect() 

function from the sqlite3 module. We then create a cursor object and use it to execute a SQL 

query to create a table called mytable. We then define a list of tuples called data that contains the 

data we want to write to the table. We then use the executemany() method to execute a SQL 

query to insert multiple rows of data into the table. Finally, we use the commit() method to 

commit the changes to the database. 

 

here is a comprehensive guide on Reading and Writing Data in Python for SAS Users. 

 

Introduction 

Python is a general-purpose programming language that is widely used in the data science and 

machine learning communities. Python is often compared to SAS, a popular statistical software 

package that has been widely used in the industry for data analysis and manipulation. However, 

Python offers several advantages over SAS, including a more robust and flexible set of data 

manipulation tools. In this guide, we will discuss how to read and write data in Python, with a 

focus on how these operations compare to their SAS equivalents. 

 

Reading Data 

Reading CSV Files 

In SAS, data is typically stored in a variety of formats, including CSV, Excel, and SAS datasets. 

To read a CSV file in Python, we can use the pandas library. pandas is a popular data 

manipulation library that provides several functions for reading and manipulating data. 

 

To read a CSV file in Python, we can use the read_csv function from pandas. For example, 

suppose we have a CSV file called mydata.csv that contains the following data: 
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Name,Age,Gender 

John,30,Male 

Jane,25,Female 

 

To read this file in Python, we can use the following code: 

 
import pandas as pd 

 

df = pd.read_csv('mydata.csv') 

 

This will read the CSV file into a DataFrame object, which is a two-dimensional table of data 

that can be manipulated using various pandas functions. 

 

Reading Excel Files 

In SAS, Excel files are often used to store data. To read an Excel file in Python, we can use the 

pandas library. pandas provides a read_excel function that can read Excel files in a similar way 

to read_csv. 

 

To read an Excel file in Python, we can use the following code: 

 
import pandas as pd 

 

df = pd.read_excel('mydata.xlsx') 

 

This will read the Excel file into a DataFrame object. 

 

Reading SAS Datasets 

To read a SAS dataset in Python, we can use the sas7bdat library. This library provides a 

SAS7BDAT class that can read SAS datasets. To use this library, we need to install it using pip: 

 
pip install sas7bdat 

 

To read a SAS dataset in Python, we can use the following code: 

 
from sas7bdat import SAS7BDAT 

 

with SAS7BDAT('mydata.sas7bdat') as f: 

    df = f.to_data_frame() 

 

This will read the SAS dataset into a DataFrame object. 

 

Writing Data 

Writing CSV Files 
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To write data to a CSV file in Python, we can use the to_csv function from pandas. For example, 

suppose we have a DataFrame called df that we want to write to a CSV file called output.csv. We 

can use the following code: 

 
import pandas as pd 

 

df.to_csv('output.csv', index=False) 

 

This will write the DataFrame to a CSV file. 

 

Writing Excel Files 

To write data to an Excel file in Python, we can use the to_excel function from pandas. For 

example, suppose we have a DataFrame called df that we want to write to an Excel file called 

output.xlsx. We can use the following code: 

 
import pandas as pd 

 

df.to_excel('output.xlsx', index=False) 

 

 

Here are some example codes for reading and writing data in Python for SAS users. 

 

Reading CSV Files 
 

import pandas as pd 

 

# Read CSV file into a DataFrame 

df = pd.read_csv('mydata.csv') 

 

Reading Excel Files 
 

import pandas as pd 

 

# Read Excel file into a DataFrame 

df = pd.read_excel('mydata.xlsx') 

 

Reading SAS Datasets 
 

from sas7bdat import SAS7BDAT 

 

# Read SAS dataset into a DataFrame 

with SAS7BDAT('mydata.sas7bdat') as f: 

    df = f.to_data_frame() 

Writing CSV Files 
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import pandas as pd 

 

# Write DataFrame to CSV file 

df.to_csv('output.csv', index=False) 

 

Writing Excel Files 
 

import pandas as pd 

 

# Write DataFrame to Excel file 

df.to_excel('output.xlsx', index=False) 

 

Writing SAS Datasets 

 
import pandas as pd 

from sas7bdat import SAS7BDAT 

 

# Write DataFrame to SAS dataset 

with SAS7BDAT('output.sas7bdat', 'w') as f: 

    f.write_df(df) 

 

Reading CSV Files with Custom Delimiters 

Sometimes CSV files may use a custom delimiter character instead of a comma. In SAS, we can 

use the dlm option in the infile statement to specify a custom delimiter. In Python, we can use the 

delimiter parameter in the read_csv function to specify a custom delimiter. For example, suppose 

we have a CSV file called mydata.txt that uses a pipe (|) as a delimiter: 

 
Name|Age|Gender 

John|30|Male 

Jane|25|Female 

 

To read this file in Python, we can use the following code: 

 
import pandas as pd 

 

# Read CSV file with custom delimiter 

df = pd.read_csv('mydata.txt', delimiter='|') 

 

This will read the CSV file into a DataFrame object using a pipe (|) as the delimiter. 
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Reading SAS Datasets with Custom Formats 

In SAS, we can apply custom formats to variables in a dataset using the format statement. In 

Python, we can use the sas7bdat library to read SAS datasets that use custom formats. For 

example, suppose we have a SAS dataset called mydata.sas7bdat that contains a variable called 

age that has a custom format called agefmt.: 

 
data mydata; 

  set sashelp.class; 

  format age agefmt.; 

run; 

 

To read this SAS dataset in Python, we can use the following code: 

 
from sas7bdat import SAS7BDAT 

 

# Read SAS dataset with custom formats 

with SAS7BDAT('mydata.sas7bdat') as f: 

    df = f.to_data_frame(convert_dates=False, 

convert_text=False) 

 

This will read the SAS dataset into a DataFrame object, preserving the custom format for the age 

variable. 

 

Writing CSV Files with Custom Delimiters 

To write a DataFrame to a CSV file with a custom delimiter in Python, we can use the sep 

parameter in the to_csv function. For example, suppose we have a DataFrame called df that we 

want to write to a CSV file called output.txt using a pipe (|) as the delimiter: 
 

import pandas as pd 

 

# Write DataFrame to CSV file with custom delimiter 

df.to_csv('output.txt', sep='|', index=False) 

 

This will write the DataFrame to a CSV file using a pipe (|) as the delimiter. 

 

Writing SAS Datasets with Custom Formats 

To write a DataFrame to a SAS dataset with custom formats in Python, we can use the write_df 

method in the SAS7BDAT class from the sas7bdat library. For example, suppose we have a 

DataFrame called df that we want to write to a SAS dataset called output.sas7bdat, with a custom 

format for the age variable: 

 
import pandas as pd 

from sas7bdat import SAS7BDAT 

 

# Write DataFrame to SAS dataset with custom formats 
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with SAS7BDAT('output.sas7bdat', 'w') as f: 

    f.write_df(df, formats={'age': 'agefmt.'}) 

 

This will write the DataFrame to a SAS dataset, applying the custom format agefmt. to the age 

variable. 

 

 

 

Reading data from files 
 

"Python for SAS Users" is a book that provides an introduction to Python programming for SAS 

users. The book is designed to help SAS users transition to Python programming by highlighting 

the similarities and differences between the two languages. One important aspect of data analysis 

in both SAS and Python is the ability to read data from files. In this article, we will provide an 

overview of how to read data from files in Python, with a focus on techniques that may be 

familiar to SAS users. 

 

Reading Text Files 

The most common type of file that SAS users may encounter is a text file. In Python, there are 

several ways to read text files, including the built-in open function, the csv module, and the 

pandas library. 

The open function is a built-in function that allows you to open a file in text mode. Here's an 

example: 

 
with open('file.txt', 'r') as f: 

    for line in f: 

        print(line.strip()) 

 

This code opens a file called 'file.txt' in read mode ('r'), and then iterates through each line in the 

file using a for loop. The strip method is used to remove any leading or trailing whitespace from 

each line. 

 

The csv module is a standard library in Python that provides functionality for reading and writing 

CSV (comma-separated values) files. Here's an example: 

 
import csv 

 

with open('file.csv', 'r') as f: 

    reader = csv.reader(f) 

    for row in reader: 

        print(row) 

 

This code opens a file called 'file.csv' in read mode, and then creates a CSV reader object using 

the csv.reader function. The reader object is then used to iterate through each row in the file. 
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The pandas library is a popular library in Python for data analysis that provides functionality for 

reading and writing various types of files, including CSV files, Excel files, and SQL databases. 

Here's an example: 

 
import pandas as pd 

 

df = pd.read_csv('file.csv') 

print(df) 

 

This code uses the read_csv function from the pandas library to read a CSV file called 'file.csv' 

into a DataFrame object. The resulting DataFrame can then be used for data analysis. 

 

Reading SAS Data Sets 

SAS users may also be familiar with reading SAS data sets (.sas7bdat files) into SAS. In Python, 

there are several libraries that provide functionality for reading SAS data sets, including the 

sas7bdat library and the pandas library. 

The sas7bdat library is a Python library that provides functionality for reading SAS data sets 

directly into Python. Here's an example: 

 
from sas7bdat import SAS7BDAT 

 

with SAS7BDAT('file.sas7bdat') as f: 

    data = f.to_data_frame() 

    print(data) 

 

This code opens a SAS data set called 'file.sas7bdat' using the SAS7BDAT function from the 

sas7bdat library. The resulting object is then converted to a Pandas DataFrame using the 

to_data_frame method. 

 

The pandas library also provides functionality for reading SAS data sets using the read_sas 

function. Here's an example: 
 

import pandas as pd 

 

df = pd.read_sas('file.sas7bdat') 

print(df) 

 

This code uses the read_sas function from the pandas library to read a SAS data set called 

'file.sas7bdat' into a DataFrame object. 

 

Reading Excel Files 

Another common type of file that SAS users may encounter is an Excel file. In Python, there are 

several libraries that provide functionality for reading Excel files, including the openpyxl library 

and the pandas library. 
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The openpyxl library is a Python library that provides functionality for reading and writing Excel 

files. Here's an example: 

 
from openpyxl import load_workbook 

 

wb = load_workbook(filename='file.xlsx') 

ws = wb.active 

 
for row in ws.iter_rows(): 

    for cell in row: 

        print(cell.value) 

 

This code uses the load_workbook function from the openpyxl library to load an Excel file called 

'file.xlsx' into a workbook object. The active worksheet is then selected using the active attribute, 

and the iter_rows method is used to iterate through each row in the worksheet. The value of each 

cell is then printed using the value attribute. 

 

The pandas library also provides functionality for reading Excel files using the read_excel 

function. Here's an example: 

 
import pandas as pd 

 

df = pd.read_excel('file.xlsx') 

print(df) 

 

This code uses the read_excel function from the pandas library to read an Excel file called 

'file.xlsx' into a DataFrame object. The resulting DataFrame can then be used for data analysis. 

 

Reading SQL Databases 

SAS users may also be familiar with reading data from SQL databases. In Python, there are 

several libraries that provide functionality for reading data from SQL databases, including the 

pyodbc library and the pandas library. 

The pyodbc library is a Python library that provides functionality for connecting to and querying 

SQL databases. Here's an example: 

 
import pyodbc 

 

cnxn = pyodbc.connect('DRIVER={SQL 

Server};SERVER=server_name;DATABASE=db_name;UID=usernam

e;PWD=password') 

cursor = cnxn.cursor() 

 

cursor.execute('SELECT * FROM table_name') 

 

for row in cursor: 
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    print(row) 

 

This code uses the connect function from the pyodbc library to connect to a SQL Server database 

using the specified driver, server name, database name, username, and password. The cursor 

object is then used to execute a SQL query and iterate through the results. 

The pandas library also provides functionality for reading data from SQL databases using the 

read_sql function. Here's an example: 

 
import pandas as pd 

import pyodbc 

 

cnxn = pyodbc.connect('DRIVER={SQL 

Server};SERVER=server_name;DATABASE=db_name;UID=usernam

e;PWD=password') 

query = 'SELECT * FROM table_name' 

 

df = pd.read_sql(query, cnxn) 

print(df) 

 

This code uses the connect function from the pyodbc library to connect to a SQL Server database 

using the specified driver, server name, database name, username, and password. The SQL query 

is then stored in a variable called query, and the read_sql function is used to read the data into a 

DataFrame object. The resulting DataFrame can then be used for data analysis. 

 

Reading Data from Web APIs 

Web APIs (Application Programming Interfaces) are a popular source of data for data analysis, 

and Python provides several libraries for accessing data from web APIs, such as requests and 

urllib. 

The requests library provides a simple and intuitive way to send HTTP requests and receive 

responses. Here's an example of using the requests library to access data from a web API: 

 
import requests 

 

url = 'https://api.example.com/data' 

response = requests.get(url) 

 

if response.status_code == 200: 

    data = response.json() 

    print(data) 

else: 

    print('Error: Unable to access API') 

 

In this example, the get method from the requests library is used to send an HTTP GET request 

to the URL 'https://api.example.com/data'. If the response status code is 200 (indicating a 
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successful response), the response data is then converted to a Python dictionary using the json 

method and printed to the console. If there is an error, an error message is printed. 

 

Reading Data from Web Scraping 

Another way to obtain data from the web is through web scraping, which involves extracting 

data from HTML and other web page formats. The BeautifulSoup library is a popular library for 

web scraping in Python. 

Here's an example of using the BeautifulSoup library to scrape data from a web page: 

 
import requests 

from bs4 import BeautifulSoup 

 

url = 'https://www.example.com' 

response = requests.get(url) 

 

if response.status_code == 200: 

    soup = BeautifulSoup(response.text, 'html.parser') 

    links = soup.find_all('a') 

     

    for link in links: 

        print(link.get('href')) 

else: 

    print('Error: Unable to access web page') 

 

In this example, the get method from the requests library is used to send an HTTP GET request 

to the URL 'https://www.example.com'. If the response status code is 200 (indicating a 

successful response), the BeautifulSoup library is used to parse the HTML response into a soup 

object. The find_all method is then used to find all the links on the page, and the get method is 

used to extract the URL for each link. 

 

Here are some longer examples of Python code for reading data from different sources: 

 

Reading Data from Text Files 
 

# Open the text file in read mode 

with open('example.txt', 'r') as file: 

    # Read all the lines from the file 

    lines = file.readlines() 

     

    # Print the lines 

    for line in lines: 

        print(line.strip()) 

 

In this example, the open function is used to open the file 'example.txt' in read mode, and the 

readlines method is used to read all the lines from the file into a list. The strip method is then 
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used to remove any whitespace characters from the beginning and end of each line, and the lines 

are printed to the console. 

Reading Data from SAS Data Sets 
 

# Import the SAS7BDAT module 

import sas7bdat 

 

# Open the SAS data set file 

with sas7bdat.SAS7BDAT('example.sas7bdat') as file: 

    # Get the column names from the SAS data set 

    columns = file.columns 

     

    # Print the column names 

    for column in columns: 

        print(column) 

         

    # Get the rows from the SAS data set 

    rows = file.to_data_frame() 

     

    # Print the rows 

    for row in rows: 

        print(row) 

 

In this example, the sas7bdat module is used to open the SAS data set file 'example.sas7bdat'. 

The columns attribute is used to get the column names from the data set, and the to_data_frame 

method is used to get the rows from the data set and convert them to a pandas data frame. The 

column names and rows are then printed to the console. 

 

Reading Data from Excel Files 
 

# Import the pandas module 

import pandas as pd 

 

# Read the Excel file into a pandas data frame 

df = pd.read_excel('example.xlsx') 

 

# Print the data frame 

print(df) 

 

In this example, the pandas module is used to read the Excel file 'example.xlsx' into a pandas 

data frame using the read_excel function. The data frame is then printed to the console. 

 

Reading Data from SQL Databases 
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# Import the pandas module 

import pandas as pd 

import sqlite3 

 

# Connect to the SQLite database 

conn = sqlite3.connect('example.db') 

 

# Read the data from the database into a pandas data 

frame 

df = pd.read_sql_query('SELECT * FROM table', conn) 

 

# Print the data frame 

print(df) 

 

In this example, the pandas and sqlite3 modules are used to connect to the SQLite database file 

'example.db'. The read_sql_query function is then used to read the data from the 'table' table into 

a pandas data frame. The data frame is then printed to the console. 

 

Reading Data from Web APIs 
 

# Import the requests module 

import requests 

 

# Make a request to the web API 

response = requests.get('https://api.example.com/data') 

 

# Check the response status code 

if response.status_code == 200: 

    # Get the response data as a dictionary 

    data = response.json() 

     

    # Print the data 

    print(data) 

else: 

    print('Error: Unable to access API') 

In this example, the requests module is used to make a request to the web API at 

'https://api.example.com/data'. The status_code attribute is then used to check the response status 

code, and if it is 200 (indicating a successful response). 

 

Reading Data from CSV Files 
 

# Import the pandas module 

import pandas as pd 
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# Read the CSV file into a pandas data frame 

df = pd.read_csv('example.csv') 

 

# Print the data frame 

print(df) 

 

In this example, the pandas module is used to read the CSV file 'example.csv' into a pandas data 

frame using the read_csv function. The data frame is then printed to the console. 

 

Reading Data from JSON Files 

 
# Import the json module 

import json 

 

# Open the JSON file in read mode 

with open('example.json', 'r') as file: 

    # Load the JSON data into a dictionary 

    data = json.load(file) 

     

    # Print the data 

    print(data) 

 

In this example, the json module is used to open the JSON file 'example.json' in read mode using 

the open function. The load method is then used to load the JSON data into a dictionary. The 

dictionary is then printed to the console. 

 

Reading Data from XML Files 
 

# Import the ElementTree module 

import xml.etree.ElementTree as ET 

 

# Parse the XML file 

tree = ET.parse('example.xml') 

root = tree.getroot() 

 

# Print the XML data 

for child in root: 

    print(child.tag, child.attrib) 

 

In this example, the xml.etree.ElementTree module is used to parse the XML file 'example.xml' 

using the parse function. The getroot method is then used to get the root element of the XML 

tree, and the tag and attrib attributes are used to print the data from each child element. 

 

Reading Data from PDF Files 
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python 
# Import the PyPDF2 module 

import PyPDF2 

 

# Open the PDF file in read-binary mode 

with open('example.pdf', 'rb') as file: 

    # Create a PDF reader object 

    reader = PyPDF2.PdfFileReader(file) 

     

    # Get the number of pages in the PDF file 

    num_pages = reader.getNumPages() 

     

    # Print the number of pages 

    print('Number of Pages:', num_pages) 

     

    # Loop through each page in the PDF file 

    for i in range(num_pages): 

        # Get the text from the page 

        page = reader.getPage(i) 

        text = page.extractText() 

         

        # Print the text 

        print('Page', i+1, 'Text:', text) 

 

In this example, the PyPDF2 module is used to open the PDF file 'example.pdf' in read-binary 

mode using the open function. The PdfFileReader class is then used to create a PDF reader 

object. The getNumPages method is used to get the number of pages in the PDF file, and the 

getPage and extractText methods are used to get the text from each page. The text is then printed 

to the console. 

 

Reading Data from Excel Files 
 

# Import the pandas module 

import pandas as pd 

# Read the Excel file into a pandas data frame 

df = pd.read_excel('example.xlsx') 

 

# Print the data frame 

print(df) 

 

In this example, the pandas module is used to read the Excel file 'example.xlsx' into a pandas 

data frame using the read_excel function. The data frame is then printed to the console. 
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Reading Data from SQLite Databases 

 
# Import the sqlite3 module 

import sqlite3 

 

# Connect to the SQLite database 

conn = sqlite3.connect('example.db') 

 

# Create a cursor object 

cur = conn.cursor() 

 

# Execute a SELECT statement 

cur.execute('SELECT * FROM employees') 

 

# Fetch the results 

results = cur.fetchall() 

 

# Print the results 

for row in results: 

    print(row) 

 

# Close the connection 

conn.close() 

 

In this example, the sqlite3 module is used to connect to the SQLite database 'example.db' using 

the connect function. A cursor object is then created using the cursor method. A SELECT 

statement is executed using the execute method, and the results are fetched using the fetchall 

method. The results are then printed to the console using a for loop. Finally, the connection is 

closed using the close method. 

 

Reading Data from MySQL Databases 
 

# Import the mysql-connector-python module 

import mysql.connector 

 

# Connect to the MySQL database 

conn = mysql.connector.connect( 

    host='localhost', 

    user='root', 

    password='password', 

    database='example' 

) 

 

# Create a cursor object 
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cur = conn.cursor() 

 

# Execute a SELECT statement 

cur.execute('SELECT * FROM employees') 

 

# Fetch the results 

results = cur.fetchall() 

 

# Print the results 

for row in results: 

    print(row) 

 

# Close the connection 

conn.close() 

 

In this example, the mysql-connector-python module is used to connect to the MySQL database 

'example' on the local machine using the connect function. A cursor object is then created using 

the cursor method. A SELECT statement is executed using the execute method, and the results 

are fetched using the fetchall method. The results are then printed to the console using a for loop. 

Finally, the connection is closed using the close method. Note that the host, user, password, and 

database parameters will need to be adjusted to match your own MySQL setup. 

 

Reading Data from JSON Files 
 

# Import the json module 

import json 

 

# Read the JSON file 

with open('example.json') as f: 

    data = json.load(f) 

 

# Print the data 

print(data) 

 

In this example, the json module is used to read the JSON file 'example.json' into a Python 

dictionary using the load function. The data is then printed to the console. 

 

Reading Data from XML Files 

 
# Import the xml.etree.ElementTree module 

import xml.etree.ElementTree as ET 

 

# Parse the XML file 

tree = ET.parse('example.xml') 
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# Get the root element 

root = tree.getroot() 

 

# Print the elements and attributes 

for child in root: 

    print(child.tag, child.attrib) 

 

In this example, the xml.etree.ElementTree module is used to parse the XML file 'example.xml' 

into an ElementTree object using the parse function. The root element is then obtained using the 

getroot method. The elements and attributes are then printed to the console using a for loop. 

 

Reading Data from CSV Files 
 

# Import the csv module 

import csv 

 

# Read the CSV file 

with open('example.csv', newline='') as f: 

    reader = csv.reader(f) 

    for row in reader: 

        print(row) 

 

In this example, the csv module is used to read the CSV file 'example.csv' using the reader 

function. The rows are then printed to the console using a for loop. Note that the newline='' 

parameter is used to ensure that newlines are not interpreted as row separators. 

 

Reading Data from Fixed-Width Files 
 

# Define the field widths 

widths = [10, 10, 10] 

 

# Read the fixed-width file 

with open('example.txt') as f: 

    for line in f: 

        fields = [line[start:start+width].strip() for 

start, width in enumerate(widths)] 

        print(fields) 

 

In this example, a list of field widths is defined. The fixed-width file 'example.txt' is then read 

line by line using a for loop. The fields are extracted using list comprehension and the strip 

method to remove any whitespace. The fields are then printed to the console. 

 

Reading Data from PDF Files 
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# Import the PyPDF2 module 

import PyPDF2 

 

# Open the PDF file in binary mode 

with open('example.pdf', 'rb') as f: 

    # Create a PDF reader object 

    reader = PyPDF2.PdfReader(f) 

 

    # Loop through the pages 

    for page in reader.pages: 

        # Extract the text from the page 

        text = page.text 

 

        # Print the text 

        print(text) 

 

In this example, the PyPDF2 module is used to open the PDF file 'example.pdf' in binary mode 

and create a PDF reader object using the PdfReader function. The pages are then looped through 

using a for loop, and the text is extracted from each page using the text attribute. The text is then 

printed to the console. 

 

Reading Data from HTML Files 
 

# Import the BeautifulSoup module 

from bs4 import BeautifulSoup 

 

# Read the HTML file 

with open('example.html') as f: 

    # Create a BeautifulSoup object 

    soup = BeautifulSoup(f, 'html.parser') 

 

    # Find all the table rows 

    rows = soup.find_all('tr') 

 

    # Loop through the rows 

    for row in rows: 

        # Find all the table cells in the row 

        cells = row.find_all('td') 

 

        # Extract the text from each cell 

        data = [cell.text for cell in cells] 

 

        # Print the data 

        print(data) 



181 | P a g e  

 

 

In this example, the BeautifulSoup module is used to read the HTML file 'example.html' and 

create a BeautifulSoup object using the BeautifulSoup function. All the table rows are then found 

using the find_all method. The rows are then looped through using a for loop, and all the table 

cells in each row are found using the find_all method. The text is then extracted from each cell 

using the text attribute and printed to the console. 

 

Reading Data from Text Files with Regular Expressions 
 

# Import the re module 

import re 

 

# Read the text file 

with open('example.txt') as f: 

    # Create a regular expression pattern 

    pattern = r'^\w+,\s\w+\s\w+' 

 

    # Loop through the lines 

    for line in f: 

        # Match the pattern 

        match = re.match(pattern, line) 

 

        # If the pattern matches, print the line 

        if match: 

            print(line) 

 

In this example, the re module is used to read the text file 'example.txt' and create a regular 

expression pattern using the match function. The lines are then looped through using a for loop, 

and the pattern is matched against each line using the match function. If the pattern matches, the 

line is printed to the console. 

 

 

 

Writing data to files 
 

Python and SAS are two popular programming languages used in data science and analytics. 

While SAS has been the go-to language for statistical analysis and data management for several 

decades, Python has gained a lot of popularity in recent years for its versatility and ease of use. 

In this article, we will discuss how to write data to files using Python from a SAS user's 

perspective. 

 

Python provides several built-in functions to write data to files, including the open() function, 

which is used to create a file object. The syntax for open() function is as follows: 

 
file_object = open(file_name, access_mode) 
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Here, file_name is the name of the file you want to create or open, and access_mode specifies the 

mode in which the file should be opened. For example, the access mode w is used to open the 

file in write mode, r is used to open the file in read mode, and a is used to open the file in append 

mode. 

 

To write data to a file, you can use the write() method of the file object. Here's an example code 

snippet that demonstrates how to write data to a file using Python: 

 
# create a file object 

file_object = open('data.txt', 'w') 

 

# write data to the file 

file_object.write('This is line 1\n') 

file_object.write('This is line 2\n') 

 

# close the file 

file_object.close() 

 

In this example, we create a file object named file_object using the open() function with the file 

name data.txt and access mode w. Then, we write two lines of text to the file using the write() 

method. Finally, we close the file using the close() method. 

 

It's important to note that when you write data to a file using the write() method, you need to 

include the newline character (\n) at the end of each line to create a new line in the file. 

 

In addition to the write() method, Python provides several other methods to write data to files, 

such as writelines() and print(). The writelines() method is used to write a list of strings to a file, 

while the print() function can be used to write data to a file by redirecting the output to the file. 

 

Here's an example code snippet that demonstrates how to use the writelines() method to write 

data to a file: 

 
# create a list of strings 

data = ['This is line 1\n', 'This is line 2\n'] 

 

# create a file object 

file_object = open('data.txt', 'w') 

 

# write data to the file using the writelines() method 

file_object.writelines(data) 

 

# close the file 

file_object.close() 
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In this example, we create a list of strings named data containing two lines of text. Then, we 

create a file object named file_object using the open() function with the file name data.txt and 

access mode w. Finally, we use the writelines() method to write the list of strings to the file, and 

close the file using the close() method. 

 

Writing data to files is an essential part of data processing and analysis. Python provides several 

built-in functions and methods to write data to files, making it a useful tool for SAS users who 

want to expand their data processing and analysis capabilities. By using the open() function and 

the write() or writelines() methods, SAS users can easily write data to files using Python. 

 

some more information on writing data to files using Python from a SAS user's perspective. 

 

Writing CSV Files: 

Comma-Separated Values (CSV) is a widely used file format for storing and exchanging data. In 

SAS, PROC EXPORT can be used to export data to CSV format. Similarly, in Python, the csv 

module provides built-in functions to read and write CSV files. 

 

Here's an example code snippet that demonstrates how to write data to a CSV file using Python: 
 

import csv 

 

# create a list of dictionaries containing data 

data = [ 

    {'Name': 'John', 'Age': 25, 'Gender': 'Male'}, 

    {'Name': 'Emily', 'Age': 28, 'Gender': 'Female'}, 

    {'Name': 'David', 'Age': 35, 'Gender': 'Male'} 

] 

 

# define the field names 

fieldnames = ['Name', 'Age', 'Gender'] 

 

# create a CSV writer object 

csv_writer = csv.DictWriter(open('data.csv', 'w', 

newline=''), fieldnames=fieldnames) 

 

# write the header row 

csv_writer.writeheader() 

 

# write the data rows 

for row in data: 

    csv_writer.writerow(row) 

 

In this example, we create a list of dictionaries containing data and define the field names. Then, 

we create a csv.DictWriter object with the file name data.csv and field names fieldnames. We 
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use the writeheader() method to write the header row and the writerow() method to write each 

row of data to the CSV file. 

 

Writing Excel Files: 

Excel is another popular file format for storing and analyzing data. In SAS, PROC EXPORT can 

be used to export data to Excel format. Similarly, in Python, the openpyxl module provides built-

in functions to read and write Excel files. 

 

Here's an example code snippet that demonstrates how to write data to an Excel file using 

Python: 

 
from openpyxl import Workbook 

 

# create a workbook object 

workbook = Workbook() 

 

# select the active worksheet 

worksheet = workbook.active 

 

# create a list of tuples containing data 

data = [ 

    ('John', 25, 'Male'), 

    ('Emily', 28, 'Female'), 

    ('David', 35, 'Male') 

] 

 

# write the header row 

worksheet.append(('Name', 'Age', 'Gender')) 

 

# write the data rows 

for row in data: 

    worksheet.append(row) 

 

# save the workbook 

workbook.save('data.xlsx') 

 

In this example, we create a Workbook object and select the active worksheet. We create a list of 

tuples containing data and use the append() method to write the header row and each row of data 

to the worksheet. Finally, we save the workbook to the file data.xlsx. 

 

Writing Text Files: 

In addition to CSV and Excel files, SAS users may also need to write data to text files. In SAS, 

PROC EXPORT can be used to export data to text format. Similarly, in Python, the open() 

function can be used to write data to text files. 
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Here's an example code snippet that demonstrates how to write data to a text file using Python: 

 
# create a list of strings containing data 

data = ['This is line 1', 'This is line 2', 'This is 

line 3'] 

 

# create a file object 

file_object = open('data.txt', 'w') 

 

# write data to the file 

for line in data: 

    file_object.write(line + '\n') 

 

# close the file 

file_object.close() 

 

Writing JSON Files: 

JSON (JavaScript Object Notation) is a lightweight data format that is commonly used for 

exchanging data between web applications. In SAS, PROC EXPORT can be used to export data 

to JSON format. Similarly, in Python, the json module provides built-in functions to read and 

write JSON files. 

 

Here's an example code snippet that demonstrates how to write data to a JSON file using Python: 

 
import json 

# create a dictionary containing data 

data = { 

    'Name': 'John', 

    'Age': 25, 

    'Gender': 'Male' 

} 

 

# write data to the JSON file 

with open('data.json', 'w') as file: 

    json.dump(data, file) 

 

In this example, we create a dictionary containing data and use the json.dump() function to write 

the data to a file named data.json. 

 

Writing XML Files: 

XML (Extensible Markup Language) is a data format that is widely used for exchanging data 

between different software applications. In SAS, PROC EXPORT can be used to export data to 

XML format. Similarly, in Python, the xml.etree.ElementTree module provides built-in functions 

to read and write XML files. 
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Here's an example code snippet that demonstrates how to write data to an XML file using 

Python: 

 
import xml.etree.ElementTree as ET 

 

# create an XML document 

root = ET.Element('data') 

 

# create a subelement for each data item 

name = ET.SubElement(root, 'Name') 

name.text = 'John' 

 

age = ET.SubElement(root, 'Age') 

age.text = '25' 

 

gender = ET.SubElement(root, 'Gender') 

gender.text = 'Male' 

 

# create an ElementTree object 

tree = ET.ElementTree(root) 

 

# write the XML file 

tree.write('data.xml', xml_declaration=True, 

encoding='utf-8') 

 

In this example, we create an XML document by creating an element for the root node named 

data, and then create subelements for each data item. We create an ElementTree object from the 

root node and use the write() method to write the data to a file named data.xml. 

 

Writing Binary Files: 

Binary files are files that contain binary data, such as images or audio files. In SAS, PROC 

EXPORT cannot be used to export data to binary format. However, in Python, the open() 

function can be used to write data to binary files. 

 

Here's an example code snippet that demonstrates how to write data to a binary file using 

Python: 

 
# read binary data from a file 

with open('image.png', 'rb') as file: 

    data = file.read() 

 

# write binary data to a file 

with open('new_image.png', 'wb') as file: 

    file.write(data) 
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In this example, we read binary data from a file named image.png using the 'rb' mode, and then 

write the binary data to a new file named new_image.png using the 'wb' mode. The file.read() 

method reads the entire contents of the file, and the file.write() method writes the binary data to 

the new file. 

 

Writing Excel Files: 

Excel files are widely used for storing and analyzing data. In SAS, PROC EXPORT can be used 

to export data to Excel format. Similarly, in Python, the pandas module provides built-in 

functions to write data to Excel files. 

 

Here's an example code snippet that demonstrates how to write data to an Excel file using 

Python: 

 
import pandas as pd 

 

# create a dataframe containing data 

data = { 

    'Name': ['John', 'Mary', 'Peter'], 

    'Age': [25, 30, 35], 

    'Gender': ['Male', 'Female', 'Male'] 

} 

df = pd.DataFrame(data) 

 

# write data to the Excel file 

with pd.ExcelWriter('data.xlsx') as writer: 

    df.to_excel(writer, sheet_name='Sheet1', 

index=False) 

 

In this example, we create a dataframe containing data and use the to_excel() method to write the 

data to an Excel file named data.xlsx. We use the ExcelWriter() function to create an Excel 

writer object and specify the sheet name and index to be written to the file. 

 

Writing CSV Files: 

CSV (Comma-Separated Values) files are widely used for storing and exchanging data. In SAS, 

PROC EXPORT can be used to export data to CSV format. Similarly, in Python, the csv module 

provides built-in functions to read and write CSV files. 

 

Here's an example code snippet that demonstrates how to write data to a CSV file using Python: 

 
import csv 

 

# create a list of dictionaries containing data 

data = [ 

    {'Name': 'John', 'Age': 25, 'Gender': 'Male'}, 

    {'Name': 'Mary', 'Age': 30, 'Gender': 'Female'}, 
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    {'Name': 'Peter', 'Age': 35, 'Gender': 'Male'} 

] 

 

# write data to the CSV file 

with open('data.csv', 'w', newline='') as file: 

    writer = csv.DictWriter(file, fieldnames=['Name', 

'Age', 'Gender']) 

    writer.writeheader() 

    writer.writerows(data) 

 

In this example, we create a list of dictionaries containing data and use the csv.DictWriter() 

function to write the data to a CSV file named data.csv. We specify the field names using the 

fieldnames parameter, and use the writerow() method to write each row of data to the file. 

 

Writing Text Files: 

Text files are files that contain plain text data. In SAS, PROC EXPORT can be used to export 

data to text format. Similarly, in Python, the open() function can be used to write data to text 

files. 

 

Here's an example code snippet that demonstrates how to write data to a text file using Python: 

 
# create a string containing data 

data = 'John,25,Male\nMary,30,Female\nPeter,35,Male\n' 

 

# write data to the text file 

with open('data.txt', 'w') as file: 

    file.write(data) 

 

In this example, we create a string containing data and use the file.write() method to write the 

data to a text file named data.txt. The \n character is used to indicate a new line in the text file. 

 

Writing JSON Files: 

JSON (JavaScript Object Notation) is a lightweight data interchange format. In SAS, PROC 

EXPORT can be used to export data to JSON format. Similarly, in Python, the json module 

provides built-in functions to read and write JSON files. 

 

Here's an example code snippet that demonstrates how to write data to a JSON file using Python: 

 
import json 

 

# create a list of dictionaries containing data 

data = [ 

    {'Name': 'John', 'Age': 25, 'Gender': 'Male'}, 

    {'Name': 'Mary', 'Age': 30, 'Gender': 'Female'}, 

    {'Name': 'Peter', 'Age': 35, 'Gender': 'Male'} 
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] 

 

# write data to the JSON file 

with open('data.json', 'w') as file: 

    json.dump(data, file) 

 

In this example, we create a list of dictionaries containing data and use the json.dump() function 

to write the data to a JSON file named data.json. 

 

Writing XML Files: 

XML (eXtensible Markup Language) is a markup language used for storing and exchanging 

data. In SAS, PROC EXPORT can be used to export data to XML format. Similarly, in Python, 

the xml.etree.ElementTree module provides built-in functions to write XML files. 

 

Here's an example code snippet that demonstrates how to write data to an XML file using 

Python: 

 
import xml.etree.ElementTree as ET 

 

# create an XML element containing data 

root = ET.Element('data') 

for i in range(3): 

    item = ET.SubElement(root, 'item') 

    ET.SubElement(item, 'Name').text = ['John', 'Mary', 

'Peter'][i] 

    ET.SubElement(item, 'Age').text = str([25, 30, 

35][i]) 

    ET.SubElement(item, 'Gender').text = ['Male', 

'Female', 'Male'][i] 

 

# write data to the XML file 

tree = ET.ElementTree(root) 

tree.write('data.xml') 

 

In this example, we create an XML element containing data and use the ElementTree.write() 

method to write the data to an XML file named data.xml. 

 

In this article, we have discussed various techniques for writing data to files using Python from a 

SAS user's perspective. We have covered techniques for writing SAS data files, Excel files, CSV 

files, text files, JSON files, and XML files. 

 

Python provides a wide range of libraries and functions to read and write data in different file 

formats. These techniques can be easily integrated with SAS workflows to enhance data analysis 

and processing capabilities. 
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# Import necessary libraries 

import pandas as pd 

import xlsxwriter 

 

# Create a sample data frame 

df = pd.DataFrame({ 

    'Name': ['John', 'Mary', 'Peter'], 

    'Age': [25, 30, 35], 

    'Gender': ['Male', 'Female', 'Male'] 

}) 

 

# Define the file path and name 

file_path = 'example.xlsx' 

 

# Define the Excel writer 

writer = pd.ExcelWriter(file_path, engine='xlsxwriter') 

 

# Write the data to a sheet named 'Sheet1' 

df.to_excel(writer, sheet_name='Sheet1', index=False) 

 

# Access the underlying workbook and worksheet objects 

workbook = writer.book 

worksheet = writer.sheets['Sheet1'] 

 

# Format the headers 

header_format = workbook.add_format({ 

    'bold': True, 

    'text_wrap': True, 

    'valign': 'top', 

    'fg_color': '#D7E4BC', 

    'border': 1 

}) 

 

# Apply the header format 

for col_num, value in enumerate(df.columns.values): 

    worksheet.write(0, col_num, value, header_format) 

 

# Format the data cells 

data_format = workbook.add_format({ 

    'text_wrap': True, 

    'valign': 'top', 

    'border': 1 

}) 
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# Apply the data format 

for row_num in range(1, len(df) + 1): 

    for col_num, value in enumerate(df.iloc[row_num - 

1]): 

        worksheet.write(row_num, col_num, value, 

data_format) 

 

# Save the Excel file 

writer.save() 

 

# Print a success message 

print('Data successfully written to Excel file:', 

file_path) 

 

This code imports the necessary libraries and creates a sample pandas data frame. It then defines 

the file path and name for the Excel file and creates an Excel writer object. The data is written to 

a sheet named 'Sheet1' using the to_excel() method of the data frame. 

 
# import required modules 

import pandas as pd 

import openpyxl 

import csv 

import json 

import xml.etree.ElementTree as ET 

from sas7bdat import SAS7BDAT 

 

# create a sample data frame 

data = pd.DataFrame({ 

    'Name': ['John', 'Mary', 'Peter'], 

    'Age': [25, 30, 35], 

    'Gender': ['Male', 'Female', 'Male'] 

}) 

 

# write data to SAS data file 

with SAS7BDAT('data.sas7bdat', 'w') as file: 

    file.write(data) 

 

# write data to Excel file 

writer = pd.ExcelWriter('data.xlsx', engine='openpyxl') 

data.to_excel(writer, index=False) 

writer.save() 

 

# write data to CSV file 



192 | P a g e  

 

 

data.to_csv('data.csv', index=False) 

 

# write data to text file 

with open('data.txt', 'w') as file: 

    file.write(data.to_string(index=False)) 

 

# write data to JSON file 

with open('data.json', 'w') as file: 

    json.dump(data.to_dict(orient='records'), file) 

 

# write data to XML file 

root = ET.Element('data') 

for i in range(len(data)): 

    item = ET.SubElement(root, 'item') 

    ET.SubElement(item, 'Name').text = data['Name'][i] 

    ET.SubElement(item, 'Age').text = 

str(data['Age'][i]) 

    ET.SubElement(item, 'Gender').text = 

data['Gender'][i] 

tree = ET.ElementTree(root) 

tree.write('data.xml') 

 

In this example, we first create a sample data frame using Pandas. We then use different 

techniques to write this data to different file formats such as SAS data files, Excel files, CSV 

files, text files, JSON files, and XML files. 

 

This code can be easily modified to write data in different formats or with different settings. It 

provides a good starting point for SAS users who want to learn how to use Python to write data 

to files. 

 

 

 

CSV files 
 

CSV (Comma Separated Values) files are a popular file format for storing tabular data. They are 

widely used in various applications and can be easily imported into Python for data analysis. In 

this article, we will discuss how to work with CSV files in Python, especially from the 

perspective of SAS users who are new to Python. 

 

Python has a built-in csv module that provides functionality for reading and writing CSV files. 

The csv module provides several methods to read and write CSV files. The reader() method 

reads the contents of a CSV file and returns an object that can be iterated over to access each 

row. The writer() method writes data to a CSV file. 
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Here is an example of reading a CSV file in Python: 

 
import csv 

 

with open('file.csv', 'r') as csvfile: 

    csvreader = csv.reader(csvfile) 

    for row in csvreader: 

        print(row) 

 

In the above example, we first import the csv module. We then open the CSV file in read mode 

using the open() function and the csv.reader() method reads the contents of the file. We then loop 

through the contents of the CSV file and print each row. 

If we want to write data to a CSV file, we can use the csv.writer() method as shown in the 

following example: 
 

import csv 

 

with open('file.csv', 'w') as csvfile: 

    csvwriter = csv.writer(csvfile) 

    csvwriter.writerow(['Name', 'Age', 'City']) 

    csvwriter.writerow(['John', '25', 'New York']) 

    csvwriter.writerow(['Alice', '30', 'Chicago']) 

 

In the above example, we first open the CSV file in write mode using the open() function. We 

then create a csv.writer() object and use the writerow() method to write data to the file. In this 

case, we write three rows to the file, where the first row contains the column headers and the 

next two rows contain data. 

 

In addition to the csv module, there are several third-party libraries that can be used to read and 

write CSV files in Python. One such library is pandas, which is a powerful library for data 

analysis. The pandas library provides a read_csv() function that can be used to read CSV files 

into a DataFrame object, which is a two-dimensional table-like data structure. 

 

Here is an example of reading a CSV file using pandas: 

 
import pandas as pd 

 

df = pd.read_csv('file.csv') 

print(df) 

 

In the above example, we first import the pandas library. We then use the read_csv() function to 

read the CSV file into a DataFrame object. We can then print the contents of the DataFrame 

object using the print() function. 
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CSV files are a popular file format for storing tabular data and can be easily read and written in 

Python using the csv module or third-party libraries such as pandas. SAS users who are new to 

Python can quickly learn how to work with CSV files in Python using the examples provided in 

this article. 

 

Reading CSV file into a dictionary: 
 

import csv 

 

with open('file.csv', 'r') as csvfile: 

    csvreader = csv.DictReader(csvfile) 

    for row in csvreader: 

        print(row['Name'], row['Age'], row['City']) 

In this example, we use the DictReader() method from the csv module to read the CSV file into a 

dictionary. Each row of the CSV file is represented as a dictionary where the keys correspond to 

the column headers. We can then access the values in each row using the dictionary keys. 

 

Writing data to a CSV file using a list of dictionaries: 
 

import csv 

 

data = [{'Name': 'John', 'Age': 25, 'City': 'New 

York'}, 

        {'Name': 'Alice', 'Age': 30, 'City': 

'Chicago'}, 

        {'Name': 'Bob', 'Age': 35, 'City': 'Los 

Angeles'}] 

 

with open('file.csv', 'w') as csvfile: 

    fieldnames = ['Name', 'Age', 'City'] 

    csvwriter = csv.DictWriter(csvfile, 

fieldnames=fieldnames) 

    csvwriter.writeheader() 

    for row in data: 

        csvwriter.writerow(row) 

 

In this example, we create a list of dictionaries containing the data that we want to write to the 

CSV file. We then use the DictWriter() method to write the data to the CSV file. The 

writeheader() method writes the column headers to the CSV file. We then loop through each 

dictionary in the list and write each row to the CSV file using the writerow() method. 

 

Working with CSV files using pandas: 
 

import pandas as pd 
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df = pd.read_csv('file.csv') 

df['Age'] = df['Age'] + 1 

df.to_csv('file_updated.csv', index=False) 

 

In this example, we use the read_csv() function from the pandas library to read the CSV file into 

a DataFrame object. We can then manipulate the data in the DataFrame object as desired. 

 

Here are some more examples of working with CSV files in Python: 

 

 

 

Example 1: Writing data to a CSV file using the csv module 

 
import csv 

 

data = [['Name', 'Age', 'City'], 

        ['John', '25', 'New York'], 

        ['Alice', '30', 'Chicago']] 

 

with open('file.csv', 'w') as csvfile: 

    csvwriter = csv.writer(csvfile) 

    csvwriter.writerows(data) 

 

In the above example, we create a nested list data containing the data we want to write to the 

CSV file. We then open the file in write mode using the open() function, create a csv.writer() 

object, and use the writerows() method to write the data to the file. The writerows() method 

writes multiple rows to the file at once. 

 

Example 2: Reading a CSV file using the csv module and skipping header row 

 
import csv 

 

with open('file.csv', 'r') as csvfile: 

    csvreader = csv.reader(csvfile) 

    header = next(csvreader) 

    for row in csvreader: 

        print(row) 

 

In the above example, we open the CSV file in read mode, create a csv.reader() object, and use 

the next() function to skip the first row (which contains the header). We then loop through the 

remaining rows and print each row. 

 

Example 3: Reading a CSV file using pandas and filtering data based on a condition 

 
import pandas as pd 
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df = pd.read_csv('file.csv') 

df_filtered = df[df['Age'] > 25] 

print(df_filtered) 

 

In the above example, we read the CSV file into a DataFrame object using the read_csv() 

function from pandas. We then filter the data based on a condition (age greater than 25) and store 

the filtered data in a new DataFrame object df_filtered. Finally, we print the contents of the 

filtered DataFrame object. 

 

 

Example 4: Writing data to a CSV file using pandas 

 
import pandas as pd 

 

data = {'Name': ['John', 'Alice'], 

        'Age': [25, 30], 

        'City': ['New York', 'Chicago']} 

 

df = pd.DataFrame(data) 

df.to_csv('file.csv', index=False) 

 

In the above example, we create a dictionary data containing the data we want to write to the 

CSV file. We then create a DataFrame object from the dictionary using the pd.DataFrame() 

function. Finally, we use the to_csv() method of the DataFrame object to write the data to a CSV 

file, with the index parameter set to False to exclude the row numbers from the output. 

 

Example 5: Reading a CSV file using the csv module and handling missing data 

 
import csv 

 

with open('file.csv', 'r') as csvfile: 

    csvreader = csv.reader(csvfile) 

    header = next(csvreader) 

    for row in csvreader: 

        name = row[0] 

        age = row[1] if row[1] else 'N/A' 

        city = row[2] if row[2] else 'N/A' 

        print(f"Name: {name}, Age: {age}, City: 

{city}") 

 

In the above example, we open the CSV file in read mode, create a csv.reader() object, and use 

the next() function to skip the header row. We then loop through the remaining rows and extract 

the data from each row. If a value is missing (represented by an empty string), we replace it with 

the string 'N/A'. Finally, we print the data in a formatted string. 
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Example 6: Writing data to a CSV file using the csv module and custom delimiter 

 
import csv 

 

data = [['Name', 'Age', 'City'], 

        ['John', '25', 'New York'], 

        ['Alice', '30', 'Chicago']] 

 

with open('file.txt', 'w') as csvfile: 

    csvwriter = csv.writer(csvfile, delimiter='\t') 

    csvwriter.writerows(data) 

 

In the above example, we create a nested list data containing the data we want to write to the 

CSV file. We then open the file in write mode using the open() function, create a csv.writer() 

object, and set the delimiter to '\t' to use a tab character as the delimiter. Finally, we use the 

writerows() method to write the data to the file. 

 

Example 7: Reading a CSV file using pandas and selecting columns 

 
import pandas as pd 

 

df = pd.read_csv('file.csv') 

df_selected = df[['Name', 'Age']] 

print(df_selected) 

 

In the above example, we read the CSV file into a DataFrame object using the read_csv() 

function from pandas. We then select the columns Name and Age from the DataFrame object 

and store them in a new DataFrame object df_selected. Finally, we print the contents of the 

selected DataFrame object. 

 

Example 8: Writing data to a CSV file using pandas and custom header 
 

import pandas as pd 

 

data = {'Name': ['John', 'Alice'], 

        'Age': [25, 30], 

        'City': ['New York', 'Chicago']} 

 

df = pd.DataFrame(data) 

header = ['Person Name', 'Age', 'Residence'] 

df.to_csv('file.csv', header=header, index=False) 

 

In the above example, we create a dictionary data containing the data we want to write to the 

CSV file. We then create a DataFrame object from the dictionary using the pd.DataFrame() 
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function. We also create a list header containing the custom header names. Finally, we use the 

to_csv() method of the DataFrame object to write the data to a CSV file, with the header 

parameter set to the custom header list and the index parameter set to False to exclude the row 

numbers from the output. 

 

Example 9: Reading a CSV file with custom delimiter and quoting characters using the csv 

module 

 
with open('file.csv', 'r') as csvfile: 

    csvreader = csv.reader(csvfile, delimiter='|', 

quotechar='"') 

    for row in csvreader: 

        name = row[0] 

        age = row[1] 

        city = row[2] 

        print(f"Name: {name}, Age: {age}, City: 

{city}") 

 

In the above example, we open the CSV file in read mode, create a csv.reader() object, and set 

the delimiter to '|' and the quote character to '"' to handle the custom formatting of the file. We 

then loop through the rows of the file, extract the data from each row, and print it in a formatted 

string. 

 

Example 10: Writing data to a CSV file using csv.DictWriter class 

 
import csv 

 

data = [{'Name': 'John', 'Age': 25, 'City': 'New 

York'}, 

        {'Name': 'Alice', 'Age': 30, 'City': 

'Chicago'}] 

 

with open('file.csv', 'w', newline='') as csvfile: 

    fieldnames = ['Name', 'Age', 'City'] 

    writer = csv.DictWriter(csvfile, 

fieldnames=fieldnames) 

    writer.writeheader() 

    for row in data: 

        writer.writerow(row) 

 

In the above example, we create a list of dictionaries data containing the data we want to write to 

the CSV file. We then open the file in write mode using the open() function, create a 

csv.DictWriter() object, and set the field names to ['Name', 'Age', 'City']. We use the 

writeheader() method to write the header row to the file and then loop through the rows of data, 

using the writerow() method to write each row to the file. 
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Example 11: Reading a CSV file using numpy and filtering rows based on a condition 
 

import numpy as np 

 

data = np.genfromtxt('file.csv', delimiter=',', 

dtype=None, names=True) 

selected_rows = data[data['Age'] > 25] 

print(selected_rows) 

 

In the above example, we use the genfromtxt() function from numpy to read the CSV file into a 

structured array. We set the delimiter to ',', the dtype parameter to None to automatically 

determine the data types of the columns, and the names parameter to True to use the header row 

as the column names. We then filter the rows of the array based on the condition data['Age'] > 

25, which selects only the rows where the value in the Age column is greater than 25. Finally, we 

print the selected rows. 

 

Example 12: Writing data to a CSV file using numpy and custom formatting 

 
import numpy as np 

 

data = np.array([('John', 25, 'New York'), ('Alice', 

30, 'Chicago')], dtype=[('Name', 'U10'), ('Age', 'i4'), 

('City', 'U10')]) 

np.savetxt('file.csv', data, delimiter=',', fmt='%s, 

%d, %s', header='Name, Age, City', comments='') 

 

In the above example, we create a structured array data containing the data we want to write to 

the CSV file. We set the dtype parameter to specify the data types of the columns and use the 

`U10 

 

 

 

Excel files 
 

Here is an example of Python code that might be included in the book for reading in a CSV file 

using Pandas: 

 
import pandas as pd 

 

# read in data from a CSV file 

data = pd.read_csv('mydata.csv') 

 

# print out the first few rows of data 

print(data.head()) 
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In addition to basic data manipulation, the book might also include examples of more advanced 

topics such as machine learning using Scikit-Learn, web scraping using libraries like Beautiful 

Soup, and data visualization using Matplotlib or Seaborn. 

 

Here is an example of Python code that might be included in the book for performing machine 

learning using Scikit-Learn: 
from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

 

# load the iris dataset 

iris = load_iris() 

 

# split the data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split( 

    iris.data, iris.target, test_size=0.3, 

random_state=42) 

 

# create a decision tree classifier 

clf = DecisionTreeClassifier() 

 

# fit the model to the training data 

clf.fit(X_train, y_train) 

 

# make predictions on the test data 

y_pred = clf.predict(X_test) 

 

# print out the accuracy of the model 

print("Accuracy:", clf.score(X_test, y_test)) 

 

The code examples in the book are likely to cover a range of topics, including: 

 

• Basic Python programming concepts, such as variables, data types, operators, and control 

structures. 

• Python libraries for data analysis, such as NumPy, Pandas, and Matplotlib. 

• Python libraries for machine learning, such as Scikit-Learn and TensorFlow. 

• Web scraping using Python libraries such as Beautiful Soup and Requests. 

 

Best practices for Python programming, such as code organization, documentation, testing, and 

version control. 

 

Here's an example of what a code snippet from the book might look like: 

 
# Importing the Pandas library 
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import pandas as pd 

 

# Reading in a CSV file using Pandas 

data = pd.read_csv('data.csv') 

 

# Displaying the first 10 rows of the data 

print(data.head(10)) 

 

# Calculating summary statistics for the data 

summary = data.describe() 

print(summary) 

 

# Visualizing the data using Matplotlib 

import matplotlib.pyplot as plt 

plt.plot(data['x'], data['y']) 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.title('Scatter plot of x and y') 

plt.show() 

 

This code example demonstrates how to use Pandas to read in a CSV file, display the first 10 

rows of the data, and calculate summary statistics. It also shows how to use Matplotlib to create a 

scatter plot of two columns of data. 

 

Here are some more examples of code snippets that might be included in "Python for SAS Users: 

A SAS-Oriented Introduction to Python": 

 

Example of using Python's built-in functions to manipulate strings: 
 

# Creating a string variable 

s = 'Hello, World!' 

 

# Converting the string to uppercase 

s_upper = s.upper() 

 

# Replacing a substring in the string 

s_new = s.replace('World', 'Universe') 

 

# Splitting the string into a list 

s_list = s.split(',') 

 

# Printing the results 

print(s_upper) 

print(s_new) 
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print(s_list) 

 

Example of using Python's NumPy library to perform basic arithmetic operations on arrays: 
 

# Importing the NumPy library 

import numpy as np 

 

# Creating two arrays 

a = np.array([1, 2, 3]) 

b = np.array([4, 5, 6]) 

 

# Adding the two arrays 

c = a + b 

 

# Multiplying the two arrays 

d = a * b 

 

# Computing the dot product of the two arrays 

e = np.dot(a, b) 

 

# Printing the results 

print(c) 

print(d) 

print(e) 

 

Example of using Python's Scikit-Learn library to perform machine learning: 
 

# Importing the Scikit-Learn library 

from sklearn.linear_model import LinearRegression 

 

# Creating a simple dataset 

X = [[0], [1], [2], [3], [4], [5]] 

y = [0, 1, 2, 3, 4, 5] 

 

# Creating a LinearRegression model 

model = LinearRegression() 

 

# Fitting the model to the data 

model.fit(X, y) 

 

# Predicting values using the model 

y_pred = model.predict([[6], [7], [8]]) 
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# Printing the results 

print(y_pred) 

 

These code examples demonstrate some of the key features of Python, including string 

manipulation, array operations, and machine learning. The book "Python for SAS Users: A SAS-

Oriented Introduction to Python" is likely to include many more examples like these, along with 

detailed explanations and instructions for how to use them in practice. 

Example of using Python's Pandas library to clean and manipulate data: 

python 

Copy code 

# Importing the Pandas library 

import pandas as pd 

 

# Reading in a CSV file 

data = pd.read_csv('data.csv') 

 

# Dropping rows with missing values 

data_clean = data.dropna() 

 

# Renaming columns 

data_clean = data_clean.rename(columns={'old_name': 'new_name'}) 

 

# Converting a column to a different data type 

data_clean['column_name'] = data_clean['column_name'].astype(int) 

 

# Grouping the data by a column and computing summary statistics 

summary = data_clean.groupby('grouping_variable').agg({'column1': 'mean', 'column2': 'sum'}) 

 

# Exporting the cleaned data to a new CSV file 

data_clean.to_csv('data_clean.csv', index=False) 

Example of using Python's Requests and Beautiful Soup libraries to scrape data from a website: 

python 

Copy code 

# Importing the Requests and Beautiful Soup libraries 

import requests 

from bs4 import BeautifulSoup 

 

# Sending a GET request to a website 

url = 'https://www.example.com' 

response = requests.get(url) 

 

# Parsing the HTML content using Beautiful Soup 

soup = BeautifulSoup(response.content, 'html.parser') 

 

# Extracting specific elements from the HTML content 

title = soup.title.string 
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links = [link['href'] for link in soup.find_all('a')] 

 

# Printing the results 

print(title) 

print(links) 

Example of using Python's unittest library to test a function: 

ruby 

Copy code 

# Defining a simple function to test 

def add_numbers(a, b): 

    return a + b 

 

# Importing the unittest library 

import unittest 

 

# Creating a test case class 

class TestAddNumbers(unittest.TestCase): 

    def test_add_numbers(self): 

        self.assertEqual(add_numbers(2, 3), 5) 

        self.assertEqual(add_numbers(-1, 1), 0) 

        self.assertEqual(add_numbers(0, 0), 0) 

 

# Running the test case 

if __name__ == '__main__': 

    unittest.main() 

 

 

 

JSON files 
 

JSON (JavaScript Object Notation) is a lightweight data interchange format that is easy for 

humans to read and write, and easy for machines to parse and generate. It is commonly used for 

transmitting data between a server and a web application, as an alternative to XML. JSON data is 

represented as key-value pairs, where the keys are strings and the values can be any valid JSON 

data type, including objects, arrays, numbers, strings, booleans, and null. 

 

Python is a popular programming language that is widely used in data analysis and scientific 

computing. It has a rich ecosystem of libraries and tools that make it an ideal language for 

working with data. In recent years, Python has become increasingly popular among SAS users as 

well, due to its ease of use, flexibility, and ability to handle large amounts of data. 

 

Python has built-in support for working with JSON data, allowing users to easily parse and 

generate JSON files. In this context, a JSON file is simply a text file that contains JSON-encoded 

data. Python provides the json module for working with JSON data. This module provides a 

simple interface for parsing JSON data, and converting Python objects to JSON and vice versa. 
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Here are some examples of using Python to work with JSON data: 

 

 

Parsing JSON data: 

The json module provides a function called json.load() that can be used to parse a JSON file into 

a Python object. Here's an example: 

 
import json 

 

# Open the JSON file 

with open('data.json', 'r') as f: 

    # Parse the JSON data into a Python object 

    data = json.load(f) 

 

# Print the data 

print(data) 

 

Generating JSON data: 

The json module provides a function called json.dump() that can be used to convert a Python 

object into a JSON-encoded string, and write it to a file. Here's an example: 

 
import json 

 

# Create a Python object 

data = { 

    'name': 'John', 

    'age': 30, 

    'city': 'New York' 

} 

 

# Convert the Python object to a JSON-encoded string 

json_string = json.dumps(data) 

 

# Write the JSON string to a file 

with open('data.json', 'w') as f: 

    f.write(json_string) 

 

Working with JSON data in pandas: 

Pandas is a popular library for data manipulation and analysis in Python. It provides built-in 

support for reading and writing JSON data. Here's an example: 

 
import pandas as pd 

 

# Read the JSON data into a pandas DataFrame 
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df = pd.read_json('data.json') 

 

# Print the DataFrame 

print(df) 

 

# Write the DataFrame to a JSON file 

df.to_json('data.json') 

 

Python provides a powerful and easy-to-use interface for working with JSON data. SAS users 

who are familiar with Python can leverage this capability to work with JSON files and integrate 

them with their SAS workflows. 

 

Manipulating JSON data in Python: 

Once you have loaded JSON data into a Python object, you can manipulate it using standard 

Python data structures and functions. For example, you can access values in a JSON object using 

dictionary-like syntax: 

 
import json 

 

# Load JSON data into a Python object 

data = json.loads('{"name": "John", "age": 30}') 

 

# Access values in the object 

print(data['name'])  # Output: "John" 

print(data['age'])  # Output: 30 

 

You can also iterate over values in a JSON array: 

 
import json 

 

# Load JSON data into a Python object 

data = json.loads('["apple", "banana", "cherry"]') 

 

# Iterate over values in the array 

for item in data: 

    print(item) 

 

Handling errors when working with JSON: 

When working with JSON data in Python, it's important to handle errors that may occur during 

parsing or encoding. The json module provides several functions for doing this, including 

json.JSONDecodeError and json.JSONEncoder. Here's an example of how to handle a JSON 

decoding error: 

 
import json 
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# Load JSON data into a Python object 

try: 

    data = json.loads('{"name": "John, "age": 30}') 

except json.JSONDecodeError: 

    print("Error: Invalid JSON data") 

 

Advanced JSON manipulation in Python: 

In addition to the basic functionality provided by the json module, there are several third-party 

libraries available for working with JSON data in Python. For example, the jsonschema library 

provides tools for validating JSON data against a schema, while the jmespath library provides a 

powerful query language for JSON data. 

 

Reading JSON data from an API: 

In addition to reading JSON data from a file, Python can also be used to read JSON data from an 

API. For example, you can use the requests library to send an HTTP GET request to an API 

endpoint and retrieve JSON data as a response: 

 
import requests 

import json 

 

# Send an HTTP GET request to an API endpoint 

response = 

requests.get('https://jsonplaceholder.typicode.com/todo

s') 

 

# Check that the request was successful (HTTP status 

code 200) 

if response.status_code == 200: 

    # Convert the response content (JSON-encoded 

string) to a Python object 

    data = json.loads(response.content) 

    # Print the first item in the array 

    print(data[0]) 

else: 

    print("Error: Failed to retrieve data") 

 

Writing JSON data to a MongoDB database: 

Python can also be used to write JSON data to a MongoDB database. MongoDB is a popular 

NoSQL database that uses JSON-like documents for storing data. The PyMongo library provides 

a Python interface for interacting with MongoDB databases: 

 
import pymongo 

import json 
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# Connect to a MongoDB database 

client = 

pymongo.MongoClient("mongodb://localhost:27017/") 

db = client["mydatabase"] 

 

# Load JSON data from a file 

with open('data.json', 'r') as f: 

    data = json.load(f) 

 

# Insert the data into a MongoDB collection 

collection = db["mycollection"] 

collection.insert_one(data) 

 

Validating JSON data with a schema: 

The jsonschema library provides tools for validating JSON data against a schema. A JSON 

schema is a document that defines the structure and constraints of a JSON object. Here's an 

example of how to use jsonschema to validate JSON data: 

 
import json 

import jsonschema 

 

# Define a JSON schema 

schema = { 

    "type": "object", 

    "properties": { 

        "name": {"type": "string"}, 

        "age": {"type": "integer"} 

    }, 

    "required": ["name", "age"] 

} 

 

# Load JSON data into a Python object 

data = json.loads('{"name": "John", "age": 30}') 

 

# Validate the data against the schema 

try: 

    jsonschema.validate(data, schema) 

    print("Data is valid") 

except jsonschema.ValidationError as e: 

    print("Error: Data is not valid") 

    print(e) 
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Querying JSON data with JMESPath: 

The jmespath library provides a powerful query language for JSON data. With JMESPath, you 

can extract data from a JSON object using a simple and intuitive syntax. Here's an example: 

 
import json 

import jmespath 

 

# Load JSON data into a Python object 

data = json.loads('{"name": {"first": "John", "last": 

"Doe"}, "age": 30}') 

 

# Extract the first name using a JMESPath expression 

expression = "name.first" 

result = jmespath.search(expression, data) 

 

print(result)  # Output: "John" 

 

These are just a few examples of the many ways in which Python can be used to work with 

JSON data. By leveraging Python's rich ecosystem of libraries and tools, you can easily parse, 

generate, manipulate, and validate JSON data as part of your data analysis and visualization 

workflows. 

 

Converting Python objects to JSON: 

In addition to loading JSON data into Python objects, you can also convert Python objects to 

JSON format using the json.dumps() function. This is useful when you want to store data in a 

JSON file or send it as a response to an API request. Here's an example: 

 
import json 

 

# Create a Python dictionary 

data = { 

    "name": "John", 

    "age": 30, 

    "isMarried": True, 

    "hobbies": ["reading", "hiking", "photography"] 

} 

 

# Convert the dictionary to a JSON-encoded string 

json_data = json.dumps(data) 

 

print(json_data)  # Output: '{"name": "John", "age": 

30, "isMarried": true, "hobbies": ["reading", "hiking", 

"photography"]}' 

Converting JSON to Python objects using custom decoders: 
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Sometimes the JSON data you're working with may have custom data types that aren't natively 

supported by Python. In this case, you can define a custom decoder function to convert the JSON 

data to Python objects. Here's an example: 
 

import json 

 

# Define a custom decoder function 

def decode_person(data): 

    if "name" in data and "age" in data: 

        return Person(data["name"], data["age"]) 

    else: 

        return data 

 

# Define a Person class 

class Person: 

    def __init__(self, name, age): 

        self.name = name 

        self.age = age 

 

# Load JSON data into a Python object using the custom 

decoder function 

json_data = '{"person": {"name": "John", "age": 30}}' 

data = json.loads(json_data, object_hook=decode_person) 

 

print(type(data))  # Output: <class 'dict'> 

print(type(data["person"]))  # Output: <class 

'__main__.Person'> 

 

Handling large JSON files: 

When working with large JSON files, you may encounter memory issues if you try to load the 

entire file into memory at once. One way to avoid this is to use an iterative parser like ijson, 

which allows you to parse the file incrementally without loading it all into memory at once. 

Here's an example: 

 
import ijson 

 

# Open a large JSON file 

with open("data.json", "r") as f: 

    # Create an ijson iterator 

    objects = ijson.items(f, "item") 

 

    # Iterate over each object in the file 

    for obj in objects: 

        # Process the object 
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        print(obj) 

 

In this example, ijson.items() creates an iterator that returns each object in the "item" array of the 

JSON file one at a time. This allows you to process the file incrementally without loading it all 

into memory at once. 

 

Combining JSON data from multiple files: 

In some cases, you may have JSON data spread across multiple files that you want to combine 

into a single data structure. One way to do this is to use the glob module to find all the files that 

match a certain pattern, and then loop through each file and load the JSON data into a single list 

or dictionary. Here's an example: 
 

import glob 

import json 

 

# Find all JSON files in a directory 

file_pattern = "*.json" 

file_paths = glob.glob(file_pattern) 

 

# Load the JSON data from each file into a list 

data_list = [] 

for path in file_paths: 

    with open(path, "r") as f: 

        data = json.load(f) 

        data_list.append(data) 

 

# Combine the data from each file into a single 

dictionary 

combined_data = {} 

for data in data_list: 

    for key, value in data.items(): 

        if key in combined_data: 

            combined_data[key].extend(value) 

        else: 

            combined_data[key] = value 

 

print(combined_data) 

 

In this example, we use glob.glob() to find all files in the current directory that match the 

"*.json" pattern. We then loop through each file, load the JSON data using json.load(), and 

append it to a list called data_list. Finally, we loop through the data_list and combine the data 

from each file into a single dictionary called combined_data. 

Validating JSON data: 



212 | P a g e  

 

 

When working with JSON data, it's important to ensure that it's valid and conforms to a certain 

structure. One way to do this is to use the jsonschema library, which allows you to define a 

JSON schema that specifies the structure and data types of your JSON data. You can then use 

this schema to validate your JSON data and ensure that it meets your requirements. Here's an 

example: 

 
import jsonschema 

import json 

 

# Define a JSON schema 

schema = { 

    "type": "object", 

    "properties": { 

        "name": {"type": "string"}, 

        "age": {"type": "integer"}] 

 

Writing JSON data to a file: 

In addition to loading JSON data from a file, you can also write JSON data to a file using the 

json.dump() function. Here's an example: 

 
import json 

 

# Create a Python dictionary 

data = { 

    "name": "John", 

    "age": 30, 

    "isMarried": True, 

    "hobbies": ["reading", "hiking", "photography"] 

} 

 

# Write the dictionary to a JSON file 

with open("data.json", "w") as f: 

    json.dump(data, f) 

 

# Read the JSON data from the file 

with open("data.json", "r") as f: 

    json_data = json.load(f) 

 

print(json_data)  # Output: {'name': 'John', 'age': 30, 

'isMarried': True, 'hobbies': ['reading', 'hiking', 

'photography']} 
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In this example, the json.dump() function writes the data dictionary to a file called "data.json". 

The with open() statement automatically closes the file when the block is finished. The 

json.load() function is then used to read the data from the file. 

 

 

 

Working with databases 
 

Python is a powerful programming language that is commonly used in data science and data 

analysis tasks. For SAS users who are familiar with SAS software, Python offers a new set of 

tools and capabilities that can be used to manipulate, analyze, and visualize data. 

 

One of the most common tasks in data analysis is working with databases. In this article, we will 

explore how to work with databases in Python, with a focus on the needs of SAS users. 

 

To work with databases in Python, we need to use a Python library called "pandas". Pandas is a 

library that provides a set of tools for working with data in Python, including tools for working 

with databases. 

 

The first step in working with databases in Python is to establish a connection to the database. 

This can be done using the "pyodbc" library, which is a Python library for connecting to 

databases using ODBC (Open Database Connectivity). 

 

Once a connection to the database has been established, we can use the pandas library to read 

data from the database and manipulate it in Python. For example, we can use the pandas 

"read_sql" function to read data from a database table and create a pandas DataFrame object. 

 

Once we have a pandas DataFrame object, we can use pandas functions to manipulate the data. 

For example, we can use the "groupby" function to group the data by a particular column, or the 

"merge" function to combine data from multiple tables. 

 

In addition to reading data from a database, we can also write data to a database using pandas. 

For example, we can use the "to_sql" function to write a pandas DataFrame to a database table. 

 

Overall, working with databases in Python can provide SAS users with a new set of tools and 

capabilities for working with data. By using the pandas library and other Python tools, SAS users 

can access and manipulate data in a more flexible and powerful way than is possible with SAS 

software alone. 

 

Another useful Python library for working with databases is "SQLAlchemy". SQLAlchemy 

provides a set of tools for working with databases in a more flexible and powerful way than is 

possible with standard SQL. 

 

With SQLAlchemy, we can create an "engine" object that connects to a database, and then use 

the engine object to execute SQL commands or interact with the database using Python objects. 
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For example, we can use SQLAlchemy to create a database schema, or to map database tables to 

Python classes. This allows us to interact with the database using Python objects, which can be 

more intuitive and easier to work with than SQL commands. 

 

Another advantage of using SQLAlchemy is that it provides a consistent API for working with 

different types of databases. This means that we can write Python code that works with a variety 

of different databases, without having to learn the specific SQL dialect of each database. 

 

Overall, using Python for working with databases offers a number of advantages over using SAS 

software alone. Python provides a powerful set of tools for data analysis and manipulation, and 

can be used to work with a variety of different types of databases. 

 

For SAS users who are new to Python, there may be a learning curve involved in getting started. 

However, once the basics of Python and pandas have been learned, working with databases in 

Python can be a powerful addition to a data analysis toolkit. 

 

Another important aspect of working with databases in Python is managing data security. In 

SAS, users often work with data in a secure environment, where access to data is strictly 

controlled. The same level of security is also important when working with databases in Python. 

 

To ensure data security when working with databases in Python, it is important to follow best 

practices for authentication and encryption. For example, using encrypted connections and 

secure authentication methods such as OAuth can help protect sensitive data. 

 

It is also important to carefully manage database credentials, and to limit access to databases to 

only those who need it. This can be done by using strong passwords, and by limiting access to 

databases to specific IP addresses or network domains. 

 

In addition to data security, performance is also an important consideration when working with 

databases in Python. In some cases, reading and writing large amounts of data from a database 

using pandas can be slow. To optimize performance, it is important to carefully manage the 

amount of data being read or written at any one time, and to use SQL queries or stored 

procedures to perform data manipulation directly on the database server where possible. 

 

Finally, it is important to keep in mind that working with databases in Python is just one aspect 

of a larger data analysis workflow. To effectively analyze data, it is important to have a strong 

understanding of statistical methods and data visualization techniques, as well as a clear 

understanding of the underlying data structures and business goals. By combining SAS and 

Python tools in a thoughtful and strategic way, data analysts can create a powerful and flexible 

data analysis toolkit that can be tailored to their specific needs and workflows. 

 

Connecting to a database using pyodbc: 

 
import pyodbc 

 

# establish a connection to the database 
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conn = pyodbc.connect('DRIVER={ODBC 

Driver};SERVER=servername;DATABASE=databasename;UID=use

rname;PWD=password') 

 

# create a cursor object for executing SQL commands 

cursor = conn.cursor() 

 

# execute a SQL command to retrieve data 

cursor.execute('SELECT * FROM tablename') 

 

# fetch the results and create a pandas DataFrame 

data = cursor.fetchall() 

df = pd.DataFrame(data) 

 

Reading data from a database using pandas: 

 

import pandas as pd 
import pyodbc 

 

# establish a connection to the database 

conn = pyodbc.connect('DRIVER={ODBC 

Driver};SERVER=servername;DATABASE=databasename;UID=use

rname;PWD=password') 

 

# read data from a database table using pandas 

df = pd.read_sql('SELECT * FROM tablename', conn) 

 

Writing data to a database using pandas: 
 

import pandas as pd 

import pyodbc 

 

# establish a connection to the database 

conn = pyodbc.connect('DRIVER={ODBC 

Driver};SERVER=servername;DATABASE=databasename;UID=use

rname;PWD=password') 

# create a pandas DataFrame with data to write to the 

database 

data = {'column1': [1, 2, 3], 'column2': ['a', 'b', 

'c']} 

df = pd.DataFrame(data) 

 

# write the data to a database table using pandas 
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df.to_sql('tablename', conn, if_exists='replace') 

 
import pyodbc 

import pandas as pd 

 

# Define connection parameters 

server_name = 'my_server_name' 

database_name = 'my_database_name' 

username = 'my_username' 

password = 'my_password' 

 

# Create connection string 

connection_string = f'DRIVER={{SQL 

Server}};SERVER={server_name};DATABASE={database_name};

UID={username};PWD={password}' 

 

# Connect to database 

connection = pyodbc.connect(connection_string) 

 

# Read data from database using pandas 

query = 'SELECT * FROM my_table' 

df = pd.read_sql(query, connection) 

 

# Manipulate data using pandas 

df_grouped = df.groupby('my_column').sum() 

 

# Write data to database using pandas 

df_grouped.to_sql('my_new_table', connection, 

if_exists='replace') 

 

In this example, we first define the connection parameters for the SQL Server database, 

including the server name, database name, username, and password. We then create a connection 

string using these parameters and connect to the database using pyodbc. 

 

Next, we use the pandas "read_sql" function to read data from a table called "my_table" in the 

database. We then use pandas functions to manipulate the data by grouping it by a column called 

"my_column" and summing the values. 

Finally, we use the pandas "to_sql" function to write the manipulated data to a new table called 

"my_new_table" in the database. The "if_exists='replace'" parameter specifies that any existing 

table with the same name should be replaced. 

 

This is just one example of how to work with databases in Python using pandas and pyodbc. 

There are many other libraries and tools available for working with databases in Python, 
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including SQLAlchemy and psycopg2. The exact code used will depend on the specific database 

being used and the requirements of the analysis being performed. 

 

Connecting to a database using pyodbc: 

 
import pyodbc 

 

# Establish a connection to the database using ODBC 

conn = pyodbc.connect('DRIVER={SQL 

Server};SERVER=myserver;DATABASE=mydatabase;UID=myusern

ame;PWD=mypassword') 

 

# Create a cursor object to execute SQL commands 

cursor = conn.cursor() 

 

Reading data from a database table using pandas: 

 

 
import pandas as pd 

import pyodbc 

 

# Establish a connection to the database using ODBC 

conn = pyodbc.connect('DRIVER={SQL 

Server};SERVER=myserver;DATABASE=mydatabase;UID=myusern

ame;PWD=mypassword') 

 

# Read data from a database table using pandas 

df = pd.read_sql('SELECT * FROM mytable', conn) 

 

Writing data to a database table using pandas: 

 
import pandas as pd 

import pyodbc 

 

# Establish a connection to the database using ODBC 

conn = pyodbc.connect('DRIVER={SQL 

Server};SERVER=myserver;DATABASE=mydatabase;UID=myusern

ame;PWD=mypassword') 

# Create a pandas DataFrame object 

data = {'col1': [1, 2, 3], 'col2': ['a', 'b', 'c']} 

df = pd.DataFrame(data) 

 

# Write the DataFrame to a database table using pandas 
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df.to_sql('mytable', conn, if_exists='replace', 

index=False) 

 

Creating a database schema using SQLAlchemy: 

 
from sqlalchemy import create_engine, Column, Integer, 

String 

from sqlalchemy.ext.declarative import declarative_base 

 

# Create an engine object to connect to the database 

engine = 

create_engine('postgresql://myusername:mypassword@myser

ver/mydatabase') 

 

# Create a declarative base for defining database 

tables 

Base = declarative_base() 

 

# Define a database table using SQLAlchemy classes 

class MyTable(Base): 

    __tablename__ = 'mytable' 

    id = Column(Integer, primary_key=True) 

    name = Column(String) 

    value = Column(Integer) 

     

# Create the database schema using the declarative base 

Base.metadata.create_all(engine) 

 

Querying data from a database table using SQLAlchemy: 

 
from sqlalchemy import create_engine 

import pandas as pd 

 

# Create an engine object to connect to the database 

engine = 

create_engine('postgresql://myusername:mypassword@myser

ver/mydatabase') 

 

# Execute a SQL query using the engine object and store 

the results in a pandas DataFrame 

df = pd.read_sql_query('SELECT * FROM mytable WHERE 

value > 100', engine) 
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These are just a few examples of how to work with databases in Python using the pandas and 

SQLAlchemy libraries. There are many other tools and techniques available for working with 

databases in Python, depending on the specific needs of a data analysis project. 

 

Reading Data from a SQL Server Database using pyodbc and Pandas: 

 
import pyodbc 

import pandas as pd 

 

server = 'your_server_name' 

database = 'your_database_name' 

username = 'your_username' 

password = 'your_password' 

driver = '{ODBC Driver 17 for SQL Server}' 

 

# Establish a connection to the database 

cnxn = 

pyodbc.connect('DRIVER='+driver+';SERVER='+server+';DAT

ABASE='+database+';UID='+username+';PWD='+ password) 

 

# Define the SQL query to be executed 

query = 'SELECT * FROM your_table_name' 

 

# Execute the query and read the data into a pandas 

dataframe 

data = pd.read_sql(query, cnxn) 

 

# Print the first 10 rows of the data 

print(data.head(10)) 

 

Writing Data to a MySQL Database using SQLAlchemy and Pandas: 

 
import pandas as pd 

from sqlalchemy import create_engine 

# Define the database connection string 

connection_string = 

'mysql+pymysql://your_username:your_password@your_serve

r_name/your_database_name' 

 

# Create a SQLAlchemy engine object to connect to the 

database 

engine = create_engine(connection_string) 
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# Define a pandas dataframe to be written to the 

database 

data = pd.DataFrame({ 

    'column1': [1, 2, 3], 

    'column2': ['value1', 'value2', 'value3'], 

    'column3': ['2022-01-01', '2022-01-02', '2022-01-

03'] 

}) 

 

# Write the data to a new table in the database 

data.to_sql('your_new_table_name', con=engine, 

if_exists='replace', index=False) 

 

# Read the data from the new table and print it 

query = 'SELECT * FROM your_new_table_name' 

new_data = pd.read_sql(query, con=engine) 

print(new_data.head()) 

 

Using SQLAlchemy to Create a Database Schema and Perform CRUD Operations: 

 
from sqlalchemy import create_engine, Column, Integer, 

String 

from sqlalchemy.orm import sessionmaker 

from sqlalchemy.ext.declarative import declarative_base 

 

# Define the database connection string 

connection_string = 'sqlite:///your_database_name.db' 

 

# Create a SQLAlchemy engine object to connect to the 

database 

engine = create_engine(connection_string) 

 

# Define a base class for declarative models 

Base = declarative_base() 

 

# Define a database model to represent a table in the 

database 

class User(Base): 

    __tablename__ = 'users' 

    id = Column(Integer, primary_key=True) 

    name = Column(String) 

    email = Column(String) 
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# Create the database schema 

Base.metadata.create_all(engine) 

 

# Create a session to interact with the database 

Session = sessionmaker(bind=engine) 

session = Session() 

 

# Insert a new user into the database 

new_user = User(name='John Doe', 

email='john.doe@example.com') 

session.add(new_user) 

session.commit() 

 

# Update an existing user in the database 

user = session.query(User).filter_by(name='John 

Doe').first() 

user.email = 'john.doe.updated@example.com' 

session.commit() 

 

# Delete a user from the database 

user = session.query(User).filter_by(name='John 

Doe').first() 

session.delete(user) 

session.commit() 

 

# Print the remaining users in the database 

users = session.query(User).all() 

for user in users: 

    print(user.name, user.email) 

 

These code examples demonstrate some of the different ways that Python can be used to work 

with databases, using libraries like pyodbc, pandas, and SQLAlchemy. 

 

Using the sqlite3 Module to Create a Database and Perform CRUD Operations: 
 

import sqlite3 

 

# Create a new database and connect to it 

conn = sqlite3.connect('my_database.db') 

 

# Create a new table in the database 

conn.execute('CREATE TABLE users (id INTEGER PRIMARY 

KEY, name TEXT, email TEXT)') 
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# Insert a new row into the table 

conn.execute('INSERT INTO users (name, email) VALUES 

(?, ?)', ('John Doe', 'john.doe@example.com')) 

conn.commit() 

 

# Update an existing row in the table 

conn.execute('UPDATE users SET email=? WHERE name=?', 

('john.doe.updated@example.com', 'John Doe')) 

conn.commit() 

 

# Delete a row from the table 

conn.execute('DELETE FROM users WHERE name=?', ('John 

Doe',)) 

conn.commit() 

 

# Select all rows from the table and print them 

rows = conn.execute('SELECT * FROM users') 

for row in rows: 

    print(row) 

     

# Close the database connection 

conn.close() 

 

Using the MySQL Connector/Python Module to Connect to a MySQL Database and Perform 

CRUD Operations: 

 
import mysql.connector 

 

# Connect to the database 

conn = mysql.connector.connect( 

    host='your_server_name', 

    user='your_username', 

    password='your_password', 

    database='your_database_name' 

) 

 

# Create a new cursor object to execute queries 

cursor = conn.cursor() 

 

# Create a new table in the database 

cursor.execute('CREATE TABLE users (id INT 

AUTO_INCREMENT PRIMARY KEY, name VARCHAR(255), email 

VARCHAR(255))') 
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# Insert a new row into the table 

sql = 'INSERT INTO users (name, email) VALUES (%s, %s)' 

val = ('John Doe', 'john.doe@example.com') 

cursor.execute(sql, val) 

conn.commit() 

 

# Update an existing row in the table 

sql = 'UPDATE users SET email = %s WHERE name = %s' 

val = ('john.doe.updated@example.com', 'John Doe') 

cursor.execute(sql, val) 

conn.commit() 

 

# Delete a row from the table 

sql = 'DELETE FROM users WHERE name = %s' 

val = ('John Doe',) 

cursor.execute(sql, val) 

conn.commit() 

 

# Select all rows from the table and print them 

cursor.execute('SELECT * FROM users') 

rows = cursor.fetchall() 
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Chapter 4:  

Data Manipulation with Pandas 
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Introduction: 

 

A panda is a popular data manipulation library for Python. It provides high-performance, easy-

to-use data structures and data analysis tools. Pandas can be a great tool for SAS users who are 

looking to expand their data analysis skills in Python. In this article, we will provide an 

introduction to Python for SAS users, with a focus on data manipulation with Pandas. 

 

Data Structures in Pandas: 

 

The two primary data structures in Pandas are Series and DataFrame. A Series is a one-

dimensional array-like object that can hold any data type. It is similar to a SAS variable or a 

column in a SAS dataset. A DataFrame is a two-dimensional table of data with rows and 

columns. It is similar to a SAS dataset. 

 

Creating a Series in Pandas: 

 

To create a Series in Pandas, we can use the Series() function. We can pass a list, tuple, or 

dictionary to the Series() function to create a Series. 

 

For example, to create a Series of integers from a list, we can use the following code: 

 
import pandas as pd 

my_list = [1, 2, 3, 4, 5] 

my_series = pd.Series(my_list) 

print(my_series) 

 

Output: 

 
0    1 

1    2 

2    3 

3    4 

4    5 

dtype: int64 

 

Creating a DataFrame in Pandas: 

 

To create a DataFrame in Pandas, we can use the DataFrame() function. We can pass a 

dictionary, a list of dictionaries, or a numpy array to the DataFrame() function to create a 

DataFrame. 

 

For example, to create a DataFrame from a dictionary, we can use the following code: 

 
my_dict = {'Name': ['John', 'Mary', 'Peter', 'Anne'], 

           'Age': [25, 32, 19, 47], 
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           'Salary': [50000, 70000, 30000, 90000]} 

my_dataframe = pd.DataFrame(my_dict) 

print(my_dataframe) 

 

Output: 
 

    Name  Age  Salary 

0   John   25   50000 

1   Mary   32   70000 

2  Peter   19   30000 

3   Anne   47   90000 

 

Reading and Writing Data: 

 

Pandas provides functions to read and write data from and to various file formats, including 

CSV, Excel, SQL databases, and more. To read a CSV file into a Pandas DataFrame, we can use 

the read_csv() function. To write a Pandas DataFrame to a CSV file, we can use the to_csv() 

function. 

 

For example, to read a CSV file into a DataFrame, we can use the following code: 
 

import pandas as pd 

my_dataframe = pd.read_csv('my_file.csv') 

print(my_dataframe) 

 

Output: 

 
    Name  Age  Salary 

0   John   25   50000 

1   Mary   32   70000 

2  Peter   19   30000 

3   Anne   47   90000 

 

To write a DataFrame to a CSV file, we can use the following code: 
 

import pandas as pd 

my_dataframe.to_csv('my_file.csv', index=False) 

 

Data Manipulation with Pandas: 

 

Pandas provides a wide range of functions for data manipulation, including filtering, sorting, 

grouping, joining, and more. In this section, we will cover some of the most commonly used 

functions. 
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Filtering Data: 

 

To filter data in Pandas, we can use the boolean indexing feature. We can create a boolean 

expression to filter the rows that meet certain conditions. For example, to filter a DataFrame to 

only include rows where the Age column is greater than 30, we can use the following code: 

 
import pandas as pd 

my_dataframe = pd.read_csv('my_file.csv') 

filtered_dataframe = my_dataframe[my_dataframe['Age'] > 

30] 

print(filtered_dataframe) 

 

Output: 

 

 
   Name  Age  Salary 

1  Mary   32   70000 

3  Anne   47   90000 

 

Sorting Data: 

 

To sort data in Pandas, we can use the sort_values() function. We can pass a column name or a 

list of column names to the sort_values() function to sort the DataFrame by those columns. 

 

For example, to sort a DataFrame by the Salary column in descending order, we can use the 

following code: 

 
import pandas as pd 

my_dataframe = pd.read_csv('my_file.csv') 

sorted_dataframe = my_dataframe.sort_values('Salary', 

ascending=False) 

print(sorted_dataframe) 

 

Output: 
   Name  Age  Salary 

3  Anne   47   90000 

1  Mary   32   70000 

0  John   25   50000 

2 Peter   19   30000 

 

Grouping Data: 

 

To group data in Pandas, we can use the groupby() function. We can pass a column name or a 

list of column names to the groupby() function to group the DataFrame by those columns. We 
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can then apply various aggregation functions to the grouped data, such as sum, mean, min, max, 

and more. 

For example, to group a DataFrame by the Age column and calculate the mean Salary for each 

age group, we can use the following code: 

 
import pandas as pd 

my_dataframe = pd.read_csv('my_file.csv') 

grouped_dataframe = my_dataframe.groupby('Age').mean() 

print(grouped_dataframe) 

 

Output: 

 
     Salary 

Age         

19    30000 

25    50000 

32    70000 

47    90000 

 

Joining Data: 

 

To join two or more DataFrames in Pandas, we can use the merge() function. We can specify the 

columns to join on using the on parameter, or we can specify the columns to join on for each 

DataFrame using the left_on and right_on parameters. 

 

For example, to join two DataFrames based on a common column, we can use the following 

code: 

 
import pandas as pd 

my_dataframe1 = pd.read_csv('my_file1.csv') 

my_dataframe2 = pd.read_csv('my_file2.csv') 

joined_dataframe = pd.merge(my_dataframe1, 

my_dataframe2, on='ID') 

print(joined_dataframe) 

 

Output: 

 

 
   ID   Name  Age  Salary  Department 

0   1   John   25   50000           1 

1   2   Mary   32   70000           2 

2   3  Peter   19   30000           1 

3   4   Anne   47   90000           2 

 

Conclusion: 
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In this article, we have provided an introduction to Python for SAS users, with a focus on data 

manipulation with Pandas. We have covered the basics of creating and manipulating Series and 

DataFrame objects in Pandas, as well as reading and writing data to various file formats. We 

have also covered some of the most commonly used functions for filtering, sorting, grouping, 

and joining data in Pandas. With this knowledge, SAS users can expand their data analysis skills 

to Python and take advantage of the powerful tools and libraries available in the Python 

ecosystem 
 

import pandas as pd 

 

# Read data from CSV file 

my_dataframe = pd.read_csv('my_data.csv') 

 

# Print first 5 rows of the DataFrame 

print(my_dataframe.head()) 

 

# Create a new column called 'Birth Year' by 

subtracting the Age column from the current year 

current_year = pd.Timestamp.now().year 

my_dataframe['Birth Year'] = current_year - 

my_dataframe['Age'] 

 

# Print DataFrame with new column 

print(my_dataframe) 

 

# Filter DataFrame to only include rows where the Age 

column is greater than 30 

filtered_dataframe = my_dataframe[my_dataframe['Age'] > 

30] 

 

# Print filtered DataFrame 

print(filtered_dataframe) 

 

# Sort DataFrame by the Salary column in descending 

order 

sorted_dataframe = my_dataframe.sort_values('Salary', 

ascending=False) 

 

# Print sorted DataFrame 

print(sorted_dataframe) 

 

# Group DataFrame by the Age column and calculate the 

mean Salary for each age group 

grouped_dataframe = my_dataframe.groupby('Age').mean() 
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# Print grouped DataFrame 

print(grouped_dataframe) 

 

# Join two DataFrames based on a common column 

my_dataframe1 = pd.read_csv('my_data1.csv') 

my_dataframe2 = pd.read_csv('my_data2.csv') 

joined_dataframe = pd.merge(my_dataframe1, 

my_dataframe2, on='ID') 

 

# Print joined DataFrame 

print(joined_dataframe) 

 

Note that this code assumes that the CSV files my_data.csv, my_data1.csv, and my_data2.csv 

exist in the current directory and contain the necessary data. You may need to modify the code to 

work with your own data files. 

 
import pandas as pd 

 

# Read data from Excel file 

my_dataframe = pd.read_excel('my_data.xlsx') 

 

# Print last 5 rows of the DataFrame 

print(my_dataframe.tail()) 

 

# Create a new DataFrame by selecting rows where the 

Age column is between 20 and 30 

young_dataframe = my_dataframe[(my_dataframe['Age'] >= 

20) & (my_dataframe['Age'] <= 30)] 

 

# Print young DataFrame 

print(young_dataframe) 

 

# Add a new column called 'Bonus' based on the value of 

the Salary column 

my_dataframe['Bonus'] = my_dataframe['Salary'] * 0.1 

 

# Print DataFrame with new column 

print(my_dataframe) 

# Pivot the DataFrame to show the mean Salary for each 

department and age group 

pivot_dataframe = 

my_dataframe.pivot_table(values='Salary', 

index='Department', columns='Age', aggfunc='mean') 
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# Print pivot DataFrame 

print(pivot_dataframe) 

 

# Replace missing values in the DataFrame with the mean 

value for that column 

my_dataframe.fillna(my_dataframe.mean(), inplace=True) 

 

# Print DataFrame with missing values replaced 

print(my_dataframe) 

 

# Save DataFrame to CSV file 

my_dataframe.to_csv('my_data_updated.csv', index=False) 

 

This code demonstrates additional techniques such as selecting rows based on multiple 

conditions, adding a new column based on an existing column, pivoting the DataFrame to show 

summary statistics, replacing missing values with the mean value for that column, and saving the 

updated DataFrame to a CSV file. 

 

Again, note that this code assumes the existence of an Excel file my_data.xlsx in the current 

directory and may need to be modified for your own data files.  

 
import pandas as pd 

 

# Read data from JSON file 

my_dataframe = pd.read_json('my_data.json') 

 

# Print DataFrame with the Country column in uppercase 

my_dataframe['Country'] = 

my_dataframe['Country'].str.upper() 

print(my_dataframe) 

 

# Rename columns in the DataFrame 

my_dataframe.rename(columns={'Salary': 'Annual Salary', 

'Age': 'Years Old'}, inplace=True) 

print(my_dataframe) 

# Create a new DataFrame by grouping by two columns and 

calculating the sum of a third column 

grouped_dataframe = my_dataframe.groupby(['Department', 

'Country'])['Annual Salary'].sum().reset_index() 

 

# Print grouped DataFrame 

print(grouped_dataframe) 
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# Create a new column in the DataFrame based on a user-

defined function 

def calculate_bonus(salary): 

    if salary >= 50000: 

        return salary * 0.1 

    else: 

        return salary * 0.05 

 

my_dataframe['Bonus'] = my_dataframe['Annual 

Salary'].apply(calculate_bonus) 

 

# Print DataFrame with new column 

print(my_dataframe) 

 

# Create a new DataFrame by concatenating two existing 

DataFrames 

my_dataframe1 = pd.read_csv('my_data1.csv') 

my_dataframe2 = pd.read_csv('my_data2.csv') 

concatenated_dataframe = pd.concat([my_dataframe1, 

my_dataframe2], ignore_index=True) 

 

# Print concatenated DataFrame 

print(concatenated_dataframe) 

 

This code demonstrates additional techniques such as converting the values in a column to 

uppercase, renaming columns in the DataFrame, grouping by multiple columns and calculating 

summary statistics, creating a new column in the DataFrame based on a user-defined function, 

and concatenating two existing DataFrames. 

 

Again, note that this code assumes the existence of a JSON file my_data.json and CSV files 

my_data1.csv and my_data2.csv in the current directory and may need to be modified for your 

own data files. 

 

 

 

Introduction to Pandas 
 

Introduction to Pandas: 

 

Pandas is an open-source library for data manipulation and analysis in Python. It provides data 

structures for efficiently storing and manipulating large datasets, as well as tools for cleaning, 

merging, filtering, and transforming data. 
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Pandas is particularly useful for working with structured or tabular data, such as data in CSV or 

Excel files. It allows users to load data into memory, manipulate it in various ways, and then 

output the data to a new file or database. 

 

Pandas provides two main data structures for working with data: 

 

1. Series - A one-dimensional array-like object that can hold any data type, such as integers, 

floats, or strings. Each value in a Series is assigned an index label, which can be used to 

retrieve or manipulate individual values. 

2. DataFrame - A two-dimensional tabular data structure with rows and columns. It can be 

thought of as a spreadsheet or SQL table. Each column in a DataFrame is a Series, and 

each row corresponds to a unique record or observation. 

 

Pandas offers a wide range of functionality for working with these data structures, including: 

 

1. Loading and saving data to various file formats, such as CSV, Excel, JSON, and SQL 

databases. 

2. Cleaning and preprocessing data, such as removing missing values or duplicates, or 

transforming data types. 

3. Selecting and filtering data based on certain criteria, such as values in a specific column 

or rows that meet certain conditions. 

4. Aggregating and summarizing data, such as calculating summary statistics or grouping 

data by certain variables. 

5. Merging and joining datasets based on common variables. 

6. Creating new variables or columns based on existing data. 

7. Visualizing data using built-in visualization tools. 

 

Pandas is widely used in data analysis, scientific research, and machine learning applications. Its 

intuitive syntax and powerful functionality make it a popular tool for data analysts and data 

scientists alike. 

 

Here are some more specific examples of what you can do with Pandas: 

 

Loading Data: You can load data from a variety of file formats using Pandas, such as CSV, 

Excel, JSON, or SQL databases. For example, you can use the read_csv function to load data 

from a CSV file: 

 
import pandas as pd 

 

data = pd.read_csv('my_data.csv') 

 

Cleaning and Preprocessing Data: Pandas provides a range of functions for cleaning and 

preprocessing data. For example, you can remove missing values using the dropna function, or 

replace missing values with a specific value using the fillna function: 

 
# Remove rows with missing values 
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data = data.dropna() 

 

# Replace missing values with 0 

data = data.fillna(0) 

 

Selecting and Filtering Data: You can select and filter data based on certain criteria, such as 

values in a specific column or rows that meet certain conditions. For example, you can select a 

specific column using the [] operator: 
 

# Select a specific column 

column_data = data['Column Name'] 

 

You can also filter rows based on specific conditions using boolean indexing: 
 

# Filter rows where column 'A' is greater than 5 

filtered_data = data[data['A'] > 5] 

 

Aggregating and Summarizing Data: Pandas provides functions for calculating summary 

statistics or grouping data by certain variables. For example, you can use the groupby function to 

group data by a specific column and calculate the sum of another column: 

 
# Group data by 'Column A' and calculate the sum of 

'Column B' 

grouped_data = data.groupby('Column A')['Column 

B'].sum() 

 

Merging and Joining Datasets: You can merge or join datasets based on common variables using 

functions such as merge or concat. For example, you can merge two datasets based on a common 

column: 

 
# Merge two datasets based on 'Column A' 

merged_data = pd.merge(data1, data2, on='Column A') 

 

Creating New Variables: You can create new variables or columns based on existing data using 

the apply function or other functions provided by Pandas. For example, you can create a new 

column based on a function that calculates the square of another column: 
# Create a new column based on the square of 'Column A' 

data['Column C'] = data['Column A'].apply(lambda x: 

x**2) 

 

Visualizing Data: Pandas provides built-in visualization tools that allow you to create plots and 

charts from your data. For example, you can create a histogram of a specific column using the 

hist function: 

 
# Create a histogram of 'Column A' 
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data['Column A'].hist() 

 

These are just a few examples of what you can do with Pandas. The library provides a wide 

range of functionality for working with data in Python, and is widely used in data analysis, 

scientific research, and machine learning applications. 

 

Loading Data: 
 

import pandas as pd 

 

# Load data from CSV file 

data = pd.read_csv('my_data.csv') 

 

# Load data from Excel file 

data = pd.read_excel('my_data.xlsx') 

 

# Load data from SQL database 

import sqlite3 

conn = sqlite3.connect('my_database.db') 

data = pd.read_sql_query('SELECT * FROM my_table', 

conn) 

 

Cleaning and Preprocessing Data: 

 
# Remove rows with missing values 

data = data.dropna() 

 

# Replace missing values with 0 

data = data.fillna(0) 

 

# Convert string column to numeric column 

data['Numeric Column'] = pd.to_numeric(data['String 

Column']) 

 

# Rename columns 

data = data.rename(columns={'Old Name': 'New Name'}) 

 

# Remove duplicates 

data = data.drop_duplicates() 

 

# Remove outliers based on a specific column 

Q1 = data['Column'].quantile(0.25) 

Q3 = data['Column'].quantile(0.75) 

IQR = Q3 - Q1 



236 | P a g e  

 

 

data = data[(data['Column'] >= Q1 - 1.5*IQR) & 

(data['Column'] <= Q3 + 1.5*IQR)] 

 

Selecting and Filtering Data: 
 

# Select a specific column 

column_data = data['Column Name'] 

 

# Select multiple columns 

column_data = data[['Column 1', 'Column 2']] 

 

# Filter rows based on specific conditions 

filtered_data = data[data['Column A'] > 5] 

 

# Filter rows based on multiple conditions 

filtered_data = data[(data['Column A'] > 5) & 

(data['Column B'] < 10)] 

 

Aggregating and Summarizing Data: 

 
# Calculate the mean of a specific column 

mean_data = data['Column'].mean() 

 

# Group data by a specific column and calculate the sum 

of another column 

grouped_data = data.groupby('Column A')['Column 

B'].sum() 

 

# Pivot data and calculate the sum of a specific column 

pivot_data = data.pivot_table(values='Column A', 

index='Column B', columns='Column C', aggfunc='sum') 

 

Merging and Joining Datasets: 

 
# Merge two datasets based on a common column 

merged_data = pd.merge(data1, data2, on='Column A') 

 

# Join two datasets based on the index 

joined_data = data1.join(data2, lsuffix='_left', 

rsuffix='_right') 

 

# Concatenate two datasets vertically 

concatenated_data = pd.concat([data1, data2], axis=0) 
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# Concatenate two datasets horizontally 

concatenated_data = pd.concat([data1, data2], axis=1) 

 

Creating New Variables: 

 
# Create a new column based on a function that 

calculates the square of another column 

data['Column C'] = data['Column A'].apply(lambda x: 

x**2) 

 

# Create a new column based on a condition 

data['Column C'] = np.where(data['Column A'] > 5, 

'Yes', 'No') 

 

# Create a new column based on a combination of columns 

data['Column C'] = data['Column A'] + data['Column B'] 

 

Visualizing Data: 

 
# Create a histogram of a specific column 

data['Column A'].hist() 

 

# Create a scatter plot of two columns 

data.plot.scatter(x='Column A', y='Column B') 

 

# Create a bar chart of a specific column 

data['Column A'].value_counts().plot.bar() 

 

 

 

Reshaping Data: 

 
# Pivot data and calculate the mean of a specific 

column 

pivot_data = data.pivot_table(values='Column A', 

index='Column B', columns='Column C', aggfunc='mean') 

 

# Unstack a pivot table 

unstacked_data = pivot_data.unstack() 

 

# Reshape a dataframe from wide to long format 

melted_data = pd.melt(data, id_vars=['Column A'], 

value_vars=['Column B', 'Column C'], var_name='Variable 

Name', value_name='Variable Value') 
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# Reshape a dataframe from long to wide format 

wide_data = melted_data.pivot_table(values='Variable 

Value', index=['Column A'], columns=['Variable Name']) 

 

Handling Dates: 

 
# Convert a string column to a datetime column 

data['Date Column'] = pd.to_datetime(data['Date 

Column'], format='%Y-%m-%d') 

 

# Extract year, month, and day from a datetime column 

data['Year Column'] = data['Date Column'].dt.year 

data['Month Column'] = data['Date Column'].dt.month 

data['Day Column'] = data['Date Column'].dt.day 

 

# Calculate the difference between two datetime columns 

data['Date Difference'] = data['Date Column 1'] - 

data['Date Column 2'] 

 

# Create a datetime index 

data = data.set_index('Date Column') 

 

Working with Categorical Variables: 
 

# Convert a string column to a categorical column 

data['Categorical Column'] = data['String 

Column'].astype('category') 

 

# Create dummy variables from a categorical column 

dummy_data = pd.get_dummies(data['Categorical Column']) 

 

# Group data by a categorical column and calculate the 

mean of another column 

grouped_data = data.groupby('Categorical 

Column')['Numeric Column'].mean() 

 

# Rename categories in a categorical column 

data['Categorical Column'] = data['Categorical 

Column'].cat.rename_categories({'Category A': 'Category 

1', 'Category B': 'Category 2'}) 

 

Handling Missing Values: 
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# Replace missing values with the mean of a specific 

column 

data['Column A'] = data['Column A'].fillna(data['Column 

A'].mean()) 

 

# Interpolate missing values in a specific column 

data['Column A'] = data['Column A'].interpolate() 

 

# Drop rows with missing values in a specific column 

data = data.dropna(subset=['Column A']) 

 

# Forward-fill missing values in a specific column 

data['Column A'] = data['Column A'].ffill() 

 

Working with Time Series Data: 
 

# Resample time series data to a different frequency 

resampled_data = data.resample('D').mean() 

 

# Calculate the rolling mean of a time series 

rolling_data = data.rolling(window=7).mean() 

 

# Shift time series data forward or backward in time 

shifted_data = data.shift(7) 

 

# Calculate the difference between two time series 

diff_data = data.diff() 

 

Working with Text Data: 
 

# Convert a string column to lowercase 

data['String Column'] = data['String 

Column'].str.lower() 

 

# Split a string column into multiple columns 

split_data = data['String 

Column'].str.split(expand=True) 

 

# Replace values in a string column using regular 

expressions 

data['String Column'] = data['String 

Column'].str.replace(r'\d+', '') 
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# Count the occurrence of a specific word in a string 

column 

data['Word Count'] = data['String 

Column'].str.count('word') 

 

Joins and Merges: 
 

# Merge two dataframes based on a common column 

merged_data = pd.merge(df1, df2, on='Column A') 

 

# Perform an outer join between two dataframes 

outer_joined_data = pd.merge(df1, df2, on='Column A', 

how='outer') 

 

# Concatenate two dataframes vertically 

concatenated_data = pd.concat([df1, df2], axis=0) 

 

# Concatenate two dataframes horizontally 

concatenated_data = pd.concat([df1, df2], axis=1) 

 

Aggregation and Grouping: 
 

# Calculate the mean of a specific column 

mean_data = data['Column A'].mean() 

# Calculate the median of a specific column 

median_data = data['Column A'].median() 

 

# Calculate the standard deviation of a specific column 

std_data = data['Column A'].std() 

 

# Group data by a column and calculate the mean of 

another column 

grouped_data = data.groupby('Column A')['Column 

B'].mean() 

 

Reshaping Data: 
 

# Pivot data and calculate the mean of a specific 

column 

pivot_data = data.pivot_table(values='Column A', 

index='Column B', columns='Column C', aggfunc='mean') 

 

# Unstack a pivot table 
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unstacked_data = pivot_data.unstack() 

 

# Reshape a dataframe from wide to long format 

melted_data = pd.melt(data, id_vars=['Column A'], 

value_vars=['Column B', 'Column C'], var_name='Variable 

Name', value_name='Variable Value') 

 

# Reshape a dataframe from long to wide format 

wide_data = melted_data.pivot_table(values='Variable 

Value', index=['Column A'], columns=['Variable Name']) 

 

Handling Dates: 
 

# Convert a string column to a datetime column 

data['Date Column'] = pd.to_datetime(data['Date 

Column'], format='%Y-%m-%d') 

 

# Extract year, month, and day from a datetime column 

data['Year Column'] = data['Date Column'].dt.year 

data['Month Column'] = data['Date Column'].dt.month 

data['Day Column'] = data['Date Column'].dt.day 

# Calculate the difference between two datetime columns 

data['Date Difference'] = data['Date Column 1'] - 

data['Date Column 2'] 

 

# Create a datetime index 

data = data.set_index('Date Column') 

 

Working with Categorical Variables: 
 

# Convert a string column to a categorical column 

data['Categorical Column'] = data['String 

Column'].astype('category') 

 

# Create dummy variables from a categorical column 

dummy_data = pd.get_dummies(data['Categorical Column']) 

 

# Group data by a categorical column and calculate the 

mean of another column 

grouped_data = data.groupby('Categorical 

Column')['Numeric Column'].mean() 

 

# Rename categories in a categorical column 
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data['Categorical Column'] = data['Categorical 

Column'].cat.rename_categories({'Category A': 'Category 

1', 'Category B': 'Category 2'}) 

 

Handling Missing Values: 

 
# Replace missing values with the mean of a specific 

column 

data['Column A'] = data['Column A'].fillna(data['Column 

A'].mean()) 

 

# Interpolate missing values in a specific column 

data['Column A'] = data['Column A'].interpolate() 

 

# Drop rows with missing values in a specific column 

data = data.dropna(subset=['Column A']) 

 

# Forward-fill missing values in a specific column 

data['Column A'] = data['Column A'].ffill() 

Creating a DataFrame 

 

 

 

Reading data into a DataFrame 
 

Reading data into a DataFrame is an essential task in data analysis using Python. A DataFrame is 

a two-dimensional labeled data structure that consists of rows and columns, where each column 

can have a different data type. In Python, the most popular library for data manipulation is 

pandas, which provides a powerful DataFrame object and a set of functions to load data from 

various sources. 

 

If you are a SAS user transitioning to Python, you might find some similarities in the way data is 

loaded into a DataFrame. In this section, we will introduce you to the basics of reading data into 

a DataFrame using pandas, with a focus on how it compares to SAS. 

 

Loading CSV Data 

The most common way to load data into a pandas DataFrame is by reading a CSV (comma-

separated values) file. CSV files are plain text files that contain data separated by commas or 

other delimiters. To load a CSV file into a DataFrame, you can use the read_csv() function in 

pandas. Here's an example: 

 
import pandas as pd 
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df = pd.read_csv('mydata.csv') 

 

In this example, we first import the pandas library and then use the read_csv() function to read a 

file called 'mydata.csv' into a DataFrame called df. The read_csv() function automatically infers 

the data types of the columns and uses the first row of the CSV file as the column names. 

 

In SAS, you can read a CSV file using the IMPORT procedure. Here's an example: 

 
proc import datafile='mydata.csv' 

            out=mydata 

            dbms=csv; 

run; 

 

In this example, we use the IMPORT procedure to read a file called 'mydata.csv' into a SAS 

dataset called mydata. The dbms=csv option tells SAS that the file is in CSV format. 

 

As you can see, the syntax for reading CSV files in pandas and SAS is quite different. However, 

the basic idea is the same: both libraries provide a function or procedure to read a CSV file and 

create a dataset or DataFrame. 

Loading Excel Data 

Another common way to load data into a DataFrame is by reading an Excel file. Excel files are 

popular in business settings, where data is often stored in spreadsheets. To read an Excel file into 

a DataFrame, you can use the read_excel() function in pandas. Here's an example: 

 
import pandas as pd 

 

df = pd.read_excel('mydata.xlsx') 

 

In this example, we use the read_excel() function to read a file called 'mydata.xlsx' into a 

DataFrame called df. The read_excel() function automatically infers the data types of the 

columns and uses the first row of the Excel file as the column names. 

 

In SAS, you can read an Excel file using the IMPORT procedure with the DBMS=XLSX option. 

Here's an example: 

 
proc import datafile='mydata.xlsx' 

            out=mydata 

            dbms=xlsx; 

run; 

 

In this example, we use the IMPORT procedure to read a file called 'mydata.xlsx' into a SAS 

dataset called mydata. The dbms=xlsx option tells SAS that the file is in Excel format. 

 

Once again, the syntax for reading Excel files in pandas and SAS is different, but the basic idea 

is the same. 
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# Read SQL query into a DataFrame 

df = pd.read_sql_query("SELECT * from mytable", conn) 

 

# Load data from a JSON file 

df = pd.read_json('mydata.json') 

 

# Load data from an HTML table 

url = 'https://www.fdic.gov/resources/resolutions/bank-

failures/failed-bank-list/' 

dfs = pd.read_html(url) 

df = dfs[0] 

 

In SAS, you can also read data from a variety of sources, including SQL databases, JSON files, 

and HTML tables. Here are some examples: 

 
/* Load data from a SQL database */ 

proc sql; 

  connect to sqlite (path='mydatabase.db'); 

  select * from connection to sqlite 

    (select * from mytable); 

quit; 

 

/* Load data from a JSON file */ 

filename myjson 'mydata.json'; 

libname myjson json fileref=myjson; 

data mydata; 

  set myjson.mytable; 

run; 

 

/* Load data from an HTML table */ 

filename myhtml url 

'https://www.fdic.gov/resources/resolutions/bank-

failures/failed-bank-list/'; 

proc import datafile=myhtml 

            out=mydata 

            dbms=html; 

run; 

 

As you can see, both pandas and SAS provide a variety of options to read data from various 

sources. However, the syntax for loading data can differ significantly between the two tools. 

 

Handling Missing Data 

One common issue when working with data is missing values. In pandas, missing values are 

represented by the NaN (Not a Number) value, which is part of the NumPy library. When you 
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load data into a DataFrame, pandas automatically detects missing values and replaces them with 

NaN. 

 

Here's an example: 

 
import pandas as pd 

 

df = pd.read_csv('mydata.csv') 

 

# Check for missing values 

print(df.isna().sum()) 

 

In this example, we use the isna() function to check for missing values in the DataFrame df. The 

sum() function is used to count the number of missing values in each column. 

 

In SAS, missing values are represented by a dot (.) in numeric variables and by a blank ( ) in 

character variables. When you load data into a SAS dataset, SAS automatically detects missing 

values and assigns them the appropriate value. 

 

Here's an example: 

 
data mydata; 

  infile 'mydata.csv' delimiter=',' missover; 

  input var1 var2 var3; 

run; 

 

/* Check for missing values */ 

proc means data=mydata n nmiss; 

run; 

 

In this example, we use the input statement to read data from a CSV file into a SAS dataset 

called mydata. The missover option tells SAS to ignore missing values when reading the data. 

The proc means procedure is then used to count the number of missing values in each variable. 

 

As you can see, handling missing values is slightly different in pandas and SAS, but the basic 

idea is the same: both tools provide a way to detect and count missing values in your data. 

 

In this section, we've introduced you to the basics of reading data into a DataFrame in Python 

using pandas, with a focus on how it compares to SAS. We've covered loading CSV and Excel 

files, as well as reading data from other sources like SQL databases, JSON files, and HTML 

tables. We've also touched on how to handle missing values in your data. 

 

While the syntax for loading data can differ between pandas and SAS, the basic idea is the same: 

both tools provide a way to read data into a dataset or DataFrame so you can begin your data 

analysis. As you become more comfortable 
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import pandas as pd 

 

# Read a CSV file into a DataFrame 

df = pd.read_csv('mydata.csv') 

 

# Read an Excel file into a DataFrame 

df = pd.read_excel('mydata.xlsx') 

 

# Read a SQL query into a DataFrame 

conn = create_engine('sqlite:///mydatabase.db') 

df = pd.read_sql_query("SELECT * from mytable", conn) 

 

# Load data from a JSON file 

df = pd.read_json('mydata.json') 

 

# Load data from an HTML table 

url = 'https://www.fdic.gov/resources/resolutions/bank-

failures/failed-bank-list/' 

dfs = pd.read_html(url) 

df = dfs[0] 

 

Let's break this down line by line: 

 
import pandas as pd 

 

This line imports the pandas library and aliases it as pd, which is a common convention in the 

Python community. 

 
# Read a CSV file into a DataFrame 

df = pd.read_csv('mydata.csv') 

 

This line reads a CSV file named mydata.csv into a pandas DataFrame called df. By default, 

pandas assumes that the first row of the CSV file contains column headers, but you can override 

this behavior with the header parameter. 

 
# Read an Excel file into a DataFrame 

df = pd.read_excel('mydata.xlsx') 

 

This line reads an Excel file named mydata.xlsx into a pandas DataFrame called df. By default, 

pandas assumes that the first sheet in the Excel file contains the data, but you can specify a 

different sheet with the sheet_name parameter. 

 
# Read a SQL query into a DataFrame 

conn = create_engine('sqlite:///mydatabase.db') 
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df = pd.read_sql_query("SELECT * from mytable", conn) 

 

This code uses the create_engine function from the SQLAlchemy library to create a database 

connection to a SQLite database file named mydatabase.db. The pd.read_sql_query function then 

reads a SQL query that selects all columns from a table named mytable into a pandas DataFrame 

called df. 

 
# Load data from a JSON file 

df = pd.read_json('mydata.json') 

 

This code reads data from a JSON file named mydata.json into a pandas DataFrame called df. By 

default, pandas assumes that the JSON file contains a single object, but you can override this 

behavior with the orient parameter. 
# Load data from an HTML table 

url = 'https://www.fdic.gov/resources/resolutions/bank-

failures/failed-bank-list/' 

dfs = pd.read_html(url) 

df = dfs[0] 

 

This code reads an HTML table from a URL using the pd.read_html function, which returns a 

list of DataFrames (one for each HTML table on the page). In this case, we're assuming that 

there's only one HTML table on the page, so we grab the first element of the list and assign it to 

a pandas DataFrame called df. 

 

Let's take a closer look at some of the parameters that can be used with these functions. 

 

For pd.read_csv, some commonly used parameters include: 
 

sep: the delimiter used in the file (default is ,) 

header: which row to use as the column headers (default is 0) 

index_col: which column to use as the index (default is None) 

usecols: which columns to read (default is all columns) 

 

For pd.read_excel, some commonly used parameters include: 

 

sheet_name: which sheet to read (default is 0) 

header: which row to use as the column headers (default is 0) 

index_col: which column to use as the index (default is None) 

usecols: which columns to read (default is all columns) 

 

For pd.read_sql_query, some commonly used parameters include: 

 

params: a list or tuple of parameters to pass to the SQL query 

parse_dates: a list of column names to parse as dates 

chunksize: the number of rows to read at a time (useful for very large datasets) 
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For pd.read_json, some commonly used parameters include: 

 

orient: the JSON format ('split', 'records', 'index', 'columns', or 'values') 

For pd.read_html, some commonly used parameters include: 

 

header: which row to use as the column headers (default is 0) 

index_col: which column to use as the index (default is None) 

flavor: the HTML parser to use ('bs4' or 'lxml') 

 

Note that these are just a few examples of the many parameters that can be used with these 

functions. To learn more, you can refer to the pandas documentation or experiment with the 

parameters yourself. 

 

Overall, reading data into a DataFrame is a key step in data analysis with Python. Once you have 

your data in a DataFrame, you can use pandas and other Python libraries to manipulate, analyze, 

and visualize the data in a variety of ways. 

 

Reading data from a URL 
 

import pandas as pd 

 

url = 

'https://raw.githubusercontent.com/datasciencedojo/data

sets/master/titanic.csv' 

df = pd.read_csv(url) 

 

This code reads a CSV file from a URL into a pandas DataFrame using the pd.read_csv function. 

 

Reading data from a clipboard 
 

import pandas as pd 

 

df = pd.read_clipboard() 

 

This code reads data from the clipboard (e.g., if you've copied a table from a website or 

spreadsheet program) into a pandas DataFrame using the pd.read_clipboard function. 

 

Reading data from a Python dictionary 
 

import pandas as pd 

 

data = {'name': ['Alice', 'Bob', 'Charlie'], 

        'age': [25, 30, 35], 

        'city': ['New York', 'Chicago', 'Los Angeles']} 
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df = pd.DataFrame(data) 

 

This code creates a Python dictionary and then converts it to a pandas DataFrame using the 

pd.DataFrame function. 

 

Reading data from a list of dictionaries 
 

import pandas as pd 

 

data = [{'name': 'Alice', 'age': 25, 'city': 'New 

York'}, 

        {'name': 'Bob', 'age': 30, 'city': 'Chicago'}, 

        {'name': 'Charlie', 'age': 35, 'city': 'Los 

Angeles'}] 

 

df = pd.DataFrame(data) 

 

This code creates a list of dictionaries and then converts it to a pandas DataFrame using the 

pd.DataFrame function. 

 

Reading data from a NumPy array 
 

import numpy as np 

import pandas as pd 

 

data = np.array([[1, 2, 3], 

                 [4, 5, 6], 

                 [7, 8, 9]]) 

 

df = pd.DataFrame(data, columns=['A', 'B', 'C']) 

 

This code creates a NumPy array and then converts it to a pandas DataFrame using the 

pd.DataFrame function. 

 

Overall, pandas provides many different ways to read data into a DataFrame, making it easy to 

work with data from a variety of sources. By understanding these methods and their respective 

parameters, you can efficiently import and manipulate data in Python for a wide range of data 

analysis tasks. 
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Indexing and selecting data 
 

Indexing and selecting data are essential concepts when working with data in Python. They allow 

you to retrieve specific data elements from a data structure such as a list, tuple, or dictionary. In 

this context, Python offers several methods for indexing and selecting data, including slicing, 

indexing, and boolean indexing. 

 

Slicing is a technique used to select a subset of a sequence object, such as a list or string, by 

specifying a range of indices to retrieve. For example, suppose you have a list of numbers [1, 2, 

3, 4, 5], and you want to retrieve the second to fourth elements. In this case, you can use slicing 

by specifying the range of indices [1:4]. The result will be a new list containing [2, 3, 4]. 

 

Indexing, on the other hand, is used to access a specific element of a sequence by specifying its 

position in the sequence. Python uses zero-based indexing, which means that the first element of 

a sequence has an index of 0. For example, if you have a list of colors ['red', 'green', 'blue'], you 

can access the second element ('green') by indexing the list with 1, as follows: colors[1]. 

 

Boolean indexing is a method used to retrieve elements from a sequence that meet a certain 

condition. For example, suppose you have a list of numbers [1, 2, 3, 4, 5], and you want to 

retrieve only the even numbers. In this case, you can use boolean indexing by specifying the 

condition "x % 2 == 0", where "x" represents each element of the list. The result will be a new 

list containing [2, 4]. 

 

In Python, you can also use these techniques to index and select data from pandas dataframes, 

which are commonly used in data analysis. For example, suppose you have a dataframe with 

columns "Name", "Age", and "Gender". You can use indexing to retrieve the "Age" column by 

specifying df["Age"], and you can use boolean indexing to retrieve only the rows where the age 

is greater than 30 by specifying df[df["Age"] > 30]. 

 

SAS users who are new to Python may find these indexing and selection methods helpful for 

manipulating and analyzing data in Python. Additionally, Python offers a wide range of libraries 

and tools for data analysis, including pandas, NumPy, and matplotlib, which can be used in 

conjunction with these methods to perform complex data analyses. 

 

here are some more details on indexing and selecting data in Python: 

 

Slicing: 

Slicing is used to extract a portion of a sequence by specifying a range of indices. The general 

syntax for slicing is sequence[start:end:step], where start is the starting index, end is the ending 

index (exclusive), and step is the step size. If any of these parameters are omitted, Python 

assumes a default value (start = 0, end = len(sequence), step = 1). Here are some examples: 

a. Select the first three elements of a list: 

 
my_list = [1, 2, 3, 4, 5] 

my_list[:3] # [1, 2, 3] 



251 | P a g e  

 

 

b. Select every other element of a list: 

 
my_list = [1, 2, 3, 4, 5] 

my_list[::2] # [1, 3, 5] 

 

Indexing: 

Indexing is used to access a specific element of a sequence by specifying its position in the 

sequence. The general syntax for indexing is sequence[index]. Here are some examples: 

a. Retrieve the first element of a list: 

 
my_list = [1, 2, 3, 4, 5] 

my_list[0] # 1 

b. Retrieve the last element of a list: 

 

css 

Copy code 

my_list = [1, 2, 3, 4, 5] 

my_list[-1] # 5 

 

Boolean Indexing: 

Boolean indexing is used to select elements from a sequence that satisfy a certain condition. The 

general syntax for boolean indexing is sequence[condition], where condition is a Boolean 

expression that returns True or False for each element in the sequence. Here are some examples: 

a. Retrieve even numbers from a list: 
 

my_list = [1, 2, 3, 4, 5] 

even_numbers = [x for x in my_list if x % 2 == 0] 

print(even_numbers) # [2, 4] 

 

b. Retrieve rows from a pandas dataframe where the age is greater than 30: 

 
import pandas as pd 

df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 

'David'], 

                   'Age': [25, 35, 45, 55], 

                   'Gender': ['F', 'M', 'M', 'M']}) 

df[df['Age'] > 30] 

 

These indexing and selection methods are commonly used in data analysis and manipulation 

tasks, and can be combined with other Python tools and libraries to perform complex operations 

on large datasets. 

 

Slicing: 
 

# create a list of numbers 
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numbers = [1, 2, 3, 4, 5] 

# select the first three numbers using slicing 

first_three = numbers[:3] 

# select every other number using slicing 

every_other = numbers[::2] 

 

# print the results 

print(first_three)  # [1, 2, 3] 

print(every_other)  # [1, 3, 5] 

 

Indexing: 
 

# create a list of colors 

colors = ['red', 'green', 'blue'] 

 

# retrieve the first color using indexing 

first_color = colors[0] 

 

# retrieve the last color using negative indexing 

last_color = colors[-1] 

 

# print the results 

print(first_color)  # red 

print(last_color)   # blue 

 

Boolean indexing: 
 

import numpy as np 

 

# create a 2D array of random numbers 

array = np.random.rand(4, 4) 

 

# select only the elements greater than 0.5 

greater_than_half = array[array > 0.5] 

 

# print the result 

print(greater_than_half) 

 

Using pandas dataframes: 
 

import pandas as pd 

 

# create a dataframe of employee data 
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employees = pd.DataFrame({'Name': ['Alice', 'Bob', 

'Charlie', 'David'], 

                          'Age': [25, 35, 45, 55], 

                          'Salary': [50000, 60000, 

70000, 80000]}) 

 

# select the rows where the age is greater than 30 

older_employees = employees[employees['Age'] > 30] 

 

# select the name and salary columns for the older 

employees 

older_salaries = older_employees[['Name', 'Salary']] 

 

# print the result 

print(older_salaries) 

 

These examples demonstrate how indexing and selection can be used to retrieve specific data 

elements from different data structures in Python. These techniques are especially useful in data 

analysis and manipulation tasks, where you often need to extract and analyze specific subsets of 

data from larger datasets. 

 

Selecting elements from nested lists: 
 

# create a nested list 

nested_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 

 

# select the second element of the first list 

element = nested_list[0][1] 

 

# print the result 

print(element) 

Selecting elements from numpy arrays: 

php 

Copy code 

import numpy as np 

 

# create a 2D numpy array 

array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

 

# select the second column of the array 

column = array[:, 1] 

 

# select the diagonal of the array 

diagonal = array.diagonal() 
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# print the results 

print(column) 

print(diagonal) 

 

Using boolean indexing with pandas dataframes: 

 
import pandas as pd 

 

# create a dataframe of student grades 

grades = pd.DataFrame({'Name': ['Alice', 'Bob', 

'Charlie', 'David'], 

                       'Math': [80, 70, 90, 60], 

                       'English': [75, 85, 80, 70], 

                       'Science': [95, 80, 85, 75]}) 

 

# select only the rows where the math grade is above 80 

good_math_grades = grades[grades['Math'] > 80] 

 

# select only the rows where the student's overall 

grade is above 80 

good_grades = grades[(grades['Math'] + 

grades['English'] + grades['Science']) / 3 > 80] 

 

# print the results 

print(good_math_grades) 

print(good_grades) 

 

Using loc and iloc with pandas dataframes: 
 

import pandas as pd 

 

# create a dataframe of student grades 

grades = pd.DataFrame({'Name': ['Alice', 'Bob', 

'Charlie', 'David'], 

                       'Math': [80, 70, 90, 60], 

                       'English': [75, 85, 80, 70], 

                       'Science': [95, 80, 85, 75]}) 

 

# select the row for Alice using loc 

alice = grades.loc[grades['Name'] == 'Alice'] 

 

# select the math and science grades for the first two 

students using iloc 
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first_two_grades = grades.iloc[:2, [1, 3]] 

# print the results 

print(alice) 

print(first_two_grades) 

 

Using boolean indexing with numpy arrays: 
 

import numpy as np 

 

# create a 2D array of random integers 

array = np.random.randint(1, 10, (4, 4)) 

 

# select the elements that are greater than 5 

greater_than_5 = array[array > 5] 

 

# select the elements that are even 

even_numbers = array[array % 2 == 0] 

 

# print the results 

print(greater_than_5) 

print(even_numbers) 

 

Using slicing with strings: 
 

# create a string 

s = 'hello world' 

 

# select the first five characters 

first_five = s[:5] 

 

# select the last five characters 

last_five = s[-5:] 

 

# print the results 

print(first_five) 

print(last_five) 

 

 

Selecting elements from dictionaries: 

 
# create a dictionary 

d = {'apple': 1, 'banana': 2, 'orange': 3} 

 

# select the value for the 'apple' key 
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apple_value = d['apple'] 

# print the result 

print(apple_value) 

 

Using slicing with numpy arrays: 

 
import numpy as np 

 

# create a 2D numpy array 

array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

 

# select the first two rows and all columns 

first_two_rows = array[:2, :] 

 

# select the second column and all rows 

second_column = array[:, 1] 

 

# print the results 

print(first_two_rows) 

print(second_column) 

 

Using integer indexing with pandas dataframes: 

 
import pandas as pd 

 

# create a dataframe of student grades 

grades = pd.DataFrame({'Name': ['Alice', 'Bob', 

'Charlie', 'David'], 

                       'Math': [80, 70, 90, 60], 

                       'English': [75, 85, 80, 70], 

                       'Science': [95, 80, 85, 75]}) 

 

# select the row for Bob using integer indexing 

bob = grades.iloc[1] 

 

# select the math and science grades for all students 

using integer indexing 

math_and_science = grades.iloc[:, [1, 3]] 

 

# print the results 

print(bob) 

print(math_and_science) 
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Using boolean indexing with pandas dataframes: 
 

import pandas as pd 

 

# create a dataframe of student grades 

grades = pd.DataFrame({'Name': ['Alice', 'Bob', 

'Charlie', 'David'], 

                       'Math': [80, 70, 90, 60], 

                       'English': [75, 85, 80, 70], 

                       'Science': [95, 80, 85, 75]}) 

 

# select the rows where the math grade is greater than 

or equal to 80 

high_math_grades = grades[grades['Math'] >= 80] 

 

# select the rows where the science grade is less than 

or equal to 80 

low_science_grades = grades[grades['Science'] <= 80] 

 

# print the results 

print(high_math_grades) 

print(low_science_grades) 

 

Using slicing with lists: 
 

# create a list 

my_list = ['a', 'b', 'c', 'd', 'e'] 

 

# select the first three elements 

first_three = my_list[:3] 

 

# select the last two elements 

last_two = my_list[-2:] 

 

# print the results 

print(first_three) 

print(last_two) 

 

Using integer indexing with numpy arrays: 
 

import numpy as np 

 

# create a 2D numpy array 
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array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

 

# select the element in the first row and second column 

element = array[0, 1] 

 

# select the first two elements of the second row 

first_two_in_second_row = array[1, :2] 

 

# print the results 

print(element) 

print(first_two_in_second_row) 

 

 

 

Filtering and sorting data 
 

Filtering and sorting data are essential operations in data analysis and are commonly performed 

using programming languages like Python and SAS. In this article, we will discuss how to filter 

and sort data in Python, with a focus on how SAS users can leverage their existing knowledge to 

learn Python. 

 

Filtering Data in Python 

In Python, filtering data is typically done using the Pandas library, which provides a powerful set 

of tools for working with tabular data. The most commonly used function for filtering data in 

Pandas is the query() function, which allows you to select rows of data based on a Boolean 

expression. 

 

For example, suppose you have a Pandas DataFrame that contains information about a set of 

products, including their names, prices, and ratings. You can filter this DataFrame to select only 

the products with a rating above 4 using the following code: 

 
import pandas as pd 

 

# create DataFrame 

data = {'Product': ['Product A', 'Product B', 'Product 

C', 'Product D'], 

        'Price': [10.99, 8.99, 15.99, 12.99], 

        'Rating': [4.5, 3.9, 4.8, 4.2]} 

df = pd.DataFrame(data) 

 

# filter DataFrame 

filtered_df = df.query('Rating > 4') 
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In this code, we first create a DataFrame df with information about the products. We then use the 

query() function to select only the rows where the Rating column is greater than 4, and store the 

result in a new DataFrame filtered_df. 

 

Sorting Data in Python 

Sorting data is also a common operation in data analysis, and can be done easily in Python using 

the sort_values() function in Pandas. This function allows you to sort a DataFrame based on one 

or more columns. 

 

For example, suppose you want to sort the products DataFrame above by price, from lowest to 

highest. You can do this using the following code: 

 
sorted_df = df.sort_values('Price') 

 

In this code, we use the sort_values() function to sort the DataFrame df by the Price column. By 

default, the function sorts the data in ascending order (lowest to highest). If you want to sort the 

data in descending order (highest to lowest), you can add the ascending=False argument to the 

function call: 

 
sorted_df = df.sort_values('Price', ascending=False) 

 

Filtering and Sorting Data in SAS vs. Python 

For SAS users who are familiar with the WHERE and SORT statements, the syntax for filtering 

and sorting data in Python may seem quite different. However, the underlying concepts are the 

same, and with a little practice, SAS users can easily adapt to using Python for these tasks. 

 

In SAS, you might filter data using a WHERE statement like this: 
 

data Products; 

  set Products; 

  where Rating > 4; 

run; 

 

This code selects only the rows from the Products data set where the Rating variable is greater 

than 4. 

 

In Python, we can achieve the same result using the query() function: 
 

filtered_df = df.query('Rating > 4') 

 

Similarly, in SAS, you might sort data using a SORT statement like this: 

 
proc sort data=Products; 

  by Price; 

run; 
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This code sorts the Products data set by the Price variable, in ascending order. 

 

In Python, we can achieve the same result using the sort_values() function: 

 
sorted_df = df.sort_values('Price') 

 

SAS, the underlying concepts and operations are similar, making it relatively easy for SAS users 

to learn Python. 

 

It's worth noting that while filtering and sorting data are essential operations in data analysis, 

they are just the tip of the iceberg when it comes to what you can do with Python and Pandas. 

Pandas provides a rich set of tools for data manipulation, cleaning, and analysis, including 

functions for merging and joining datasets, reshaping data, and calculating summary statistics. 

 

Additionally, Python has a vast ecosystem of libraries and packages for data analysis and 

visualization, such as NumPy, Matplotlib, and Scikit-learn. These libraries can help you perform 

advanced data analysis and machine learning tasks in Python, making it a powerful tool for data 

scientists and analysts. 

 

Filtering and sorting data in Python using Pandas is a critical skill for any data analyst or 

scientist. For SAS users, the transition to Python should be relatively straightforward, as the 

underlying concepts and operations are similar. With a little practice, SAS users can easily adapt 

to using Python and leverage its rich ecosystem of libraries and tools for data analysis and 

visualization. 

 

Filtering Data: 

 
import pandas as pd 

 

# create DataFrame 

data = {'Product': ['Product A', 'Product B', 'Product 

C', 'Product D'], 

        'Price': [10.99, 8.99, 15.99, 12.99], 

        'Rating': [4.5, 3.9, 4.8, 4.2]} 

df = pd.DataFrame(data) 

 

# filter DataFrame 

filtered_df = df.query('Rating > 4') 

 

print(filtered_df) 

 

 

Output: 

 
     Product  Price  Rating 
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0  Product A  10.99     4.5 

2  Product C  15.99     4.8 

 

In this code, we create a DataFrame df with information about products and then use the query() 

function to filter the data and select only the rows where the Rating column is greater than 4. 

 

Sorting Data: 

 
import pandas as pd 

 

# create DataFrame 

data = {'Product': ['Product A', 'Product B', 'Product 

C', 'Product D'], 

        'Price': [10.99, 8.99, 15.99, 12.99], 

        'Rating': [4.5, 3.9, 4.8, 4.2]} 

df = pd.DataFrame(data) 

 

# sort DataFrame 

sorted_df = df.sort_values('Price') 

 

print(sorted_df) 

 

Output: 

 
     Product  Price  Rating 

1  Product B   8.99     3.9 

0  Product A  10.99     4.5 

3  Product D  12.99     4.2 

2  Product C  15.99     4.8 

 

In this code, we create a DataFrame df with information about products and then use the 

sort_values() function to sort the data by the Price column, in ascending order. 

 

 

Filtering and Sorting Data: 

 
import pandas as pd 

 

# create DataFrame 

data = {'Product': ['Product A', 'Product B', 'Product 

C', 'Product D'], 

        'Price': [10.99, 8.99, 15.99, 12.99], 

        'Rating': [4.5, 3.9, 4.8, 4.2]} 

df = pd.DataFrame(data) 
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# filter and sort DataFrame 

filtered_sorted_df = df.query('Rating > 

4').sort_values('Price') 

 

print(filtered_sorted_df) 

 

Output: 

 
     Product  Price  Rating 

0  Product A  10.99     4.5 

2  Product C  15.99     4.8 

 

In this code, we combine the previous examples and filter the DataFrame by the Rating column 

and sort the resulting data by the Price column. 

 

Filtering and Selecting Columns: 

 
import pandas as pd 

 

# create DataFrame 

data = {'Product': ['Product A', 'Product B', 'Product 

C', 'Product D'], 

        'Price': [10.99, 8.99, 15.99, 12.99], 

        'Rating': [4.5, 3.9, 4.8, 4.2]} 

df = pd.DataFrame(data) 

 

# filter and select columns 

filtered_df = df.query('Rating > 4')[['Product', 

'Price']] 

 

print(filtered_df) 

 

Output: 

 
     Product  Price 

0  Product A  10.99 

2  Product C  15.99 

 

In this code, we filter the DataFrame by the Rating column and select only the Product and Price 

columns of the resulting data. 

 

Filtering Data using Multiple Conditions: 
 

import pandas as pd 
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# create DataFrame 

data = {'Product': ['Product A', 'Product B', 'Product 

C', 'Product D'], 

        'Price': [10.99, 8.99, 15.99, 12.99], 

        'Rating': [4.5, 3.9, 4.8, 4.2], 

        'Category': ['Electronics', 'Clothing', 

'Electronics', 'Home']} 

df = pd.DataFrame(data) 

 

# filter DataFrame using multiple conditions 

filtered_df = df[(df['Rating'] > 4) & (df['Category'] 

== 'Electronics')] 

 

print(filtered_df) 

 

Output: 

 
     Product  Price  Rating     Category 

0  Product A  10.99     4.5  Electronics 

2  Product C  15.99     4.8  Electronics 

 

In this code, we create a DataFrame df with additional Category column and filter the data by 

both Rating and Category using multiple conditions in a single line of code. 

 

Sorting Data in Descending Order: 

 
import pandas as pd 

 

# create DataFrame 

data = {'Product': ['Product A', 'Product B', 'Product 

C', 'Product D'], 

        'Price': [10.99, 8.99, 15.99, 12.99], 

        'Rating': [4.5, 3.9, 4.8, 4.2]} 

df = pd.DataFrame(data) 

 

# sort DataFrame in descending order 

sorted_df = df.sort_values('Price', ascending=False) 

 

print(sorted_df) 

 

Output: 

 
     Product  Price  Rating 

2  Product C  15.99     4.8 
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3  Product D  12.99     4.2 

0  Product A  10.99     4.5 

1  Product B   8.99     3.9 

 

In this code, we sort the DataFrame by the Price column, but this time we use the 

ascending=False argument to sort the data in descending order. 

 

Filtering Data using Regular Expressions: 
 

import pandas as pd 

 

# create DataFrame 

data = {'Name': ['John Smith', 'Jane Doe', 'Bob 

Johnson', 'Mary Williams'], 

        'Age': [25, 30, 40, 45]} 

df = pd.DataFrame(data) 

 

# filter DataFrame using regular expressions 

filtered_df = df[df['Name'].str.contains('Jo', 

regex=True)] 

 

print(filtered_df) 

 

Output: 

 
          Name  Age 

0   John Smith   25 

2  Bob Johnson   40 

 

In this code, we create a DataFrame df with a Name column and filter the data by selecting only 

the rows where the Name column contains the substring 'Jo' using a regular expression in the 

str.contains() function. 

 

 

 

Aggregating and summarizing data 
 

Python is a popular programming language that is widely used for data analysis, machine 

learning, and scientific computing. Many SAS users have started to use Python for data analysis 

and modeling tasks because of its flexibility, scalability, and ease of use. This article provides an 

introduction to Python for SAS users, focusing on aggregating and summarizing data. 
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Data aggregation and summarization are important techniques in data analysis, as they help to 

provide a concise and meaningful summary of large datasets. In Python, these tasks can be 

accomplished using a variety of libraries, including NumPy, pandas, and SciPy. 

 

NumPy is a library for numerical computing in Python. It provides a powerful array data 

structure that can be used to perform operations on large datasets. One of the key features of 

NumPy is its ability to perform aggregation and summarization operations on arrays. For 

example, the np.mean() function can be used to calculate the mean of an array, while the 

np.sum() function can be used to calculate the sum of an array. 

 

Pandas is a library for data manipulation and analysis in Python. It provides a powerful 

DataFrame data structure that can be used to store and manipulate tabular data. One of the key 

features of pandas is its ability to perform aggregation and summarization operations on 

DataFrames. For example, the df.mean() function can be used to calculate the mean of a 

DataFrame, while the df.sum() function can be used to calculate the sum of a DataFrame. 

 

SciPy is a library for scientific computing in Python. It provides a wide range of functions for 

numerical optimization, integration, and statistics. One of the key features of SciPy is its ability 

to perform statistical analysis on datasets. For example, the scipy.stats.describe() function can be 

used to calculate descriptive statistics on a dataset, such as the mean, standard deviation, and 

quartiles. 

 

In addition to these libraries, Python also provides a variety of built-in functions for aggregating 

and summarizing data. For example, the sum() function can be used to calculate the sum of a list 

or tuple, while the len() function can be used to calculate the length of a list or tuple. 

 

Overall, Python provides a powerful and flexible set of tools for aggregating and summarizing 

data. By using these tools, SAS users can leverage the power of Python to analyze large datasets 

and gain valuable insights into their data. Aggregating and summarizing data are important 

techniques for data analysis, as they allow us to quickly gain insights into the underlying patterns 

and trends in our data. These techniques are particularly useful for large datasets, where it is 

often impractical to examine each individual data point. 

 

Python provides a wide range of tools and libraries for aggregating and summarizing data. In 

addition to NumPy, pandas, and SciPy, other popular libraries for data analysis in Python include 

Matplotlib, Seaborn, and Scikit-learn. 

Matplotlib is a library for data visualization in Python. It provides a wide range of functions for 

creating plots and charts, which can be used to visualize the results of aggregation and 

summarization operations. For example, a histogram can be used to visualize the distribution of 

values in a dataset, while a scatter plot can be used to visualize the relationship between two 

variables. 

 

Seaborn is a library for statistical data visualization in Python. It provides a variety of functions 

for creating complex visualizations, such as heatmaps and box plots. These visualizations can be 

used to gain insights into the underlying patterns and trends in our data. 
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Scikit-learn is a library for machine learning in Python. It provides a wide range of functions for 

data preprocessing, modeling, and evaluation. These functions can be used to build predictive 

models based on our aggregated and summarized data. 

 

In addition to these libraries, Python also provides a variety of functions for working with data, 

such as sorting, filtering, and grouping. For example, the sorted() function can be used to sort a 

list or tuple, while the filter() function can be used to select only those elements that meet a 

certain condition. For SAS users, learning Python for data analysis can be a valuable skill. 

Python is widely used in the data science community, and its popularity has been growing 

rapidly in recent years. Many organizations are now using Python alongside SAS to analyze and 

model their data. 

 

One of the key advantages of Python over SAS is its flexibility. Python is an open-source 

language, which means that it is highly customizable and extensible. This flexibility allows users 

to create custom scripts and functions for specific data analysis tasks. Additionally, Python 

provides a large ecosystem of libraries and tools that can be used for data analysis, machine 

learning, and scientific computing. 

 

Example 1: Using NumPy to calculate the mean of an array 
 

import numpy as np 

 

# Create an array of numbers 

data = np.array([3, 5, 7, 9, 11]) 

 

# Calculate the mean of the array 

mean = np.mean(data) 

 

# Print the mean 

print("Mean:", mean) 

 

Output: 

 
Mean: 7.0 

 

Example 2: Using Pandas to calculate the sum of a DataFrame 

 
import pandas as pd 

 

# Create a DataFrame of numbers 

data = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 

'C': [7, 8, 9]}) 

 

# Calculate the sum of the DataFrame 

sum = data.sum() 
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# Print the sum 

print("Sum:\n", sum) 

 

Output: 

 
Sum: 

 A     6 

B    15 

C    24 

dtype: int64 

 

Example 3: Using SciPy to calculate descriptive statistics on a dataset 

 
import scipy.stats as stats 

 

# Create a dataset of numbers 

data = [3, 5, 7, 9, 11] 

 

# Calculate descriptive statistics 

mean = stats.describe(data).mean 

std = stats.describe(data).std 

min = stats.describe(data).minmax[0] 

max = stats.describe(data).minmax[1] 

 

# Print the descriptive statistics 

print("Mean:", mean) 

print("Standard Deviation:", std) 

print("Minimum Value:", min) 

print("Maximum Value:", max) 

 

Output: 

 
Mean: 7.0 

Standard Deviation: 3.1622776601683795 

Minimum Value: 3 

Maximum Value: 11 

 

These examples demonstrate how Python can be used to aggregate and summarize data using 

different libraries and functions. With its flexible and extensible nature, Python provides a 

powerful set of tools for data analysis that can be used alongside SAS. 
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Example 4: Using Pandas to group data by a categorical variable and calculate the mean of each 

group 

 
import pandas as pd 

 

# Create a DataFrame of sales data 

data = pd.DataFrame({'Region': ['East', 'West', 

'North', 'South', 'East', 'West', 'North', 'South'], 

                     'Sales': [100, 200, 150, 250, 300, 

400, 350, 450]}) 

 

# Group the data by region and calculate the mean of 

each group 

grouped_data = data.groupby('Region').mean() 

 

# Print the grouped data 

print(grouped_data) 

 

Output: 

 
             Sales 

Region             

East    200.000000 

North   250.000000 

South   350.000000 

West    300.000000 

 

Example 5: Using NumPy to calculate the median of an array 

 
import numpy as np 

 

# Create an array of numbers 

data = np.array([3, 5, 7, 9, 11]) 

 

# Calculate the median of the array 

median = np.median(data) 

# Print the median 

print("Median:", median) 

 

Output: 

 
Median: 7.0 
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Example 6: Using Pandas to filter data based on a condition and calculate the sum of a column 

 
import pandas as pd 

 

# Create a DataFrame of sales data 

data = pd.DataFrame({'Region': ['East', 'West', 

'North', 'South', 'East', 'West', 'North', 'South'], 

                     'Sales': [100, 200, 150, 250, 300, 

400, 350, 450]}) 

 

# Filter the data to only include sales from the East 

region 

filtered_data = data[data['Region'] == 'East'] 

 

# Calculate the sum of the Sales column 

sum = filtered_data['Sales'].sum() 

 

# Print the sum 

print("Sum:", sum) 

 

Output: 

 
Sum: 400 

 

Example 7: Using Pandas to calculate the correlation coefficient between two columns in a 

DataFrame 

 
import pandas as pd 

 

# Create a DataFrame of sales data 

data = pd.DataFrame({'Region': ['East', 'West', 

'North', 'South', 'East', 'West', 'North', 'South'], 

                     'Sales': [100, 200, 150, 250, 300, 

400, 350, 450], 

                     'Profit': [20, 40, 30, 50, 60, 80, 

70, 90]}) 

# Calculate the correlation coefficient between Sales 

and Profit 

corr_coef = data['Sales'].corr(data['Profit']) 

 

# Print the correlation coefficient 

print("Correlation Coefficient:", corr_coef) 

 

Output: 
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Correlation Coefficient: 0.9966155281280883 

 

Example 8: Using NumPy to calculate the standard deviation of an array 

 
import numpy as np 

 

# Create an array of numbers 

data = np.array([3, 5, 7, 9, 11]) 

 

# Calculate the standard deviation of the array 

std_dev = np.std(data) 

 

# Print the standard deviation 

print("Standard Deviation:", std_dev) 

 

Output: 

 
Standard Deviation: 3.1622776601683795 

 

Example 9: Using Pandas to pivot a DataFrame and calculate the sum of values in each column 

 
import pandas as pd 

 

# Create a DataFrame of sales data 

data = pd.DataFrame({'Region': ['East', 'West', 

'North', 'South', 'East', 'West', 'North', 'South'], 

                     'Product': ['A', 'B', 'C', 'D', 

'A', 'B', 'C', 'D'], 

                     'Sales': [100, 200, 150, 250, 300, 

400, 350, 450]}) 

 

# Pivot the data and calculate the sum of Sales for 

each Region and Product 

pivot_data = pd.pivot_table(data, values='Sales', 

index='Region', columns='Product', aggfunc=np.sum) 

 

# Print the pivoted data 

print(pivot_data) 

 

Output: 
 

Product    A    B    C    D 

Region                     

East     400  300    0    0 
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North      0    0  500    0 

South      0    0    0  700 

West     200  400    0    0 

 

Example 10: Using Pandas to merge two DataFrames on a common column 

 
import pandas as pd 

 

# Create two DataFrames of sales data 

sales_data_1 = pd.DataFrame({'Region': ['East', 'West', 

'North', 'South'], 

                             'Sales': [100, 200, 150, 

250]}) 

sales_data_2 = pd.DataFrame({'Region': ['East', 'West', 

'North', 'South'], 

                             'Profit': [20, 40, 30, 

50]}) 

 

# Merge the two DataFrames on the Region column 

merged_data = pd.merge(sales_data_1, sales_data_2, 

on='Region') 

 

# Print the merged data 

print(merged_data) 

 

Output: 

 
  Region  Sales  Profit 

0   East    100      20 

1   West    200      40 

2  North    150      30 

3  South    250      50 

Example 11: Using Pandas to group data by a column and calculate summary statistics 

 
import pandas as pd 

 

# Create a DataFrame of sales data 

data = pd.DataFrame({'Region': ['East', 'West', 

'North', 'South', 'East', 'West', 'North', 'South'], 

                     'Product': ['A', 'B', 'C', 'D', 

'A', 'B', 'C', 'D'], 

                     'Sales': [100, 200, 150, 250, 300, 

400, 350, 450]}) 
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# Group the data by Region and Product and calculate 

the sum of Sales for each group 

grouped_data = data.groupby(['Region', 

'Product'])['Sales'].sum() 

 

# Print the grouped data 

print(grouped_data) 

 

Output: 

 
Region  Product 

East    A          400 

        B          300 

North   C          500 

South   D          700 

West    B          400 

        A          200 

Name: Sales, dtype: int64 

 

Example 12: Using Pandas to sort a DataFrame by one or more columns 

 
import pandas as pd 

 

# Create a DataFrame of sales data 

data = pd.DataFrame({'Region': ['East', 'West', 

'North', 'South', 'East', 'West', 'North', 'South'], 

                     'Product': ['A', 'B', 'C', 'D', 

'A', 'B', 'C', 'D'], 

                     'Sales': [100, 200, 150, 250, 300, 

400, 350, 450]}) 

 

# Sort the data by Region (ascending) and Sales 

(descending) 

sorted_data = data.sort_values(by=['Region', 'Sales'], 

ascending=[True, False]) 

 

# Print the sorted data 

print(sorted_data) 

 

Output: 

 
  Region Product  Sales 

4   East      A    300 

0   East      A    100 
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5   West      B    400 

1   West      B    200 

6  North      C    350 

2  North      C    150 

7  South      D    450 

3  South      D    250 

 

These examples demonstrate some common data aggregation and summarization tasks that can 

be performed using Python libraries such as NumPy and Pandas. The flexibility and power of 

these libraries, combined with the ease of use and interoperability of Python, make it a valuable 

tool for data analysis and manipulation. 

 

 

 

Merging and joining DataFrames 
 

Merging and joining DataFrames is a common operation in data analysis, and it is no different in 

Python. If you are a SAS user transitioning to Python, this guide will give you an introduction to 

performing merges and joins in Python. 

 

First, let's start with some basic definitions. A DataFrame in Python is similar to a SAS dataset, 

containing rows and columns of data. A merge operation combines two DataFrames based on a 

common column or set of columns, while a join operation combines two DataFrames based on a 

common index. 

 

Let's start by importing the pandas library, which is the most commonly used library for working 

with DataFrames in Python: 

 
import pandas as pd 

 

Now, let's create two sample DataFrames to work with: 
df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 

                    'value': [1, 2, 3, 4]}) 

 

df2 = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 

                    'value': [5, 6, 7, 8]}) 

 

The two DataFrames have a common column called "key". We can perform a merge operation 

on this column by using the merge() function: 

 
merged_df = pd.merge(df1, df2, on='key') 

 

The resulting merged DataFrame contains only the rows where the "key" column is present in 

both DataFrames: 
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  key  value_x  value_y 

0   B        2        5 

1   D        4        6 

 

Note that the merge() function automatically appends "_x" and "_y" to the column names of the 

original DataFrames to distinguish them in the merged DataFrame. 

 

If the column names are different in the two DataFrames, we can specify them explicitly using 

the left_on and right_on parameters: 

 
df1 = pd.DataFrame({'key1': ['A', 'B', 'C', 'D'], 

                    'value1': [1, 2, 3, 4]}) 

 

df2 = pd.DataFrame({'key2': ['B', 'D', 'E', 'F'], 

                    'value2': [5, 6, 7, 8]}) 

 

merged_df = pd.merge(df1, df2, left_on='key1', 

right_on='key2') 

 

The resulting merged DataFrame looks like this: 

 
  key1  value1 key2  value2 

0    B       2    B       5 

1    D       4    D       6 

 

We can also perform a join operation by using the join() function. This function joins two 

DataFrames based on their indexes: 

 
df1 = pd.DataFrame({'value1': [1, 2, 3, 4]}, 

                   index=['A', 'B', 'C', 'D']) 

df2 = pd.DataFrame({'value2': [5, 6, 7, 8]}, 

                   index=['B', 'D', 'E', 'F']) 

 

joined_df = df1.join(df2, how='inner') 

 

The resulting joined DataFrame contains only the rows where the index is present in both 

DataFrames: 

 
   value1  value2 

B       2       5 

D       4       6 

 

Note that the join() function also accepts a "how" parameter, which specifies the type of join to 

perform (inner, outer, left, or right). 



275 | P a g e  

 

 

Merge and Join Types 

In Python, there are four types of merge operations: inner, left, right, and outer. The default is 

inner, which returns only the intersection of the two DataFrames based on the merge keys. The 

left and right types return all the rows from one DataFrame and matching rows from the other. 

The outer type returns all the rows from both DataFrames, and fills in missing values with NaNs. 

 

Similarly, there are three types of join operations: inner, outer, and left. The inner type returns 

only the rows that have matching keys in both DataFrames. The outer type returns all the rows 

from both DataFrames and fills in missing values with NaNs. The left type returns all the rows 

from the left DataFrame and matching rows from the right DataFrame. 

 

Using Multiple Keys 

If you need to merge or join DataFrames using multiple keys, you can pass a list of keys to the 

on parameter: 

 
df1 = pd.DataFrame({'key1': ['A', 'B', 'C', 'D'], 

                    'key2': ['X', 'Y', 'Z', 'W'], 

                    'value1': [1, 2, 3, 4]}) 

 

df2 = pd.DataFrame({'key1': ['B', 'D', 'E', 'F'], 

                    'key2': ['Y', 'W', 'Z', 'X'], 

                    'value2': [5, 6, 7, 8]}) 

 

merged_df = pd.merge(df1, df2, on=['key1', 'key2']) 

 

 

One important thing to note is that merge() and join() functions can handle multiple keys for 

joining DataFrames. For example, consider the following DataFrames: 

 
df1 = pd.DataFrame({'key1': ['A', 'B', 'C', 'D'], 

                    'key2': ['W', 'X', 'Y', 'Z'], 

                    'value': [1, 2, 3, 4]}) 

 

df2 = pd.DataFrame({'key1': ['B', 'D', 'E', 'F'], 

                    'key2': ['X', 'Z', 'Y', 'W'], 

                    'value': [5, 6, 7, 8]}) 

 

We can perform a merge operation on both "key1" and "key2" columns by passing a list of keys 

to the on parameter: 

 
merged_df = pd.merge(df1, df2, on=['key1', 'key2']) 

 

The resulting merged DataFrame contains only the rows where both "key1" and "key2" columns 

are present in both DataFrames: 
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  key1 key2  value_x  value_y 

0    B    X        2        5 

1    D    Z        4        6 

 

We can also perform a join operation on multiple indexes by passing a list of indexes to the 

join() function: 

 
df1 = pd.DataFrame({'value1': [1, 2, 3, 4]}, 

                   index=['A', 'B', 'C', 'D']) 

 

df2 = pd.DataFrame({'value2': [5, 6, 7, 8]}, 

                   index=['B', 'D', 'E', 'F']) 

 

joined_df = df1.join(df2, how='inner', on=['value1', 

'value2']) 

 

Note that we also pass a "how" parameter to specify the type of join to perform. 

 

Another thing to keep in mind is that merge() and join() functions can handle duplicate keys. For 

example, consider the following DataFrames: 

 
df1 = pd.DataFrame({'key': ['A', 'B', 'B', 'C', 'D'], 

                    'value': [1, 2, 3, 4, 5]}) 

 

df2 = pd.DataFrame({'key': ['B', 'B', 'D', 'E', 'F'], 

                    'value': [6, 7, 8, 9, 10]}) 

We can perform a merge operation on the "key" column, 

even though it contains duplicate values, by using the 

how parameter to specify how to handle duplicates: 

 

python 

Copy code 

merged_df = pd.merge(df1, df2, on='key', how='outer') 

 

The resulting merged DataFrame contains all the rows from both DataFrames, and it fills missing 

values with NaN: 
  key  value_x  value_y 

0   A      1.0      NaN 

1   B      2.0      6.0 

2   B      3.0      7.0 

3   C      4.0      NaN 

4   D      5.0      8.0 

5   E      NaN      9.0 

6   F      NaN     10.0 
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Chapter 5:  

Data Visualization with Matplotlib 
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Data visualization is a crucial aspect of data analysis, and it is essential to convey the results of 

the analysis to stakeholders effectively. Python is a popular programming language that is widely 

used for data analysis, and Matplotlib is a popular data visualization library in Python. In this 

article, we will provide a SAS-oriented introduction to Matplotlib for SAS users who are new to 

Python. 

 

What is Matplotlib? 

Matplotlib is a data visualization library in Python that provides a wide range of tools for 

creating static, animated, and interactive visualizations in Python. It is highly customizable and 

offers a vast array of visualization options, including line charts, scatter plots, histograms, bar 

charts, and more. 

 

Getting started with Matplotlib: 

To get started with Matplotlib, you first need to install it. You can install Matplotlib using the pip 

package manager by running the following command in your terminal or command prompt: 

 
pip install matplotlib 

 

Once you have installed Matplotlib, you can start using it in your Python scripts by importing the 

library using the following command: 

 
import matplotlib.pyplot as plt 

Creating a Line Chart with Matplotlib: 

 

To create a line chart using Matplotlib, you can use the plot function. The plot function takes two 

arrays as input - one for the x-axis values and one for the y-axis values. Here's an example of 

how to create a simple line chart in Matplotlib: 

 
import matplotlib.pyplot as plt 

 

# Define the x and y values 

x = [1, 2, 3, 4, 5] 

y = [10, 8, 6, 4, 2] 

 

# Create the line chart 

plt.plot(x, y) 

 

# Add labels and a title 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.title('Line Chart') 

 

# Show the chart 

plt.show() 

Creating a Scatter Plot with Matplotlib: 
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To create a scatter plot using Matplotlib, you can use the scatter function. The scatter function 

takes two arrays as input - one for the x-axis values and one for the y-axis values. Here's an 

example of how to create a simple scatter plot in Matplotlib: 

 
import matplotlib.pyplot as plt 

 

# Define the x and y values 

x = [1, 2, 3, 4, 5] 

y = [10, 8, 6, 4, 2] 

 

# Create the scatter plot 

plt.scatter(x, y) 

 

# Add labels and a title 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.title('Scatter Plot') 

 

# Show the plot 

plt.show() 

 

Creating a Histogram with Matplotlib: 

To create a histogram using Matplotlib, you can use the hist function. The hist function takes an 

array as input and creates a histogram by grouping the values into bins. Here's an example of 

how to create a simple histogram in Matplotlib: 

 
import matplotlib.pyplot as plt 

 

# Define the data 

data = [1, 2, 2, 3, 3, 3, 4, 4, 5] 

 

# Create the histogram 

plt.hist(data) 

 

# Add labels and a title 

plt.xlabel('Value') 

plt.ylabel('Frequency') 

plt.title('Histogram') 

 

# Show the plot 

plt.show() 

 

Matplotlib is a powerful data visualization library in Python that offers a wide range of tools for 

creating static, animated, and interactive visualizations. In this article, we provided a SAS-
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oriented introduction to Matplotlib for SAS users who are new to Python. We hope this article 

helps you 

 

Here’s some more information on Matplotlib for SAS users: 

 

1. Comparison to SAS Graphics: Matplotlib is a powerful data visualization library that 

offers a wide range of tools and customization options for creating high-quality graphics. 

While SAS also provides powerful graphics capabilities, Matplotlib provides a more 

flexible and customizable approach to data visualization, allowing users to create a wider 

variety of charts and graphs than what is available in SAS. 

2. Integration with Pandas: Pandas is a popular data analysis library in Python that provides 

powerful tools for data manipulation and analysis. Matplotlib is fully integrated with 

Pandas, allowing users to create visualizations directly from their Pandas data frames. 

This integration makes it easy to create charts and graphs from data sets and quickly 

explore the relationships between different variables. 

3. Customization Options: Matplotlib provides a wide range of customization options, 

allowing users to create highly personalized and professional-looking visualizations. 

Users can customize the color, font, size, and style of their charts, as well as add 

annotations, labels, and titles to their visualizations. This level of customization makes it 

easy to create charts and graphs that are tailored to the specific needs of a project or 

presentation. 

4. Learning Curve: While Matplotlib is a powerful tool for data visualization, it can also 

have a steep learning curve for SAS users who are new to Python. However, with 

practice and experimentation, users can quickly become proficient in Matplotlib and take 

advantage of its powerful capabilities. 

5. Matplotlib and Other Python Libraries: Matplotlib is just one of many data visualization 

libraries available in Python. Other popular libraries include Seaborn, Plotly, and Bokeh. 

These libraries offer different styles and approaches to data visualization and may be 

better suited to specific use cases or projects. However, Matplotlib remains one of the 

most widely used and versatile data visualization libraries in Python, and is a great tool 

for SAS users who are looking to expand their data visualization skills in Python. 

 

Customizing Plots with Matplotlib: 

Matplotlib provides many options for customizing the appearance of plots. You can customize 

the colors, line styles, markers, fonts, and many other aspects of your plots. Here are some 

examples of how you can customize your plots with Matplotlib: 

 

Change the color of a line chart: 
 

plt.plot(x, y, color='red') 

 

 

Change the line style of a line chart: 

 
plt.plot(x, y, linestyle='--') 
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Change the marker style of a scatter plot: 
 

plt.scatter(x, y, marker='x') 

 

Change the font size of labels and title: 
 

plt.xlabel('X-axis', fontsize=14) 

plt.ylabel('Y-axis', fontsize=14) 

plt.title('Line Chart', fontsize=16) 

Change the background color of a plot: 

python 

Copy code 

plt.rcParams['axes.facecolor'] = 'lightgray' 

 

Subplots in Matplotlib: 

You can create multiple plots in a single figure using subplots in Matplotlib. Subplots are useful 

when you want to compare multiple plots side by side or when you want to create a complex 

layout of plots. Here's an example of how to create subplots in Matplotlib: 

 
import matplotlib.pyplot as plt 

 

# Define the data 

x = [1, 2, 3, 4, 5] 

y1 = [10, 8, 6, 4, 2] 

y2 = [2, 4, 6, 8, 10] 

 

# Create a figure with two subplots 

fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, 

figsize=(10, 5)) 

 

# Plot the data in the first subplot 

ax1.plot(x, y1) 

ax1.set_xlabel('X-axis') 

ax1.set_ylabel('Y-axis') 

ax1.set_title('Line Chart') 

 

# Plot the data in the second subplot 

ax2.scatter(x, y2) 

ax2.set_xlabel('X-axis') 

ax2.set_ylabel('Y-axis') 

ax2.set_title('Scatter Plot') 

 

# Show the figure 

plt.show() 
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Saving Plots in Matplotlib: 

You can save your Matplotlib plots as image files, such as PNG, PDF, SVG, or EPS. To save a 

plot, you can use the savefig function. Here's an example of how to save a plot as a PNG file: 

 
import matplotlib.pyplot as plt 

 

# Define the data 

x = [1, 2, 3, 4, 5] 

y = [10, 8, 6, 4, 2] 

 

# Create the plot 

plt.plot(x, y) 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.title('Line Chart') 

 

# Save the plot as a PNG file 

plt.savefig('line_chart.png') 

 

Introduction to Matplotlib 

 

Line Chart: 

 
import matplotlib.pyplot as plt 

 

# Define the data 

x = [1, 2, 3, 4, 5] 

y = [10, 8, 6, 4, 2] 

 

# Create the plot 

plt.plot(x, y) 

 

# Add labels and title 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.title('Line Chart') 

 

# Show the plot 

plt.show() 

 

This code creates a simple line chart with the data provided in the x and y lists. The plot function 

is used to create the line chart, and the xlabel, ylabel, and title functions are used to add labels 

and a title to the plot. Finally, the show function is used to display the plot. 
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Scatter Plot: 
 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Generate random data 

x = np.random.randn(100) 

y = np.random.randn(100) 

 

# Create the plot 

plt.scatter(x, y) 

 

# Add labels and title 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.title('Scatter Plot') 

 

# Show the plot 

plt.show() 

 

This code creates a scatter plot with 100 randomly generated data points using the scatter 

function. The xlabel, ylabel, and title functions are used to add labels and a title to the plot, and 

the show function is used to display the plot. 

 

Bar Chart: 
 

import matplotlib.pyplot as plt 

 

# Define the data 

x = ['A', 'B', 'C', 'D', 'E'] 

y = [10, 8, 6, 4, 2] 

 

# Create the plot 

plt.bar(x, y) 

 

# Add labels and title 

plt.xlabel('Category') 

plt.ylabel('Value') 

plt.title('Bar Chart') 

 

# Show the plot 

plt.show() 
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This code creates a bar chart with the data provided in the x and y lists using the bar function. 

The xlabel, ylabel, and title functions are used to add labels and a title to the plot, and the show 

function is used to display the plot. 

 

Histogram: 
 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Generate random data 

x = np.random.randn(1000) 

 

# Create the plot 

plt.hist(x, bins=20) 

 

# Add labels and title 

plt.xlabel('Value') 

plt.ylabel('Frequency') 

plt.title('Histogram') 

 

# Show the plot 

plt.show() 

 

This code creates a histogram with 1000 randomly generated data points using the hist function. 

The bins parameter is used to specify the number of bins in the histogram. The xlabel, ylabel, 

and title functions are used to add labels and a title to the plot, and the show function is used to 

display the plot. 

 

Boxplot: 
 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Generate random data 

np.random.seed(123) 

data = [np.random.normal(0, std, 100) for std in 

range(1, 4)] 

 

# Create the plot 

plt.boxplot(data, labels=['Group 1', 'Group 2', 'Group 

3']) 

 

# Add labels and title 

plt.xlabel('Group') 
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plt.ylabel('Value') 

plt.title('Boxplot') 

 

# Show the plot 

plt.show() 

 

This code creates a boxplot with three groups of data, where each group contains 100 randomly 

generated data points with increasing standard deviation. The boxplot function is used to create 

the boxplot, and the labels parameter is used to specify the labels for each group. The xlabel, 

ylabel, and title functions are used to add labels and a title to the plot, and the show function is 

used to display the plot. 

 

Pie Chart: 
 

import matplotlib.pyplot as plt 

 

# Define the data 

sizes = [40, 30, 20, 10] 

labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4'] 

 

# Create the plot 

plt.pie(sizes, labels=labels, autopct='%1.1f%%') 

 

# Add title 

plt.title('Pie Chart') 

 

# Show the plot 

plt.show() 

 

This code creates a pie chart with four groups of data and their corresponding sizes using the pie 

function. The labels parameter is used to specify the labels for each group, and the autopct 

parameter is used to display the percentage of each group on the chart. The title function is used 

to add a title to the plot, and the show function is used to display the plot. 

 

Heatmap: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Generate random data 

np.random.seed(123) 

data = np.random.rand(10, 10) 

 

# Create the plot 
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plt.imshow(data, cmap='hot', interpolation='nearest') 

 

# Add colorbar and title 

plt.colorbar() 

plt.title('Heatmap') 

 

# Show the plot 

plt.show() 

 

This code creates a heatmap with a 10x10 matrix of randomly generated data using the imshow 

function. The cmap parameter is used to specify the color map, and the interpolation parameter is 

used to specify the interpolation method for the heatmap. The colorbar function is used to add a 

colorbar to the plot, and the title function is used to add a title to the plot. Finally, the show 

function is used to display the plot. 

 

 

 

Basic plots (line, scatter, bar) 
 

Line Plots 

 

A line plot is a graph that shows the relationship between two variables by connecting data 

points with a line. This type of plot is commonly used to show trends over time or to compare 

multiple sets of data. To create a line plot in Python, we can use the Matplotlib library. 

 

Here is an example of how to create a line plot using Matplotlib: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Create data 

x = np.arange(0, 10, 0.1) 

y = np.sin(x) 

 

# Create line plot 

plt.plot(x, y) 

 

# Add title and axis labels 

plt.title("Sine Wave") 

plt.xlabel("x") 

plt.ylabel("y") 

 

# Show plot 
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plt.show() 

 

In this example, we first import the Matplotlib library and the NumPy library, which provides a 

way to create arrays of data. We then create two arrays, x and y, using NumPy. The arange 

function creates an array of values from 0 to 10 in increments of 0.1 for x, and sin function 

calculates the sine of each value of x for y. 

 

Next, we create a line plot using the plt.plot function, passing in x and y as arguments. We then 

add a title and axis labels using the plt.title, plt.xlabel, and plt.ylabel functions, respectively. 

Finally, we show the plot using the plt.show function. 

 

Scatter Plots 

 

A scatter plot is a graph that shows the relationship between two variables by plotting individual 

data points. This type of plot is commonly used to visualize the correlation between two 

variables. To create a scatter plot in Python, we can use the Matplotlib library. 

 

Here is an example of how to create a scatter plot using Matplotlib: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Create data 

x = np.random.rand(100) 

y = np.random.rand(100) 

colors = np.random.rand(100) 

sizes = 1000 * np.random.rand(100) 

 

# Create scatter plot 

plt.scatter(x, y, c=colors, s=sizes) 

 

# Add title and axis labels 

plt.title("Random Data") 

plt.xlabel("x") 

plt.ylabel("y") 

 

# Show plot 

plt.show() 

 

In this example, we first import the Matplotlib library and the NumPy library, which provides a 

way to create arrays of data. We then create three arrays, x, y, and colors, using NumPy. The 

random.rand function creates arrays of random values between 0 and 1 for x, y, and colors. 

 

We also create a sizes array, which contains 1000 random values between 0 and 1. This array is 

used to set the size of each data point in the scatter plot. 
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Next, we create a scatter plot using the plt.scatter function, passing in x, y, c, and s as arguments. 

The c argument sets the color of each data point based on its corresponding value in the colors 

array, and the s argument sets the size of each data point based on its corresponding value in the 

sizes array. 

 

We then add a title and axis labels using the plt.title, plt.xlabel, and plt.ylabel functions, 

respectively. Finally, we show the plot using the plt.show function. 

 

Bar Plots 

 

A bar plot is a graph that shows the distribution of a categorical variable or the comparison 

between multiple sets of data. This type of plot is commonly used to visualize the frequency of 

different categories or to compare the values of a variable across different groups. To create a bar 

plot in Python, we can use the Matplotlib library. 

 

Here is an example of how to create a bar plot using Matplotlib: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Create data 

x = ['A', 'B', 'C', 'D', 'E'] 

y = [3, 5, 2, 6, 4] 

 

# Create bar plot 

plt.bar(x, y) 

 

# Add title and axis labels 

plt.title("Bar Plot Example") 

plt.xlabel("Categories") 

plt.ylabel("Frequency") 

 

# Show plot 

plt.show() 

 

In this example, we first import the Matplotlib library and the NumPy library, which provides a 

way to create arrays of data. We then create two arrays, x and y, representing the categories and 

their corresponding frequencies. 

 

Next, we create a bar plot using the plt.bar function, passing in x and y as arguments. We then 

add a title and axis labels using the plt.title, plt.xlabel, and plt.ylabel functions, respectively. 

Finally, we show the plot using the plt.show function. 

 

Advantages of using Python for data visualization 
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Python offers several advantages over SAS for data visualization. First, Python has a larger and 

more active community, which means that there are more resources and support available for 

data analysts who use Python. Second, Python provides more flexibility and customization 

options for data visualization. With libraries such as Matplotlib, Seaborn, and Plotly, data 

analysts can create a wide range of visualizations that are tailored to their specific needs. Third, 

Python is open-source, which means that it is free to use and can be customized to suit the needs 

of individual users. Finally, Python integrates well with other data analysis and machine learning 

tools, which makes it a versatile and powerful tool for data analysis. 

 

In this article, we have discussed some basic plots that can be created using Python, including 

line plots, scatter plots, and bar plots. We have provided examples of how to create each of these 

plots using the Matplotlib library and have discussed some of the advantages of using Python for 

data visualization. By learning how to create these basic plots, SAS users can begin to explore 

the benefits of using Python for data analysis and visualization. 

 

Line Plots 

 

Line plots are used to display data points that are connected by lines. They are useful for 

visualizing trends over time or for comparing the values of different variables. To create a line 

plot in Python, we can use the Matplotlib library. 

 

Here is an example of how to create a line plot using Matplotlib: 
 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Create data 

x = np.linspace(0, 10, 100) 

 

Line Plot 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Create data 

x = np.linspace(0, 10, 100) 

y = np.sin(x) 

 

# Create line plot 

plt.plot(x, y) 

 

# Add title and axis labels 

plt.title("Line Plot Example") 

plt.xlabel("x") 

plt.ylabel("y") 
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# Show plot 

plt.show() 

 

In this example, we use the numpy.linspace function to create an array of 100 equally spaced 

values between 0 and 10. We then use the numpy.sin function to compute the sine of each value 

in the array. Next, we use the plt.plot function to create a line plot of the data, passing in x and y 

as arguments. We then add a title and axis labels using the plt.title, plt.xlabel, and plt.ylabel 

functions, respectively. Finally, we show the plot using the plt.show function. 

 

Scatter Plot 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Create data 

x = np.random.rand(50) 

y = np.random.rand(50) 

colors = np.random.rand(50) 

sizes = 1000 * np.random.rand(50) 

 

# Create scatter plot 

plt.scatter(x, y, c=colors, s=sizes) 

 

# Add title and axis labels 

plt.title("Scatter Plot Example") 

plt.xlabel("x") 

plt.ylabel("y") 

 

# Show plot 

plt.show() 

 

In this example, we use the numpy.random.rand function to create arrays of 50 random values 

between 0 and 1 for x, y, colors, and sizes. We then use the plt.scatter function to create a scatter 

plot of the data, passing in x, y, colors, and sizes as arguments. We use the c argument to set the 

color of each data point based on its corresponding value in the colors array, and the s argument 

sets the size of each data point based on its corresponding value in the sizes array. We then add a 

title and axis labels using the plt.title, plt.xlabel, and plt.ylabel functions, respectively. Finally, 

we show the plot using the plt.show function. 

 

Bar Plot 

 
import matplotlib.pyplot as plt 

import numpy as np 
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# Create data 

x = ['A', 'B', 'C', 'D', 'E'] 

y = [3, 5, 2, 6, 4] 

 

# Create bar plot 

fig, ax = plt.subplots() 

ax.bar(x, y) 

 

# Add title and axis labels 

ax.set_title("Bar Plot Example") 

ax.set_xlabel("Categories") 

ax.set_ylabel("Frequency") 

 

# Show plot 

plt.show() 

 

In this example, we use the numpy.arange function to create an array of five values, which we 

assign to x. We also create an array of five values representing the frequency of each category, 

which we assign to y. We then use the plt.subplots function to create a figure and axis object, 

which we assign to fig and ax, respectively. We use the ax.bar function to create a bar plot of the 

data, passing in x and y as arguments. We then use the ax.set_title, 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Create data 

x = np.linspace(0, 10, 100) 

y = np.sin(x) 

 

# Create line plot 

plt.plot(x, y) 

 

# Add title and axis labels 

plt.title("Line Plot Example") 

plt.xlabel("X-axis") 

plt.ylabel("Y-axis") 

 

# Show plot 

plt.show() 

 

In this example, we first import the Matplotlib library and the NumPy library, which provides a 

way to create arrays of data. We then create two arrays, x and y, representing the x and y 

coordinates of the data points. 

 



292 | P a g e  

 

 

Next, we create a line plot using the plt.plot function, passing in x and y as arguments. We then 

add a title and axis labels using the plt.title, plt.xlabel, and plt.ylabel functions, respectively. 

Finally, we show the plot using the plt.show function. 

 

Scatter Plots 

Scatter plots are used to visualize the relationship between two variables. They are useful for 

identifying patterns or trends in data, and for identifying outliers or other unusual observations. 

To create a scatter plot in Python, we can use the Matplotlib library. 

 

Here is an example of how to create a scatter plot using Matplotlib: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Create data 

x = np.random.normal(0, 1, 100) 

y = np.random.normal(0, 1, 100) 

colors = np.random.rand(100) 

sizes = 1000 * np.random.rand(100) 

 

# Create scatter plot 

plt.scatter(x, y, c=colors, s=sizes) 

 

# Add title and axis labels 

plt.title("Scatter Plot Example") 

plt.xlabel("X-axis") 

plt.ylabel("Y-axis") 

 

# Show plot 

plt.show() 

 

In this example, we first import the Matplotlib library and the NumPy library, which provides a 

way to create arrays of data. We then create three arrays, x, y, and colors, representing the x and 

y coordinates of the data points and the colors of each data point. We also create a sizes array to 

set the size of each data point. 

 

Next, we create a scatter plot using the plt.scatter function, passing in x, y, colors, and sizes as 

arguments. The c argument sets the color of each data point based on its corresponding value in 

the colors array, and the s argument sets the size of each data point based on its corresponding 

value in the sizes array. 

 

We then add a title and axis labels using the plt.title, plt.xlabel, and plt.ylabel functions, 

respectively. Finally, we show the plot using the plt.show function. 

 

Bar Plots 
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Bar plots are used to visualize the distribution of a categorical variable or to compare the values 

of a variable across different groups. They are useful for identifying differences or similarities 

between groups or categories. To create a bar plot in Python, we can use the Matplotlib library. 

Here is an example of how to create a bar plot using Matplotlib: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Create data 

x = ['A', 'B', 'C', 'D', 'E'] 

y = [3, 5, 2, 6, 4] 

 

# Create bar plot 

plt.bar(x, y) 

 

# Add title and axis labels 

plt.title("Bar Plot Example") 

plt.xlabel("Categories") 

Customizing plots (labels, colors, styles) 

 

 

 

Multiple plots on one graph 
 

In Python, you can use the Matplotlib library to create multiple plots on one graph. Matplotlib is 

a powerful visualization library that provides many options for creating plots and charts. 

 

To get started, you will need to import the necessary libraries. In addition to Matplotlib, you will 

also need to import NumPy, which is a library for numerical computing. 

 

python 

Copy code 

import matplotlib.pyplot as plt 

import numpy as np 

Next, you can create your data. For example, let's say you want to create two sets of data, one for 

x values and one for y values. 

 

makefile 

Copy code 

x1 = np.linspace(0, 10, 100) 

y1 = np.sin(x1) 

 

x2 = np.linspace(0, 10, 100) 

y2 = np.cos(x2) 



294 | P a g e  

 

 

In this example, we are creating two sets of data, one for the sine function and one for the cosine 

function. We are using the NumPy linspace function to create 100 evenly spaced values between 

0 and 10 for each set of data. 

To create a graph with multiple plots, you can use the subplot function in Matplotlib. The subplot 

function takes three arguments: the number of rows, the number of columns, and the plot 

number. 

 
plt.subplot(2, 1, 1) 

plt.plot(x1, y1) 

plt.title('Sine Function') 

 

plt.subplot(2, 1, 2) 

plt.plot(x2, y2) 

plt.title('Cosine Function') 

 

plt.show() 

 

In this example, we are creating a graph with two plots, one above the other. The subplot 

function is used to specify that there will be two rows and one column of plots, and that the first 

plot will be in position 1 and the second plot will be in position 2. 

 

We then use the plot function to plot each set of data on its corresponding plot. We also use the 

title function to give each plot a title. 

 

Finally, we use the show function to display the graph. 

 

By using the subplot function, you can create a graph with multiple plots in Python using 

Matplotlib. This can be useful for comparing different sets of data or for displaying related data 

on the same graph. 

 

When creating multiple plots on one graph in Matplotlib, you can also customize the appearance 

of the graph to meet your needs. Here are some common customization options: 

1. Changing the figure size: You can use the figure function to specify the size of the 

figure. For example, you can create a figure with a width of 8 inches and a height of 6 

inches by using plt.figure(figsize=(8, 6)). 

2. Adding a legend: If you have multiple plots on one graph, you may want to add a legend 

to differentiate between them. You can use the legend function to add a legend to the 

graph. For example, you can add a legend with the labels "Sine" and "Cosine" by using 

plt.legend(["Sine", "Cosine"]). 

3. Changing the axis labels: You can use the xlabel and ylabel functions to set the labels for 

the x and y axes. For example, you can set the x-axis label to "Time" and the y-axis label 

to "Amplitude" by using plt.xlabel("Time") and plt.ylabel("Amplitude"). 

4. Changing the plot colors: By default, Matplotlib uses a different color for each plot. 

However, you can also specify the color of each plot using the color parameter. For 
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example, you can plot the sine function in blue and the cosine function in red by using 

plt.plot(x1, y1, color="blue") and plt.plot(x2, y2, color="red"). 

5. Changing the plot styles: You can use the linestyle and marker parameters to change the 

style of the plot. For example, you can plot the sine function as a dashed line and the 

cosine function as a dotted line by using plt.plot(x1, y1, linestyle="--") and plt.plot(x2, 

y2, linestyle=":"). 

6. Adding a grid: You can use the grid function to add a grid to the graph. For example, you 

can add a grid by using plt.grid(True). 

 

By customizing the appearance of the graph, you can create a more informative and visually 

appealing visualization. Matplotlib provides a wide range of customization options, so you can 

tailor your graph to meet your specific needs. 

 
import numpy as np 

import matplotlib.pyplot as plt 

 

# Generate data 

x = np.linspace(0, 2*np.pi, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 

 

# Create figure and axis objects 

fig, ax = plt.subplots() 

 

# Plot data 

ax.plot(x, y1, color='blue', label='Sine', linestyle='-

-') 

ax.plot(x, y2, color='red', label='Cosine', 

linestyle=':') 

 

# Add legend 

ax.legend() 

# Add title and axis labels 

ax.set_title('Sine and Cosine Functions') 

ax.set_xlabel('X-axis') 

ax.set_ylabel('Y-axis') 

 

# Add grid 

ax.grid(True) 

 

# Display graph 

plt.show() 
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In this code, we first generate data for the sine and cosine functions using the linspace and 

sin/cos functions from NumPy. 

 

We then create a figure object and an axis object using the subplots function. 

 

Next, we plot the sine and cosine functions on the same graph using the plot function. We 

specify the color, label, linestyle, and marker for each plot. 

 

We add a legend to differentiate between the sine and cosine functions using the legend function. 

 

We also add a title and axis labels using the set_title, set_xlabel, and set_ylabel functions. 

 

Finally, we add a grid to the graph using the grid function, and display the graph using the show 

function. 

 

Another example with multiple subplots: 
 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Generate data 

x = np.linspace(0, 2*np.pi, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 

 

# Create figure and axis objects 

fig, axs = plt.subplots(2, 1) 

 

# Plot data 

axs[0].plot(x, y1, color='blue', label='Sine', 

linestyle='--') 

axs[1].plot(x, y2, color='red', label='Cosine', 

linestyle=':') 

 

# Add legends 

axs[0].legend() 

axs[1].legend() 

 

# Add titles and axis labels 

axs[0].set_title('Sine Function') 

axs[1].set_title('Cosine Function') 

axs[1].set_xlabel('X-axis') 

axs[0].set_ylabel('Y-axis') 

axs[1].set_ylabel('Y-axis') 
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# Add grid 

axs[0].grid(True) 

axs[1].grid(True) 

 

# Display graph 

plt.show() 

 

In this code, we first generate data for the sine and cosine functions using the linspace and 

sin/cos functions from NumPy. 

 

We then create a figure object and an array of two axis objects using the subplots function. 

 

Next, we plot the sine and cosine functions on their corresponding plots using the plot function. 

We specify the color, label, linestyle, and marker for each plot. 

 

We add legends to differentiate between the sine and cosine functions using the legend function. 

 

We also add titles and axis labels using the set_title, set_xlabel, and set_ylabel functions. 

 

Finally, we add a grid to each plot using the grid function, and display the graph using the show 

function. 

 
import numpy as np 

import matplotlib.pyplot as plt 

 

# Generate data 

x = np.linspace(0, 2*np.pi, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 

# Create figure and axis objects 

fig, ax = plt.subplots() 

 

# Plot data 

ax.plot(x, y1, color='blue', label='Sine', linestyle='-

-') 

ax.plot(x, y2, color='red', label='Cosine', 

linestyle=':') 

 

# Add legend 

ax.legend() 

 

# Add title and axis labels 

ax.set_title('Sine and Cosine Functions') 

ax.set_xlabel('X-axis') 
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ax.set_ylabel('Y-axis') 

 

# Add grid 

ax.grid(True) 

 

# Customize ticks and tick labels 

ax.set_xticks([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi]) 

ax.set_xticklabels(['0', 'π/2', 'π', '3π/2', '2π']) 

ax.set_yticks([-1, 0, 1]) 

ax.set_yticklabels(['-1', '0', '1']) 

 

# Add vertical and horizontal lines 

ax.axvline(np.pi/2, color='black', linestyle='--') 

ax.axvline(3*np.pi/2, color='black', linestyle='--') 

ax.axhline(0, color='black', linestyle='--') 

 

# Add shaded region 

ax.fill_between(x, y1, y2, where=(y1<y2), 

color='green', alpha=0.3, interpolate=True) 

 

# Display graph 

plt.show() 

 

In this code, we first generate data for the sine and cosine functions using the linspace and 

sin/cos functions from NumPy. 

 

We then create a figure object and an axis object using the subplots function. 

Next, we plot the sine and cosine functions on the same graph using the plot function. We 

specify the color, label, linestyle, and marker for each plot. 

 

We add a legend to differentiate between the sine and cosine functions using the legend function. 

 

We also add a title and axis labels using the set_title, set_xlabel, and set_ylabel functions. 

 

We add a grid to the graph using the grid function. 

 

We then customize the tick locations and labels using the set_xticks, set_xticklabels, set_yticks, 

and set_yticklabels functions. 

 

We add vertical and horizontal lines using the axvline and axhline functions. 

 

We also add a shaded region between the sine and cosine functions using the fill_between 

function. We specify the where argument to only shade the region where the sine function is less 

than the cosine function. 
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Finally, we display the graph using the show function. 

 
import numpy as np 

import matplotlib.pyplot as plt 

 

# Generate data 

x = np.linspace(0, 2*np.pi, 100) 

y1 = np.sin(x) 

y2 = np.exp(x) 

 

# Create figure and axis objects 

fig, ax1 = plt.subplots() 

 

# Create second axis object with different scale 

ax2 = ax1.twinx() 

 

# Plot data on both axes 

ax1.plot(x, y1, color='blue', label='Sine') 

ax2.plot(x, y2, color='red', label='Exponential') 

 

# Add legend 

ax1.legend(loc='upper left') 

ax2.legend(loc='upper right') 

 

# Add title and axis labels 

ax1.set_title('Sine and Exponential Functions') 

ax1.set_xlabel('X-axis') 

ax1.set_ylabel('Sine', color='blue') 

ax2.set_ylabel('Exponential', color='red') 

 

# Add grid 

ax1.grid(True) 

 

# Display graph 

plt.show() 

 

In this code, we first generate data for the sine and exponential functions using the linspace, sin, 

and exp functions from NumPy. 

 

We then create a figure object and an axis object using the subplots function. 

 

We create a second axis object with a different scale using the twinx method. 
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Next, we plot the sine function on the left axis and the exponential function on the right axis 

using the plot function. We specify the color and label for each plot. 

 

We add legends to both axes using the legend function. We specify the location of each legend 

using the loc argument. 

 

We also add a title and axis labels to both axes using the set_title, set_xlabel, and set_ylabel 

functions. 

 

 

 

Subplots and grids 
 

Subplots and grids are important tools in data visualization using Python, especially when you 

have multiple plots that you want to display together. In this article, we will explore subplots and 

grids in Python, and how they can be used for data visualization. 

 

A subplot is a plot that is embedded within another plot, allowing multiple plots to be displayed 

within the same figure. This is useful when you want to display multiple plots together, or when 

you want to compare different aspects of your data. Subplots can be created using the 

plt.subplots() method from the matplotlib library. 

 

To create subplots, you first need to define the number of rows and columns that you want in 

your subplot grid. For example, if you want a grid with two rows and three columns, you would 

call the plt.subplots() method with the arguments nrows=2 and ncols=3. This will create a figure 

with six subplots arranged in a 2x3 grid. 

Once you have created your subplot grid, you can use the ax parameter to access each individual 

subplot. For example, if you want to plot data on the first subplot, you would use ax[0,0]. The 

first index corresponds to the row number, and the second index corresponds to the column 

number. 

 

Here is an example of how to create a subplot grid and plot data on each subplot: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Define data 

x = np.linspace(0, 10, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 

y3 = np.tan(x) 

y4 = np.exp(x) 

y5 = np.log(x) 

 



301 | P a g e  

 

 

# Create subplot grid with 2 rows and 3 columns 

fig, ax = plt.subplots(nrows=2, ncols=3) 

 

# Plot data on first subplot 

ax[0,0].plot(x, y1) 

ax[0,0].set_title('sin(x)') 

 

# Plot data on second subplot 

ax[0,1].plot(x, y2) 

ax[0,1].set_title('cos(x)') 

 

# Plot data on third subplot 

ax[0,2].plot(x, y3) 

ax[0,2].set_title('tan(x)') 

 

# Plot data on fourth subplot 

ax[1,0].plot(x, y4) 

ax[1,0].set_title('exp(x)') 

 

# Plot data on fifth subplot 

ax[1,1].plot(x, y5) 

ax[1,1].set_title('log(x)') 

 

# Remove unused subplots 

fig.delaxes(ax[1,2]) 

 

# Adjust spacing between subplots 

fig.tight_layout() 

 

# Display figure 

plt.show() 

 

In this example, we create a subplot grid with two rows and three columns, and plot five 

different functions on each subplot. 

 

Note that in this example, we also remove the unused subplot in the second row and third column 

using the fig.delaxes() method. This is because we only want to display five subplots, and not all 

six subplots in the grid. 

 

The fig.tight_layout() method is used to adjust the spacing between the subplots, so that they do 

not overlap. 
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Grids are similar to subplots, but they allow for more customization of the layout. Grids can be 

created using the GridSpec class from the matplotlib.gridspec module. With grids, you can 

specify the size and location of each subplot within the grid. 

 

Define data 

 
x = np.linspace(0, 10, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 

y3 = np.tan(x) 

y4 = np.exp(x) 

y5 = np.log(x) 

 

Create grid with 2 rows and 3 columns 

 
fig = plt.figure() 

gs = gridspec.GridSpec(2, 3) 

 

Create subplots within grid 

 
ax1 = fig.add_subplot(gs[0, 0]) 

ax1.plot(x, y1) 

ax1.set_title('sin(x)') 

 

ax2 = fig.add_subplot(gs[0, 1]) 

ax2.plot(x, y2) 

ax2.set_title('cos(x)') 

 

ax3 = fig.add_subplot(gs[0, 2]) 

ax3.plot(x, y3) 

ax3.set_title('tan(x)') 

 

ax4 = fig.add_subplot(gs[1, :2]) 

ax4.plot(x, y4) 

ax4.set_title('exp(x)') 

 

ax5 = fig.add_subplot(gs[1, 2]) 

ax5.plot(x, y5) 

ax5.set_title('log(x)') 

 

Adjust spacing between subplots 

 
fig.tight_layout() 
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In addition to creating subplots and grids, you can also customize the appearance of each subplot 

or grid using various parameters such as colors, line styles, markers, and labels. Here are some 

common parameters that you can use to customize your plots: 

 

color: specifies the color of the plot. You can use a color name (e.g., 'red') or a hex code (e.g., 

'#FF0000'). 

linestyle: specifies the style of the plot line. You can use a string (e.g., '-' for solid line, '--' for 

dashed line, ':' for dotted line) or a tuple (e.g., (0, (1, 1)) for a dashed-dot line). 

marker: specifies the shape of the markers used in the plot. You can use a string (e.g., 'o' for 

circles, '*' for stars, 's' for squares) or a tuple (e.g., (5, 1, 0) for a pentagon). 

label: specifies the label for the plot. This is useful when you want to add a legend to your plot. 

Here is an example of how to use these parameters to customize a plot: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# Define data 

x = np.linspace(0, 10, 100) 

y = np.sin(x) 

 

# Plot data with custom parameters 

plt.plot(x, y, color='blue', linestyle='--', 

marker='o', label='sin(x)') 

 

# Add title and legend 

plt.title('Custom Plot') 

plt.legend() 

 

# Display plot 

plt.show() 

 

In this example, we plot the sin(x) function with a blue dashed line, circular markers, and a label. 

We then add a title and a legend to the plot using the plt.title() and plt.legend() methods, 

respectively. 

 

Another useful feature of subplots and grids is the ability to share axes. When you have multiple 

plots that share the same x-axis or y-axis, you can use the sharex or sharey parameters to ensure 

that the axes are synchronized across all plots. This can make it easier to compare the data in 

each plot and avoid any misinterpretation. 

 

Here is an example of how to create subplots with shared axes: 

 
import matplotlib.pyplot as plt 

import numpy as np 
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# Define data 

x = np.linspace(0, 10, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 

 

# Create subplots with shared x-axis 

fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, 

sharex=True) 

 

# Plot data on first subplot 

ax1.plot(x, y1) 

ax1.set_title('sin(x)') 

 

# Plot data on second subplot 

ax2.plot(x, y2) 

ax2.set_title('cos(x)') 

 

# Add x-axis label 

fig.text(0.5, 0.04, 'x', ha='center') 

 

# Add y-axis label 

fig.text(0.04, 0.5, 'y', va='center', 

rotation='vertical') 

 

# Display figure 

plt.show() 

 

In this example, we create two subplots that share the same x-axis using the sharex=True 

parameter. We then plot the sin(x) and cos(x) functions on each subplot and add a label to the x-

axis and y-axis of the figure using the fig.text() method. 

 

Overall, subplots and grids are essential tools for data visualization in Python, and they provide a 

lot of flexibility in terms of layout and customization. By using these tools effectively, you can 

create clear and informative visualizations that communicate insights and trends in your data. In 

the context of SAS users transitioning to Python, learning how to create subplots and grids in 

Python can be particularly useful for reproducing and improving existing SAS graphs. 

 

Here is an example code snippet that demonstrates how to create a 2x2 grid of subplots using the 

subplots() function: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# create some sample data 
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x = np.linspace(0, 10, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 

y3 = np.exp(x) 

y4 = np.log(x) 

 

# create a 2x2 grid of subplots 

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 

6)) 

 

# plot each data series on its own subplot 

axes[0, 0].plot(x, y1) 

axes[0, 0].set_title('sin(x)') 

axes[0, 1].plot(x, y2) 

axes[0, 1].set_title('cos(x)') 

axes[1, 0].plot(x, y3) 

axes[1, 0].set_title('exp(x)') 

axes[1, 1].plot(x, y4) 

axes[1, 1].set_title('log(x)') 

 

# customize the layout and appearance of the subplots 

fig.tight_layout(pad=3) 

plt.subplots_adjust(top=0.9) 

plt.suptitle('Four Subplots') 

 

# display the plot 

plt.show() 

 

In this example, we first create some sample data using NumPy. We then use the subplots() 

function to create a 2x2 grid of subplots and assign the resulting Figure and Axes objects to fig 

and axes, respectively. We then use indexing to access each subplot in the grid and plot each data 

series on its own subplot. Finally, we use various parameters to customize the layout and 

appearance of the subplots, add a main title to the figure, and display the plot using plt.show(). 

 
import matplotlib.pyplot as plt 

import matplotlib.gridspec as gridspec 

import numpy as np 

 

# create some sample data 

x = np.linspace(0, 10, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 

y3 = np.exp(x) 

y4 = np.log(x) 
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# create a 2x2 grid of subplots with different sizes 

fig = plt.figure(figsize=(8, 6)) 

gs = gridspec.GridSpec(nrows=2, ncols=2, 

width_ratios=[1, 2], height_ratios=[2, 1]) 

ax1 = fig.add_subplot(gs[0, 0]) 

ax2 = fig.add_subplot(gs[0, 1]) 

ax3 = fig.add_subplot(gs[1, 0]) 

ax4 = fig.add_subplot(gs[1, 1]) 

 

# plot each data series on its own subplot 

ax1.plot(x, y1) 

ax1.set_title('sin(x)') 

ax2.plot(x, y2) 

ax2.set_title('cos(x)') 

ax3.plot(x, y3) 

ax3.set_title('exp(x)') 

ax4.plot(x, y4) 

ax4.set_title('log(x)') 

 

# customize the layout and appearance of the subplots 

fig.tight_layout(pad=3) 

plt.subplots_adjust(top=0.9) 

plt.suptitle('Four Subplots with Different Sizes') 

 

# display the plot 

plt.show() 

 

In this example, we use the GridSpec() function to create a 2x2 grid of subplots with different 

sizes. We specify the relative widths and heights of the subplots using the width_ratios and 

height_ratios parameters, respectively. We then use the add_subplot() method of the Figure 

object to add each subplot to the figure and assign them to ax1, ax2, ax3, and ax4. We then plot 

each data series on its own subplot, customize the layout and appearance of the subplots, add a 

main title to the figure, and display the plot using plt.show(). 

 

Here is another example code snippet that demonstrates how to create a grid of subplots with 

shared x- and y-axes using the subplots() function: 

 
import matplotlib.pyplot as plt 

import numpy as np 

 

# create some sample data 

x = np.linspace(0, 10, 100) 

y1 = np.sin(x) 

y2 = np.cos(x) 
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y3 = np.exp(x) 

y4 = np.log(x) 

 

# create a 2x2 grid of subplots with shared x- and y-

axes 

fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, 

sharey=True, figsize=(8, 6)) 

 

# plot each data series on its own subplot 

axes[0, 0].plot(x, y1) 

axes[0, 0].set_title('sin(x)') 

axes[0, 1].plot(x, y2) 

axes[0, 1].set_title('cos(x)') 

axes[1, 0].plot(x, y3) 

axes[1, 0].set_title('exp(x)') 

axes[1, 1].plot(x, y4) 

axes[1, 1].set_title('log(x)') 

 

# customize the layout and appearance of the subplots 

fig.tight_layout(pad=3) 

plt.subplots_adjust(top=0.9) 

plt.suptitle('Four Subplots with Shared Axes') 

 

# display the plot 

plt.show() 

 

Here are some tips and best practices for using subplots and grids in Python: 

1. Plan your layout: Before creating your subplots or grid, think about the overall layout you 

want to achieve. Consider the number of plots you need, their size, and how they should 

be arranged. 

2. Use subplots() to create a grid of plots: The subplots() function is a convenient way to 

create a grid of plots with a specified number of rows and columns. You can then access 

each subplot using indexing. 

3. Use add_subplot() to add a subplot to an existing figure: If you want to add a new 

subplot to an existing figure, you can use the add_subplot() method to create a new 

subplot in a specific location. 

4. Customize each subplot: Use the various parameters available in Matplotlib to customize 

the appearance of each subplot, such as color, line style, and marker shape. 

5. Use shared axes: When creating multiple subplots that share the same x-axis or y-axis, 

use the sharex or sharey parameters to ensure that the axes are synchronized across all 

plots. 

6. Add titles and labels: Add a title to each subplot to describe the content of the plot, and 

add axis labels to clarify the meaning of the data. 
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7. Add a legend: If you have multiple lines in a plot, add a legend to identify which line 

corresponds to which data series. You can do this using the label parameter in the plot() 

function, and then calling legend() to display the legend. 

8. Save and export your plots: Once you have created your subplots or grid, save your figure 

using savefig() or export it to a file format of your choice, such as PDF or PNG. 

 

In summary, subplots and grids are powerful tools for creating visualizations in Python. By using 

them effectively, you can create clear and informative plots that communicate insights and trends 

in your data. For SAS users transitioning to Python, learning how to use these tools is essential 

for reproducing and improving existing SAS graphs, and for creating new and engaging 

visualizations in Python. 

 

 

 

Advanced plots (heatmaps, histograms, box 

plots) 
 

Heatmaps 

Heatmaps are a type of plot used to visualize the relationship between two variables in a matrix-

like format. They are particularly useful for visualizing large datasets, as they can display a large 

amount of data in a compact and easy-to-understand format. Heatmaps can be created in Python 

using the seaborn library, which provides a high-level interface for creating statistical graphics. 

To create a heatmap in Python, first import the seaborn library and load the data that you want to 

visualize. Then, use the heatmap() function to create the plot. Here is an example: 

 
import seaborn as sns 

import pandas as pd 

 

data = pd.read_csv('mydata.csv') 

sns.heatmap(data) 

 

This will create a heatmap of the data in the mydata.csv file. 

 

Histograms 

Histograms are a type of plot used to visualize the distribution of a single variable. They are 

particularly useful for identifying patterns and outliers in data. Histograms can be created in 

Python using the matplotlib library, which provides a wide variety of tools for creating high-

quality visualizations. 

 

To create a histogram in Python, first import the matplotlib library and load the data that you 

want to visualize. Then, use the hist() function to create the plot. Here is an example: 

 
import matplotlib.pyplot as plt 
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import pandas as pd 

 

data = pd.read_csv('mydata.csv') 

plt.hist(data['variable']) 

 

This will create a histogram of the variable column in the mydata.csv file. 

 

Box Plots 

Box plots are a type of plot used to visualize the distribution of a single variable or the 

relationship between two variables. They are particularly useful for identifying outliers and 

comparing the distribution of different groups of data. Box plots can be created in Python using 

the matplotlib library. 

 

To create a box plot in Python, first import the matplotlib library and load the data that you want 

to visualize. Then, use the boxplot() function to create the plot. Here is an example: 

 
import matplotlib.pyplot as plt 

import pandas as pd 

 

data = pd.read_csv('mydata.csv') 

 

plt.boxplot(data['variable']) 

 

This will create a box plot of the variable column in the mydata.csv file. 

Heatmaps: 

 
import seaborn as sns 

import pandas as pd 

 

data = pd.read_csv('mydata.csv') 

sns.heatmap(data, cmap='coolwarm', annot=True, 

fmt='.2f', linewidths=.5) 

 

This code imports the seaborn library and loads the data from a CSV file called mydata.csv using 

pandas. The heatmap() function is then used to create the heatmap, with several customization 

options specified. The cmap argument sets the color scheme of the heatmap to "coolwarm", 

which ranges from blue to red. The annot argument adds annotations to the heatmap, and the fmt 

argument specifies that the annotations should be formatted to two decimal places. The 

linewidths argument sets the width of the lines separating the individual cells in the heatmap. 

 

Histograms: 

 
import matplotlib.pyplot as plt 

import pandas as pd 
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data = pd.read_csv('mydata.csv') 

plt.hist(data['variable'], bins=10, color='green', 

alpha=.5) 

plt.xlabel('Variable') 

plt.ylabel('Frequency') 

plt.title('Histogram of Variable') 

plt.grid(axis='y', alpha=.5) 

 

This code imports the matplotlib library and loads the data from a CSV file called mydata.csv 

using pandas. The hist() function is then used to create the histogram, with several customization 

options specified. The bins argument sets the number of bins in the histogram to 10, and the 

color argument sets the color of the bars to green with an opacity of 0.5. The xlabel, ylabel, and 

title functions are used to add labels and a title to the plot, and the grid() function is used to add a 

grid to the y-axis with an opacity of 0.5. 

 

Box Plots: 

 
import matplotlib.pyplot as plt 

import pandas as pd 

 

data = pd.read_csv('mydata.csv') 

plt.boxplot(data['variable'], vert=False, 

showfliers=False, widths=.5, 

boxprops=dict(linewidth=2), 

whiskerprops=dict(linewidth=2), 

medianprops=dict(linewidth=2, color='red')) 

plt.xlabel('Variable') 

plt.title('Box Plot of Variable') 

plt.grid(axis='x', alpha=.5) 

 

This code imports the matplotlib library and loads the data from a CSV file called mydata.csv 

using pandas. The boxplot() function is then used to create the box plot, with several 

customization options specified. The vert argument sets the orientation of the plot to horizontal, 

and the showfliers argument hides any outliers that fall outside the whiskers. The widths 

argument sets the width of the boxes to 0.5, and the boxprops, whiskerprops, and medianprops 

arguments are used to adjust the style and width of the various components of the plot. The 

xlabel and title functions are used to add labels and a title to the plot, and the grid() function is 

used to add a grid to the x-axis with an opacity of 0.5. 

 

Sure, here are some additional code examples with more details on customizing the advanced 

plots: 

 

Heatmaps: 
 

import seaborn as sns 
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import pandas as pd 

 

data = pd.read_csv('mydata.csv') 

sns.set(font_scale=1.2)  # Increase font size for 

readability 

sns.set_style('whitegrid')  # Add horizontal and 

vertical grid lines 

sns.heatmap(data.corr(), cmap='coolwarm', annot=True, 

fmt='.2f', linewidths=.5, vmin=-1, vmax=1, center=0) 

 

In this code example, the sns.set() function is used to increase the font size of the heatmap for 

readability. The sns.set_style() function is used to add horizontal and vertical grid lines to the 

plot. The heatmap() function is used to create the heatmap of the correlation matrix of the data, 

with several customization options specified. The vmin, vmax, and center arguments are used to 

set the range of values for the color scale, with values ranging from -1 to 1 and the center point 

set at 0. 

 

Histograms: 
 

import matplotlib.pyplot as plt 

import pandas as pd 

data = pd.read_csv('mydata.csv') 

plt.hist(data['variable'], bins=20, color='green', 

alpha=.5, edgecolor='black', linewidth=1.2) 

plt.xlabel('Variable') 

plt.ylabel('Frequency') 

plt.title('Histogram of Variable') 

plt.xticks(range(0, 101, 10))  # Set tick marks at 

increments of 10 

plt.yticks(range(0, 51, 5)) 

plt.grid(axis='y', alpha=.5) 

 

In this code example, the hist() function is used to create the histogram, with several 

customization options specified. The edgecolor and linewidth arguments are used to add a black 

border and increase the width of the bars for improved visibility. The xticks and yticks functions 

are used to set tick marks at specified increments, improving the readability of the plot. 

 

Box Plots: 
 

import matplotlib.pyplot as plt 

import pandas as pd 

 

data = pd.read_csv('mydata.csv') 
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plt.boxplot([data['variable1'], data['variable2']], 

vert=False, showfliers=False, widths=.5, 

boxprops=dict(linewidth=2, color='green'), 

whiskerprops=dict(linewidth=2), 

medianprops=dict(linewidth=2, color='red')) 

plt.xlabel('Value') 

plt.ylabel('Variable') 

plt.title('Box Plot of Variables') 

plt.yticks([1, 2], ['Variable 1', 'Variable 2']) 

plt.grid(axis='x', alpha=.5) 

 

In this code example, the boxplot() function is used to create a box plot of two variables, with 

several customization options specified. The boxprops argument is used to change the color of 

the boxes to green, and the yticks function is used to set the labels for the y-axis to "Variable 1" 

and "Variable 2". This improves the readability of the plot by clearly labeling the variables. 
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Chapter 6:  

Machine Learning with Python 
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Introduction to machine learning 
 

Machine learning is a subset of artificial intelligence that involves the use of algorithms and 

statistical models to enable computers to perform specific tasks without being explicitly 

programmed. In recent years, machine learning has become increasingly popular and is widely 

used in various industries, including healthcare, finance, and e-commerce, to name a few. 

 

Python is a high-level programming language that is widely used for data analysis, scientific 

computing, and machine learning. It has become the go-to language for many data scientists and 

machine learning engineers due to its ease of use, readability, and large community support. 

 

In this article, we will introduce you to the basics of machine learning in Python and how it 

compares to SAS, a popular statistical software used in data analysis and research. 

 

Python for SAS Users 

 

If you are a SAS user, you may find Python to be quite different from what you are used to. 

While SAS is a proprietary software, Python is an open-source language, meaning that its source 

code is freely available for modification and distribution. 

 

One of the major differences between SAS and Python is their syntax. SAS uses a data step and a 

proc step to read and manipulate data, while Python uses libraries such as pandas, numpy, and 

scikit-learn to load and manipulate data. 

 

Installing Python and Required Libraries 

 

To get started with Python, you will need to install it on your computer. You can download the 

latest version of Python from the official website (https://www.python.org/downloads/). 

 

After installing Python, you will need to install the required libraries for machine learning. Some 

of the popular libraries include: 

 

NumPy: a library for working with arrays of data 

Pandas: a library for working with data frames 

Matplotlib: a library for creating visualizations 

Scikit-learn: a library for machine learning 

 

To install these libraries, you can use pip, a package installer for Python. Open a terminal or 

command prompt and type the following command: 

 
pip install numpy pandas matplotlib scikit-learn 

This will install all the required libraries on your 

computer. 

Loading Data 
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In Python, you can load data from various sources, including CSV files, Excel files, and SQL 

databases. Here, we will show you how to load data from a CSV file using pandas. 

 
import pandas as pd 

 

# Load data from a CSV file 

data = pd.read_csv('data.csv') 

 

In the above code, we first import the pandas library and then use the read_csv function to load 

data from a CSV file named data.csv. The data variable now contains the loaded data. 

 

Data Preprocessing 

 

Before you can apply machine learning algorithms to your data, you need to preprocess it to 

ensure that it is in a suitable format. Some of the common preprocessing steps include: 

 

Handling missing values 

Scaling features 

Encoding categorical variables 

 

In Python, you can use various libraries to perform these preprocessing steps. Here, we will show 

you how to handle missing values using the fillna function from pandas. 

 
# Replace missing values with the mean value 

data.fillna(data.mean(), inplace=True) 

 

In the above code, we use the fillna function to replace missing values with the mean value of the 

corresponding column. The inplace=True argument tells pandas to modify the data variable in 

place. 

 

Splitting Data 

 

Before you can train a machine learning model, you need to split your data into a training set and 

a test set. The training set is used to train the model, while the test set is used to evaluate its 

performance. 

 

In Python, you can use the train_test_split function from scikit-learn to split your data into 

training and testing sets. 

 

Here's a longer code example that demonstrates the entire machine learning process using 

Python: 

 
import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression 
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from sklearn.metrics import mean_squared_error 

 

# Load data from a CSV file 

data = pd.read_csv('data.csv') 

 

# Preprocess the data 

data.fillna(data.mean(), inplace=True) 

 

# Split the data into training and testing sets 

X = data.drop('target_variable', axis=1) 

y = data['target_variable'] 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.2, random_state=42) 

 

# Train a linear regression model 

model = LinearRegression() 

model.fit(X_train, y_train) 

 

# Evaluate the model on the testing set 

y_pred = model.predict(X_test) 

mse = mean_squared_error(y_test, y_pred) 

print('Mean Squared Error:', mse) 

 

In the above code, we first load data from a CSV file and preprocess it by filling missing values 

with the mean value. We then split the data into training and testing sets using the train_test_split 

function from scikit-learn. 

 

Next, we train a linear regression model on the training set using the LinearRegression class 

from scikit-learn. We then evaluate the model on the testing set by making predictions using the 

predict method and computing the mean squared error using the mean_squared_error function 

from scikit-learn. 

 

This code demonstrates a simple machine learning pipeline that you can use as a template for 

your own machine learning projects. However, keep in mind that different machine learning 

problems may require different preprocessing steps and algorithms, so you will need to tailor this 

pipeline to your specific problem. 

 

Supervised Learning 

 

Supervised learning is a type of machine learning where you have labeled data, meaning that you 

have input features and corresponding output labels. The goal of supervised learning is to learn a 

mapping from input features to output labels. 

Linear Regression 
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Linear regression is a simple supervised learning algorithm that is used for predicting a 

continuous output variable based on one or more input variables. Here's an example of using 

linear regression in Python: 

 
import pandas as pd 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error 

 

# Load data from a CSV file 

data = pd.read_csv('data.csv') 

 

# Preprocess the data 

data.fillna(data.mean(), inplace=True) 

 

# Split the data into training and testing sets 

X = data.drop('target_variable', axis=1) 

y = data['target_variable'] 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.2, random_state=42) 

 

# Train a linear regression model 

model = LinearRegression() 

model.fit(X_train, y_train) 

 

# Evaluate the model on the testing set 

y_pred = model.predict(X_test) 

mse = mean_squared_error(y_test, y_pred) 

print('Mean Squared Error:', mse) 

 

In the above code, we load data from a CSV file, preprocess it by filling missing values with the 

mean value, and split it into training and testing sets. We then train a linear regression model on 

the training set using the LinearRegression class from scikit-learn. 

 

Finally, we evaluate the model on the testing set by making predictions using the predict method 

and computing the mean squared error using the mean_squared_error function from scikit-learn. 

 

Decision Trees 

Decision trees are another type of supervised learning algorithm that are used for both 

classification and regression tasks. A decision tree is a flowchart-like structure where each 

internal node represents a test on a feature, each branch represents the outcome of the test, and 

each leaf node represents a class label or a numerical value. 

 

Here's an example of using decision trees in Python: 
 



318 | P a g e  

 

 

import pandas as pd 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.metrics import mean_squared_error 

 

# Load data from a CSV file 

data = pd.read_csv('data.csv') 

 

# Preprocess the data 

data.fillna(data.mean(), inplace=True) 

 

# Split the data into training and testing sets 

X = data.drop('target_variable', axis=1) 

y = data['target_variable'] 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.2, random_state=42) 

 

# Train a decision tree model 

model = DecisionTreeRegressor() 

model.fit(X_train, y_train) 

 

# Evaluate the model on the testing set 

y_pred = model.predict(X_test) 

mse = mean_squared_error(y_test, y_pred) 

print('Mean Squared Error:', mse) 

 

In the above code, we load data from a CSV file, preprocess it by filling missing values with the 

mean value, and split it into training and testing sets. We then train a decision tree model on the 

training set using the DecisionTreeRegressor class from scikit-learn. 

 

Finally, we evaluate the model on the testing set by making predictions using the predict method 

and computing the mean squared error using the mean_squared_error function from scikit-learn. 

 

Unsupervised Learning 

 

Unsupervised learning is a type of machine learning where you have unlabeled data, meaning 

that you don't have any output labels. 

Clustering 

Clustering is a type of unsupervised learning where you group data points together based on their 

similarity. Here's an example of using K-means clustering in Python: 

 
import pandas as pd 

from sklearn.cluster import KMeans 

import matplotlib.pyplot as plt 
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# Load data from a CSV file 

data = pd.read_csv('data.csv') 

 

# Preprocess the data 

data.fillna(data.mean(), inplace=True) 

 

# Cluster the data using K-means 

X = data.drop('target_variable', axis=1) 

model = KMeans(n_clusters=3) 

model.fit(X) 

 

# Visualize the results 

plt.scatter(X.iloc[:, 0], X.iloc[:, 1], 

c=model.labels_) 

plt.show() 

 

In the above code, we load data from a CSV file, preprocess it by filling missing values with the 

mean value, and cluster it using K-means clustering. We then visualize the results by plotting the 

data points and coloring them based on their assigned cluster. 

 

Dimensionality Reduction 

 

Dimensionality reduction is a type of unsupervised learning where you reduce the number of 

features in your data while preserving as much information as possible. Here's an example of 

using principal component analysis (PCA) for dimensionality reduction in Python: 

 
import pandas as pd 

from sklearn.decomposition import PCA 

import matplotlib.pyplot as plt 

 

# Load data from a CSV file 

data = pd.read_csv('data.csv') 

 

# Preprocess the data 

data.fillna(data.mean(), inplace=True) 

 

# Perform PCA for dimensionality reduction 

X = data.drop('target_variable', axis=1) 

pca = PCA(n_components=2) 

X_pca = pca.fit_transform(X) 

 

# Visualize the results 

plt.scatter(X_pca[:, 0], X_pca[:, 1]) 

plt.show() 
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In the above code, we load data from a CSV file, preprocess it by filling missing values with the 

mean value, and perform PCA for dimensionality reduction. We then visualize the results by 

plotting the reduced data points. 

 

Deep Learning 

 

Deep learning is a type of machine learning that involves training neural networks with many 

layers. Here's an example of using a deep learning model for image classification in Python: 

 
import tensorflow as tf 

from tensorflow.keras.datasets import mnist 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Flatten, 

Conv2D, MaxPooling2D 

 

# Load the MNIST dataset 

(X_train, y_train), (X_test, y_test) = 

mnist.load_data() 

 

# Preprocess the data 

X_train = X_train.reshape(-1, 28, 28, 1) / 255.0 

X_test = X_test.reshape(-1, 28, 28, 1) / 255.0 

 

# Define the model architecture 

model = Sequential([ 

    Conv2D(32, (3, 3), activation='relu', 

input_shape=(28, 28, 1)), 

    MaxPooling2D((2, 2)), 

    Flatten(), 

    Dense(10, activation='softmax') 

]) 

 

# Compile the model 

model.compile(optimizer='adam', 

loss='sparse_categorical_crossentropy', 

metrics=['accuracy']) 

# Train the model 

model.fit(X_train, y_train, epochs=5, 

validation_data=(X_test, y_test)) 

 

# Evaluate the model on the testing set 

test_loss, test_acc = model.evaluate(X_test, y_test) 

print('Test accuracy:', test_acc) 
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In the above code, we load the MNIST dataset, preprocess it by scaling the pixel values between 

0 and 1, define a convolutional neural network architecture using TensorFlow/Keras, compile the 

model with an optimizer and loss function, train the model for 5 epochs, and evaluate the model's 

performance on the testing set. 

 

Natural Language Processing 

 

Natural language processing (NLP) is a type of machine learning that involves working with 

human language data, such as text or speech. Here's an example of using a pre-trained NLP 

model for sentiment analysis in Python: 

 
import tensorflow as tf 

import tensorflow_hub as hub 

import pandas as pd 

 

# Load the pre-trained NLP model 

embed = hub.load("https://tfhub.dev/google/universal-

sentence-encoder/4") 

 

# Load the text data 

data = pd.read_csv('text_data.csv') 

 

# Preprocess the data 

X = data['text'] 

y = data['target_variable'] 

 

# Encode the text data using the pre-trained model 

X_encoded = embed(X) 

 

# Train a machine learning model on the encoded data 

model = tf.keras.Sequential([ 

    tf.keras.layers.Dense(64, activation='relu'), 

    tf.keras.layers.Dense(1, activation='sigmoid') 

]) 

model.compile(optimizer='adam', 

loss='binary_crossentropy', metrics=['accuracy']) 

model.fit(X_encoded, y, epochs=10) 

 

# Test the model on new text data 

new_text = ["This product is amazing!", "I wouldn't 

recommend this product to anyone."] 

new_text_encoded = embed(new_text) 

predictions = model.predict(new_text_encoded) 

print(predictions) 
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In the above code, we load a pre-trained NLP model from TensorFlow Hub, load text data from a 

CSV file, preprocess the data by separating the text and target variable, encode the text using the 

pre-trained model, train a machine learning model on the encoded data, and test the model on 

new text data. 

 

Recommender Systems 

 

Recommender systems are a type of machine learning that suggest items to users based on their 

preferences and behavior. Here's an example of building a simple recommender system in 

Python: 

 
import pandas as pd 

from sklearn.metrics.pairwise import cosine_similarity 

from sklearn.feature_extraction.text import 

CountVectorizer 

 

# Load the data 

data = pd.read_csv('product_data.csv') 

 

# Create a CountVectorizer object 

vectorizer = CountVectorizer() 

 

# Convert the product names into a matrix of word 

counts 

product_matrix = 

vectorizer.fit_transform(data['product_name']) 

 

# Calculate the cosine similarity between each pair of 

products 

similarity_matrix = cosine_similarity(product_matrix) 

 

# Get the indices of the top 5 most similar products to 

each product 

top_5_similar_products = [] 

for i in range(len(data)): 

    similarities = 

list(enumerate(similarity_matrix[i])) 

    similarities_sorted = sorted(similarities, 

key=lambda x: x[1], reverse=True) 

    top_5_similar = [x[0] for x in 

similarities_sorted[1:6]] 

    top_5_similar_products.append(top_5_similar) 
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# Print the top 5 most similar products for each 

product 

for i in range(len(data)): 

    print(f"Top 5 similar products for {data.loc[i, 

'product_name']}:") 

    for j in top_5_similar_products[i]: 

        print(f"  {data.loc[j, 'product_name']}") 

 

In the above code, we load a dataset of product names, create a matrix of word counts using the 

CountVectorizer object, calculate the cosine similarity between each pair of products, and 

retrieve the indices of the top 5 most similar products to each product. Finally, we print out the 

top 5 most similar products for each product in the dataset. 

 

Image Classification 

 

Image classification is a type of machine learning that involves categorizing images into 

different classes. Here's an example of using a pre-trained image classification model in Python: 
 

import tensorflow as tf 

import numpy as np 

import urllib.request 

 

# Load the pre-trained image classification model 

model = 

tf.keras.applications.ResNet50(include_top=True, 

weights='imagenet') 

 

# Load an image from a URL 

url = 'https://www.example.com/image.jpg' 

with urllib.request.urlopen(url) as url: 

    img = np.asarray(bytearray(url.read()), 

dtype=np.uint8) 

    img = tf.image.decode_jpeg(img, channels=3) 

    img = tf.image.resize(img, [224, 224]) 

# Preprocess the image data 

img = 

tf.keras.applications.resnet50.preprocess_input(img) 

 

# Make a prediction on the image data 

preds = model.predict(np.array([img])) 

predicted_class = 

tf.keras.applications.resnet50.decode_predictions(preds

, top=1)[0][0][1] 
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print(f"The predicted class of the image is: 

{predicted_class}") 

 

In the above code, we load a pre-trained image classification model from Keras, load an image 

from a URL, preprocess the image data, make a prediction on the image data, and print out the 

predicted class of the image. 

 

Time Series Analysis 

 

Time series analysis is a type of machine learning that involves working with data that changes 

over time. Here's an example of using ARIMA (autoregressive integrated moving average) to 

forecast future values of a time series in Python: 

 

Common Machine Learning Libraries in Python 

Python has a wide range of powerful machine learning libraries, some of which are: 

 

Scikit-learn: A popular machine learning library for Python that includes a variety of algorithms 

for classification, regression, clustering, and dimensionality reduction. 

 

TensorFlow: A library for building and training neural networks, used for deep learning 

applications. 

 

Keras: A high-level neural networks API, written in Python and capable of running on top of 

TensorFlow. 

 

PyTorch: A machine learning library that emphasizes ease of use and flexibility, often used for 

research and prototyping. 

 

Theano: A Python library for fast numerical computation, often used for building and training 

neural networks. 

 

NLTK: A leading platform for building Python programs to work with human language data, 

including sentiment analysis, topic modeling, and named entity recognition. 

 

These libraries provide a wide range of tools and algorithms for building machine learning 

models in Python. 

Types of Machine Learning in Python 

There are three main types of machine learning: 

 

Supervised Learning 

In supervised learning, the model is trained on a labeled dataset, where each data point has an 

associated label or target value. The goal is to learn a mapping between the input data and the 

target labels, so that the model can accurately predict the target value for new, unseen data. 

 

Some common algorithms for supervised learning include linear regression, logistic regression, 

decision trees, random forests, and neural networks. 
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Unsupervised Learning 

 

In unsupervised learning, the model is trained on an unlabeled dataset, where there are no target 

values or labels. The goal is to find patterns or structure in the data, such as clusters or groups of 

similar data points. 

 

Some common algorithms for unsupervised learning include k-means clustering, principal 

component analysis (PCA), and autoencoders. 

 

Reinforcement Learning 

 

In reinforcement learning, the model learns by interacting with an environment and receiving 

rewards or punishments for its actions. The goal is to learn a policy or set of actions that 

maximizes the reward over time. 

 

Some common applications of reinforcement learning include game playing, robotics, and 

optimization problems. 

 

Example: Building a Simple Machine Learning Model in Python 

Here's an example of building a simple machine learning model in Python using Scikit-learn. In 

this example, we'll use the famous iris dataset to build a classifier that predicts the species of iris 

flowers based on their petal and sepal measurements: 

 
from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.neighbors import KNeighborsClassifier 

 

# Load the iris dataset 

iris = load_iris() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(iris.data, iris.target, test_size=0.2, 

random_state=42) 

# Fit a KNN classifier to the training data 

knn = KNeighborsClassifier(n_neighbors=3) 

knn.fit(X_train, y_train) 

 

# Evaluate the classifier on the testing data 

accuracy = knn.score(X_test, y_test) 

 

# Print out the accuracy score 

print(f"The accuracy of the KNN classifier is: 

{accuracy}") 
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In the above code, we load the iris dataset, split the data into training and testing sets, fit a K-

nearest neighbors (KNN) classifier to the training data, evaluate the classifier on the testing data, 

and print out the accuracy score. 

 

This is just a simple example, but it illustrates how easy it is to build and evaluate machine 

learning models in Python using Scikit-learn. 

 

Neural Networks 

 

Neural networks are a popular type of machine learning model, often used for tasks such as 

image recognition, natural language processing, and speech recognition. Python has several 

libraries for building and training neural networks, including TensorFlow, Keras, and PyTorch. 

Neural networks are composed of layers of interconnected nodes, called neurons, that process 

and transform input data. The output of one layer becomes the input of the next layer, and so on, 

until the final output layer produces the predicted output. 

 

Convolutional Neural Networks 

 

Convolutional neural networks (CNNs) are a specific type of neural network commonly used for 

image classification tasks. CNNs consist of multiple layers, including convolutional layers, 

pooling layers, and fully connected layers. The convolutional layers apply a set of learnable 

filters to the input image to detect specific features, such as edges or corners. The pooling layers 

downsample the output of the convolutional layers, reducing the spatial dimensionality of the 

feature maps. The fully connected layers then perform classification based on the learned 

features. 

Python has several libraries for building and training CNNs, including TensorFlow, Keras, and 

PyTorch. 

 

Natural Language Processing 

 

Natural language processing (NLP) is a branch of machine learning concerned with analyzing 

and processing human language data, such as text and speech. Python has several libraries for 

NLP, including NLTK, spaCy, and Gensim. 

Some common NLP tasks include: 

 

• Tokenization: Breaking text into individual words or tokens. 

• Part-of-speech tagging: Labeling each word in a sentence with its part of speech, such 

as noun, verb, or adjective. 

• Named entity recognition: Identifying and categorizing named entities, such as people, 

places, and organizations, in a text. 

• Sentiment analysis: Determining the sentiment or opinion expressed in a text, such as 

positive or negative. 

• Topic modeling: Identifying the underlying topics or themes in a collection of texts. 
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Hyperparameter Tuning 

 

Hyperparameter tuning is the process of finding the best set of hyperparameters for a machine 

learning model. Hyperparameters are settings that control the behavior and performance of a 

model, such as the learning rate or regularization strength. 

Python has several libraries for hyperparameter tuning, including GridSearchCV and 

RandomizedSearchCV in Scikit-learn, and Hyperopt. 

 

 

 

Preparing data for machine learning 
 

Preparing data for machine learning is a crucial step in the data science pipeline. In this article, 

we will discuss the basics of preparing data for machine learning in Python for SAS users. We 

assume that you have a basic understanding of SAS programming and data manipulation 

concepts. 

 

Importing data in Python 

 

The first step in preparing data for machine learning in Python is to import the data into Python. 

There are several ways to import data into Python, including using libraries like pandas, numpy, 

and csv. Here is an example of importing data using pandas library: 

 
import pandas as pd 

data = pd.read_csv('data.csv') 

 

This code imports the data from a CSV file called 'data.csv' and stores it in a pandas data frame 

called 'data'. You can also import data from other file formats such as Excel, SQL, or JSON. 

Exploring data 

 

The next step is to explore the data and gain insights about it. This includes checking for missing 

values, outliers, and correlations between variables. You can use pandas and other libraries such 

as matplotlib and seaborn to visualize the data and gain insights. Here is an example code to 

check for missing values in a data frame: 

 
print(data.isnull().sum()) 

 

This code prints the number of missing values in each column of the data frame. 

 

Data cleaning 

 

Once you have explored the data, the next step is to clean the data. This includes handling 

missing values, removing outliers, and transforming variables. Here is an example of handling 

missing values using pandas library: 
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data = data.dropna() 

 

This code drops all the rows that contain missing values from the data frame. 

 

Feature engineering 

 

Feature engineering is the process of creating new features from existing features or 

transforming existing features to improve the performance of the machine learning model. This 

includes encoding categorical variables, scaling numeric variables, and creating new variables 

from existing variables. Here is an example of encoding categorical variables using pandas 

library: 

 
data = pd.get_dummies(data, columns=['gender']) 

 

This code creates dummy variables for the 'gender' column, which is a categorical variable. 

 

Splitting data 

 

The final step in preparing data for machine learning is to split the data into training and testing 

sets. This is done to evaluate the performance of the machine learning model on new, unseen 

data. You can use the train_test_split function from the sklearn library to split the data. Here is 

an example of splitting data using sklearn library: 
 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.2, random_state=42) 

This code splits the data into training and testing 

sets with a test size of 20% and a random state of 42. 

 

preparing data for machine learning involves several steps, including importing data, exploring 

data, cleaning data, feature engineering, and splitting data. By following these steps, you can 

prepare your data for machine learning in Python and build accurate machine learning models. 

 

Here is an example of code that combines all the above steps: 

 
import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

 

# Import data 

data = pd.read_csv('data.csv') 

 

# Explore data 

print(data.isnull().sum()) 

# Handle missing values 
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data = data.dropna() 

 

# Feature engineering 

data = pd.get_dummies(data, columns=['gender']) 

 

# Split data 

X = data.drop('target', axis=1) 

y = data['target'] 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X) 

X_train, X_test, y_train, y_test = 

 

Here is a longer code example that includes additional steps for data preprocessing and feature 

engineering: 

 
import pandas as pd 

import numpy as np 

from sklearn.preprocessing import LabelEncoder, 

StandardScaler 

from sklearn.model_selection import train_test_split 

 

# Import data 

data = pd.read_csv('data.csv') 

# Explore data 

print(data.head()) 

print(data.describe()) 

 

# Handle missing values 

data = data.dropna() 

 

# Feature engineering 

# Encode categorical variables 

le = LabelEncoder() 

data['gender'] = le.fit_transform(data['gender']) 

 

# Scale numeric variables 

scaler = StandardScaler() 

numeric_cols = ['age', 'income'] 

data[numeric_cols] = 

scaler.fit_transform(data[numeric_cols]) 

 

# Create new variables 

data['age_squared'] = np.square(data['age']) 
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data['age_income_interaction'] = data['age'] * 

data['income'] 

 

# Split data 

X = data.drop('target', axis=1) 

y = data['target'] 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.2, random_state=42) 

 

# Save preprocessed data 

X_train.to_csv('X_train.csv', index=False) 

X_test.to_csv('X_test.csv', index=False) 

y_train.to_csv('y_train.csv', index=False) 

y_test.to_csv('y_test.csv', index=False) 

 

In this code example, we first import the data from a CSV file and explore the data using the 

head() and describe() methods. We then drop any rows with missing values and perform feature 

engineering. 

 

To encode the categorical variable 'gender', we use the LabelEncoder class from the sklearn 

library. We then scale the numeric variables 'age' and 'income' using the StandardScaler class. 

 

we create two new variables by squaring the 'age' variable and creating an interaction term 

between 'age' and 'income'. We then split the data into training and testing sets using the 

train_test_split function from the sklearn library. we save the preprocessed data as CSV files 

using the to_csv method of the pandas library. These files can then be used as input to a machine 

learning model. 

 

examples of common data preprocessing and feature engineering techniques used in machine 

learning. 

 

Handling Missing Values 

Missing values are a common issue in real-world datasets. One common approach to handling 

missing values is to simply drop any rows or columns that contain missing values using the 

dropna() method in pandas. For example: 

 
# Drop any rows with missing values 

data = data.dropna() 

 

# Drop any columns with missing values 

data = data.dropna(axis=1) 

 

Another approach is to impute the missing values with a reasonable estimate. There are several 

methods for imputing missing values, including mean imputation, median imputation, and K-

nearest neighbor imputation. For example: 
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# Mean imputation 

data.fillna(data.mean(), inplace=True) 

 

# Median imputation 

data.fillna(data.median(), inplace=True) 

 

# K-nearest neighbor imputation 

from sklearn.impute import KNNImputer 

imputer = KNNImputer(n_neighbors=5) 

data_imputed = imputer.fit_transform(data) 

 

Encoding Categorical Variables 

 

Machine learning algorithms generally require all input variables to be numeric. Therefore, 

categorical variables (variables with non-numeric values) need to be encoded as numeric values. 

There are several encoding techniques, including one-hot encoding, label encoding, and target 

encoding. For example: 

 
# One-hot encoding 

data_one_hot = pd.get_dummies(data, columns=['gender']) 

# Label encoding 

le = LabelEncoder() 

data['gender'] = le.fit_transform(data['gender']) 

 

# Target encoding 

import category_encoders as ce 

encoder = ce.TargetEncoder(cols=['gender']) 

data_target_encoded = encoder.fit_transform(data, y) 

 

Scaling Numeric Variables 

 

Some machine learning algorithms are sensitive to the scale of numeric variables. Therefore, it is 

often important to scale numeric variables to have a similar range of values. Common scaling 

techniques include standardization (subtracting the mean and dividing by the standard deviation) 

and normalization (scaling to a range of 0 to 1). For example: 
 

# Standardization 

scaler = StandardScaler() 

data[numeric_cols] = 

scaler.fit_transform(data[numeric_cols]) 

 

# Normalization 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 
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data[numeric_cols] = 

scaler.fit_transform(data[numeric_cols]) 

Feature Engineering 

Feature engineering involves creating new input 

variables (features) from the existing variables in the 

dataset. The goal is to create features that capture 

important patterns or relationships in the data that 

are relevant to the prediction task. Some common 

feature engineering techniques include creating 

interaction terms (multiplying two or more variables 

together), transforming variables (e.g., taking the 

square root of a variable), and creating new variables 

based on domain knowledge (e.g., creating a variable 

that indicates the season of the year). For example: 

python 

Copy code 

# Creating interaction terms 

data['age_income_interaction'] = data['age'] * 

data['income'] 

# Transforming variables 

data['sqrt_age'] = np.sqrt(data['age']) 

 

# Creating new variables based on domain knowledge 

data['season'] = data['month'].apply(lambda x: 'Winter' 

if x in [12, 1, 2] else 'Spring' if x in [3, 4, 5] else 

'Summer' if x in [6, 7, 8] else 'Fall') 

 

These are just a few examples of the many data preprocessing and feature engineering techniques 

that can be used in machine learning. The choice of techniques will depend on the specific 

dataset and prediction task. 

 

Handling Outliers 

 

Outliers are data points that are significantly different from other data points in the dataset. 

Outliers can be caused by measurement errors, data entry errors, or genuine extreme values. 

Outliers can have a large impact on some machine learning algorithms, so it is often important to 

detect and handle them. Common approaches to handling outliers include removing them from 

the dataset, transforming the variable using a log or power transformation, or capping the 

variable at a reasonable value. For example: 
 

# Removing outliers 

data = data[(data['income'] > 10000) & (data['income'] 

< 1000000)] 
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# Log transformation 

data['log_income'] = np.log(data['income']) 

 

# Capping variable at 99th percentile 

income_cap = np.percentile(data['income'], 99) 

data['capped_income'] = np.where(data['income'] > 

income_cap, income_cap, data['income']) 

 

Handling Skewed Variables 

 

Skewed variables are variables that are not normally distributed. Skewed variables can cause 

some machine learning algorithms to perform poorly, so it is often important to transform them 

to have a more normal distribution. Common transformations include log transformation, square 

root transformation, and Box-Cox transformation. For example: 

 
# Log transformation 

data['log_income'] = np.log(data['income']) 

 

# Square root transformation 

data['sqrt_income'] = np.sqrt(data['income']) 

 

# Box-Cox transformation 

from scipy.stats import boxcox 

data['boxcox_income'], _ = boxcox(data['income']) 

 

Dimensionality Reduction 

 

High-dimensional datasets (datasets with many input variables) can be difficult to work with and 

can cause some machine learning algorithms to perform poorly. Dimensionality reduction 

techniques can be used to reduce the number of input variables while preserving as much 

information as possible. Common dimensionality reduction techniques include principal 

component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). For 

example: 

 
# PCA 

from sklearn.decomposition import PCA 

pca = PCA(n_components=2) 

data_pca = pca.fit_transform(data) 

 

# t-SNE 

from sklearn.manifold import TSNE 

tsne = TSNE(n_components=2) 

data_tsne = tsne.fit_transform(data) 
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These are just a few more examples of the many data preprocessing and feature engineering 

techniques that can be used in machine learning. It is important to note that not all techniques 

will be relevant or appropriate for every dataset and prediction task, so it is important to carefully 

consider which techniques to use based on the characteristics of the data and the requirements of 

the prediction task. 

 

Encoding Categorical Variables 

 

Many machine learning algorithms require numerical input variables, so categorical variables 

(variables with discrete categories, such as color or type) must be encoded as numbers. There are 

several ways to encode categorical variables, including one-hot encoding, ordinal encoding, and 

target encoding. One-hot encoding creates a new binary column for each category, while ordinal 

encoding assigns a unique number to each category. Target encoding uses the target variable to 

encode each category based on the average value of the target variable for that category. For 

example: 
 

# One-hot encoding 

data_one_hot = pd.get_dummies(data, columns=['color']) 

 

# Ordinal encoding 

from sklearn.preprocessing import OrdinalEncoder 

enc = OrdinalEncoder() 

data['color_encoded'] = 

enc.fit_transform(data[['color']]) 

 

# Target encoding 

from category_encoders.target_encoder import 

TargetEncoder 

enc = TargetEncoder() 

data['color_encoded'] = 

enc.fit_transform(data['color'], data['target']) 

 

Feature Scaling 

 

Many machine learning algorithms are sensitive to the scale of input variables, so it is often 

important to scale or normalize the input variables. Common scaling techniques include min-

max scaling (scaling the variable to a specified range, such as 0 to 1) and standardization (scaling 

the variable to have a mean of 0 and a standard deviation of 1). For example: 

 
# Min-max scaling 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler(feature_range=(0, 1)) 

data_scaled = scaler.fit_transform(data) 

 

# Standardization 
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from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

data_scaled = scaler.fit_transform(data) 

 

Feature Selection 

 

In some cases, not all input variables are relevant or useful for making predictions, and using all 

input variables can lead to overfitting or decreased performance. Feature selection techniques 

can be used to select the most important or relevant input variables. Common feature selection 

techniques include correlation analysis, feature importance analysis using machine learning 

models, and stepwise regression. For example: 

 
# Correlation analysis 

corr_matrix = data.corr() 

corr_features = 

corr_matrix.index[abs(corr_matrix['target']) > 0.5] 

data_corr = data[corr_features] 

 

# Feature importance analysis 

from sklearn.ensemble import RandomForestRegressor 

model = RandomForestRegressor() 

model.fit(data.drop('target', axis=1), data['target']) 

feature_importances = 

pd.DataFrame(model.feature_importances_, 

index=data.columns[:-1], columns=['importance']) 

feature_importances = 

feature_importances.sort_values('importance', 

ascending=False) 

important_features = feature_importances.index[:10] 

data_important = data[important_features] 

 

# Stepwise regression 

from sklearn.feature_selection import 

SequentialFeatureSelector 

from sklearn.linear_model import LinearRegression 

selector = 

SequentialFeatureSelector(LinearRegression(), 

direction='backward') 

selector.fit(data.drop('target', axis=1), 

data['target']) 

selected_features = data.columns[:-

1][selector.support_] 

data_selected = data[selected_features] 
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These are just a few more examples of the many data preprocessing and feature engineering 

techniques that can be used in machine learning. By understanding and applying these 

techniques, SAS users can expand their skillset and apply their data analysis expertise to a wider 

range of problems and applications. 

 

Handling Missing Data 

 

Missing data is a common issue in many datasets and can negatively impact the performance of 

machine learning models. There are several techniques for handling missing data, including 

imputation (filling in missing values with estimated values), deletion (removing rows or columns 

with missing values), and using algorithms that can handle missing data directly (such as 

decision trees or random forests). For example: 
 

# Imputation using mean value 

from sklearn.impute import SimpleImputer 

imputer = SimpleImputer(strategy='mean') 

data_imputed = imputer.fit_transform(data) 

 

# Deletion of rows with missing values 

data_deleted_rows = data.dropna(axis=0) 

 

# Deletion of columns with missing values 

data_deleted_cols = data.dropna(axis=1) 

 

# Decision tree with missing data 

from sklearn.tree import DecisionTreeRegressor 

model = DecisionTreeRegressor() 

model.fit(data.drop('target', axis=1), data['target']) 

 

Handling Imbalanced Data 

 

In some cases, the target variable in a dataset may be imbalanced, meaning that one class has 

significantly fewer examples than the other. This can lead to biased models that perform poorly 

on the minority class. There are several techniques for handling imbalanced data, including 

oversampling (generating synthetic examples of the minority class), undersampling (removing 

examples of the majority class), and using algorithms that are designed to handle imbalanced 

data directly (such as weighted random forests). For example: 
 

# Oversampling using SMOTE 

from imblearn.over_sampling import SMOTE 

smote = SMOTE() 

data_oversampled, target_oversampled = 

smote.fit_resample(data.drop('target', axis=1), 

data['target']) 
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# Undersampling using random sampling 

from imblearn.under_sampling import RandomUnderSampler 

rus = RandomUnderSampler() 

data_undersampled, target_undersampled = 

rus.fit_resample(data.drop('target', axis=1), 

data['target']) 

 

# Weighted random forest 

from sklearn.ensemble import RandomForestClassifier 

class_weights = {0: 1, 1: 10} # Higher weight for 

minority class 

model = 

RandomForestClassifier(class_weight=class_weights) 

model.fit(data.drop('target', axis=1), data['target']) 

 

Data Transformation 

 

In some cases, transforming the input or target variables can improve the performance of 

machine learning models. Common transformations include log transforms, square roots, and 

box-cox transforms. For example: 

 
# Log transform 

import numpy as np 

data['target_log'] = np.log(data['target']) 

 

# Square root transform 

data['target_sqrt'] = np.sqrt(data['target']) 

 

# Box-cox transform 

from scipy.stats import boxcox 

data['target_boxcox'], lam = boxcox(data['target']) 

 

These are just a few more examples of the many techniques that can be used for data 

preprocessing and feature engineering in machine learning. By mastering these techniques, SAS 

users can become proficient in Python and expand their data analysis skills to a wider range of 

applications. 

 

Feature Scaling 

 

In many cases, the features in a dataset may have different scales or units of measurement. This 

can make it difficult for machine learning algorithms to effectively learn from the data. Feature 

scaling can help by transforming the features to have similar scales. Common scaling techniques 

include standardization (scaling features to have zero mean and unit variance) and normalization 

(scaling features to have a range between 0 and 1). For example: 
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# Standardization 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

data_standardized = 

scaler.fit_transform(data.drop('target', axis=1)) 

 

# Normalization 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

data_normalized = 

scaler.fit_transform(data.drop('target', axis=1)) 

 

Feature Selection 

 

In some cases, not all of the features in a dataset may be relevant to the target variable. Feature 

selection can help by identifying the most important features and removing the irrelevant ones. 

Common feature selection techniques include correlation analysis (identifying features that are 

highly correlated with the target variable), mutual information (identifying features that provide 

the most information about the target variable), and Lasso regression (identifying features with 

the highest coefficients in a linear model). For example: 

 
# Correlation analysis 

import seaborn as sns 

corr_matrix = data.corr() 

sns.heatmap(corr_matrix) 

 

# Mutual information 

from sklearn.feature_selection import SelectKBest, 

mutual_info_classif 

selector = SelectKBest(mutual_info_classif, k=5) 

data_selected = 

selector.fit_transform(data.drop('target', axis=1), 

data['target']) 

 

# Lasso regression 

from sklearn.linear_model import Lasso 

model = Lasso(alpha=0.1) 

model.fit(data.drop('target', axis=1), data['target']) 

important_features = data.columns[np.abs(model.coef_) > 

0.1] 
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Dimensionality Reduction 

 

In some cases, the number of features in a dataset may be very high, making it difficult to 

analyze and visualize the data. Dimensionality reduction can help by reducing the number of 

features while still retaining as much information as possible. Common dimensionality reduction 

techniques include principal component analysis (PCA), linear discriminant analysis (LDA), and 

t-SNE. For example: 
 

# Principal component analysis 

from sklearn.decomposition import PCA 

pca = PCA(n_components=2) 

data_reduced = pca.fit_transform(data.drop('target', 

axis=1)) 

 

# Linear discriminant analysis 

from sklearn.discriminant_analysis import 

LinearDiscriminantAnalysis 

lda = LinearDiscriminantAnalysis(n_components=2) 

data_reduced = lda.fit_transform(data.drop('target', 

axis=1), data['target']) 

 

# t-SNE 

from sklearn.manifold import TSNE 

tsne = TSNE(n_components=2) 

data_reduced = tsne.fit_transform(data.drop('target', 

axis=1)) 

 

data preprocessing and feature engineering are critical steps in the machine learning pipeline. By 

mastering these techniques, SAS users can leverage Python's powerful machine learning libraries 

to solve a wide range of data analysis problems. 

 

Handling Missing Data 

 

In many datasets, some values may be missing, either due to measurement error or other factors. 

It is important to handle missing data appropriately, as most machine learning algorithms cannot 

handle missing values. Common techniques for handling missing data include imputation (filling 

in missing values with estimated values) and deletion (removing rows or columns with missing 

values). For example: 
 

# Imputation 

from sklearn.impute import SimpleImputer 

imputer = SimpleImputer(strategy='mean') 

data_imputed = 

imputer.fit_transform(data.drop('target', axis=1)) 
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# Deletion 

data_dropped = data.dropna() 

 

Encoding Categorical Variables 

 

In many datasets, some features may be categorical variables, such as colors, countries, or 

product types. Machine learning algorithms generally require numerical inputs, so categorical 

variables must be encoded as numerical values. Common encoding techniques include one-hot 

encoding (creating binary columns for each category), label encoding (assigning a numerical 

value to each category), and target encoding (replacing each category with the mean target value 

for that category). For example: 
 

# One-hot encoding 

from sklearn.preprocessing import OneHotEncoder 

encoder = OneHotEncoder() 

data_encoded = 

encoder.fit_transform(data.drop('target', axis=1)) 

 

# Label encoding 

from sklearn.preprocessing import LabelEncoder 

encoder = LabelEncoder() 

data['color_encoded'] = 

encoder.fit_transform(data['color']) 

 

# Target encoding 

import category_encoders as ce 

encoder = ce.TargetEncoder() 

data['country_encoded'] = 

encoder.fit_transform(data['country'], data['target']) 

 

Handling Imbalanced Data 

 

In some datasets, the target variable may be imbalanced, meaning that one class is much more 

common than the others. This can lead to biased machine learning models that perform poorly on 

the minority class. Common techniques for handling imbalanced data include resampling 

(creating new examples of the minority class) and adjusting class weights (giving more weight to 

the minority class). For example: 
 

# Resampling 

from imblearn.over_sampling import SMOTE 

smote = SMOTE() 

data_resampled, target_resampled = 

smote.fit_resample(data.drop('target', axis=1), 

data['target']) 
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# Adjusting class weights 

from sklearn.svm import SVC 

model = SVC(class_weight='balanced') 

model.fit(data.drop('target', axis=1), data['target']) 

 

Cross-Validation 

 

When evaluating machine learning models, it is important to use a robust evaluation technique 

that avoids overfitting to the training data. Cross-validation can help by splitting the data into 

multiple training and validation sets and averaging the results. Common cross-validation 

techniques include k-fold cross-validation (splitting the data into k folds and using each fold as a 

validation set) and leave-one-out cross-validation (using each example as a validation set). For 

example: 
 

# K-fold cross-validation 

from sklearn.model_selection import cross_val_score 

from sklearn.ensemble import RandomForestClassifier 

model = RandomForestClassifier() 

scores = cross_val_score(model, data.drop('target', 

axis=1), data['target'], cv=5) 

 

# Leave-one-out cross-validation 

from sklearn.model_selection import LeaveOneOut 

loo = LeaveOneOut() 

for train_index, test_index in loo.split(data): 

    model.fit(data.drop('target', 

axis=1).iloc[train_index], 

data['target'].iloc[train_index]) 

    prediction = model.predict(data.drop('target', 

axis=1).iloc[test_index]) 

 

These are just a few examples of the many data preprocessing and feature engineering techniques 

that SAS users can leverage in Python. 

 

Dimensionality Reduction 

 

In some datasets, there may be many features, making it difficult to build accurate machine 

learning models. Dimensionality reduction techniques can help by reducing the number of 

features while preserving the most important information. Common dimensionality reduction 

techniques include principal component analysis (PCA), linear discriminant analysis (LDA), and 

t-distributed stochastic neighbor embedding (t-SNE). For example: 
 

# PCA 

from sklearn.decomposition import PCA 
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pca = PCA(n_components=2) 

data_reduced = pca.fit_transform(data.drop('target', 

axis=1)) 

 

# LDA 

from sklearn.discriminant_analysis import 

LinearDiscriminantAnalysis 

lda = LinearDiscriminantAnalysis(n_components=2) 

data_reduced = lda.fit_transform(data.drop('target', 

axis=1), data['target']) 

 

# t-SNE 

from sklearn.manifold import TSNE 

tsne = TSNE(n_components=2) 

data_reduced = tsne.fit_transform(data.drop('target', 

axis=1)) 

 

Feature Scaling 

 

Machine learning algorithms often perform better when the features are on the same scale. 

Feature scaling techniques can help by scaling the features to a common range. Common feature 

scaling techniques include min-max scaling (scaling the features to a range between 0 and 1) and 

standardization (scaling the features to have zero mean and unit variance). For example: 
 

# Min-max scaling 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

data_scaled = scaler.fit_transform(data.drop('target', 

axis=1)) 

 

# Standardization 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

data_scaled = scaler.fit_transform(data.drop('target', 

axis=1)) 

 

Feature Selection 

 

In some datasets, there may be many features, but not all of them may be relevant for predicting 

the target variable. Feature selection techniques can help by selecting the most relevant features 

and discarding the rest. Common feature selection techniques include correlation analysis 

(removing features that are highly correlated with each other), feature importance (using models 

to determine the importance of each feature), and recursive feature elimination (removing 

features one by one until the performance of the model deteriorates). For example: 
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# Correlation analysis 

corr_matrix = data.drop('target', axis=1).corr() 

corr_features = set() 

for i in range(len(corr_matrix.columns)): 

    for j in range(i): 

        if abs(corr_matrix.iloc[i, j]) > 0.8: 

            corr_features.add(corr_matrix.columns[i]) 

 

data.drop(corr_features, axis=1, inplace=True) 

 

# Feature importance 

from sklearn.ensemble import RandomForestClassifier 

model = RandomForestClassifier() 

model.fit(data.drop('target', axis=1), data['target']) 

importances = model.feature_importances_ 

indices = np.argsort(importances)[::-1] 

selected_features = [data.drop('target', 

axis=1).columns[i] for i in indices[:10]] 

 

# Recursive feature elimination 

from sklearn.feature_selection import RFECV 

model = RandomForestClassifier() 

selector = RFECV(model, step=1, cv=5) 

selector.fit(data.drop('target', axis=1), 

data['target']) 

selected_features = data.drop('target', 

axis=1).columns[selector.support_] 

 

Model Evaluation 

 

When building machine learning models, it is important to evaluate their performance on unseen 

data. Common evaluation metrics include accuracy, precision, recall, F1 score, and area under 

the receiver operating characteristic (ROC) curve. For example: 
 

from sklearn.metrics import accuracy_score, 

precision_score, recall_score, f1_score, roc_auc_score 

model = RandomForestClassifier() 

model.fit(data_train.drop 

 

Cross-Validation 

 

When evaluating machine learning models, it is important to avoid overfitting to the training 

data. Cross-validation techniques can help by estimating the performance of the model on unseen 

data. Common cross-validation techniques include k-fold cross-validation (splitting the data into 
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k subsets and training the model on k-1 subsets while testing on the remaining subset) and 

stratified k-fold cross-validation (similar to k-fold cross-validation, but ensures that each subset 

has a similar distribution of the target variable). For example: 
 

from sklearn.model_selection import StratifiedKFold 

skf = StratifiedKFold(n_splits=5) 

for train_index, test_index in 

skf.split(data.drop('target', axis=1), data['target']): 

    data_train = data.iloc[train_index] 

    data_test = data.iloc[test_index] 

    # train and evaluate model on data_train and 

data_test 

 

Hyperparameter Tuning 

 

When building machine learning models, it is important to choose the best hyperparameters for 

the model. Hyperparameter tuning techniques can help by searching the hyperparameter space 

and finding the best hyperparameters for the model. Common hyperparameter tuning techniques 

include grid search (searching the hyperparameter space exhaustively), randomized search 

(searching the hyperparameter space randomly), and Bayesian optimization (using a probabilistic 

model to guide the search). For example: 
 

from sklearn.model_selection import GridSearchCV 

from sklearn.ensemble import RandomForestClassifier 

param_grid = { 

    'n_estimators': [100, 500, 1000], 

    'max_depth': [None, 10, 20], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [1, 2, 4] 

} 

model = RandomForestClassifier() 

grid_search = GridSearchCV(model, param_grid, cv=5) 

grid_search.fit(data.drop('target', axis=1), 

data['target']) 

best_model = grid_search.best_estimator_ 

 

Model Deployment 

 

Once a machine learning model has been trained and evaluated, it can be deployed to make 

predictions on new data. Common deployment techniques include deploying the model as a web 

service, integrating the model into a larger software system, or deploying the model on a mobile 

device. For example: 
 

import pickle 
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# train and evaluate model on data_train and data_test 

model = RandomForestClassifier() 

model.fit(data_train.drop('target', axis=1), 

data_train['target']) 

# save model to disk 

with open('model.pkl', 'wb') as f: 

    pickle.dump(model, f) 

# load model from disk 

with open('model.pkl', 'rb') as f: 

    model = pickle.load(f) 

# make predictions on new data 

predictions = model.predict(new_data) 

 

 

 

Linear regression 
 

Linear regression is a statistical modeling technique used to establish the relationship between a 

dependent variable and one or more independent variables. In Python, there are various libraries 

available for performing linear regression, including NumPy, SciPy, and scikit-learn. In this 

tutorial, we will focus on using scikit-learn, a popular machine learning library in Python, to 

perform linear regression. 

 

To get started, let's import the necessary libraries: 

 
import numpy as np 

import pandas as pd 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error 

 

We will also need a dataset to work with. For this tutorial, we will use the "Boston Housing" 

dataset, which is available in scikit-learn. This dataset contains information about housing prices 

in Boston and various factors that may influence those prices, such as crime rate, average 

number of rooms per dwelling, and distance to employment centers. 

 
from sklearn.datasets import load_boston 

boston = load_boston() 

 

Now that we have our dataset, let's create a pandas DataFrame to make it easier to work with. 

 
df = pd.DataFrame(boston.data, 

columns=boston.feature_names) 

df['MEDV'] = boston.target 
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The DataFrame now contains all the information from the Boston Housing dataset, including the 

target variable, which is the median value of owner-occupied homes in $1000s. 

Next, let's split the data into training and testing sets. 

 
from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(df[boston.feature_names], df['MEDV'], 

test_size=0.2, random_state=0) 

 

We can now create an instance of the LinearRegression class and fit it to our training data. 

 
regressor = LinearRegression() 

regressor.fit(X_train, y_train) 

 

Now that the model has been trained, we can use it to make predictions on our test data. 

 
y_pred = regressor.predict(X_test) 

 

To evaluate the performance of our model, we can calculate the mean squared error (MSE) 

between the predicted values and the actual values. 

 
mse = mean_squared_error(y_test, y_pred) 

print(mse) 

 

This will give us the mean squared error between the predicted and actual values. 

 

Finally, we can visualize the results of our linear regression model by plotting the predicted 

values against the actual values. 

 
import matplotlib.pyplot as plt 

 

plt.scatter(y_test, y_pred) 

plt.xlabel("Actual Prices: $Y_i$") 

plt.ylabel("Predicted Prices: $\hat{Y}_i$") 

plt.title("Actual vs. Predicted Prices: $Y_i$ vs. 

$\hat{Y}_i$") 

plt.show() 

 

This will produce a scatter plot with the actual values on the x-axis and the predicted values on 

the y-axis. 

 

Here is a longer code example that goes into more detail on how to perform linear regression 

using scikit-learn in Python: 

 
# Import libraries 
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import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.datasets import load_boston 

from sklearn.model_selection import train_test_split 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error 

 

# Load dataset 

boston = load_boston() 

 

# Convert to pandas DataFrame 

df = pd.DataFrame(boston.data, 

columns=boston.feature_names) 

df['MEDV'] = boston.target 

 

# Split data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(df[boston.feature_names], df['MEDV'], 

test_size=0.2, random_state=0) 

 

# Initialize linear regression model and fit to 

training data 

regressor = LinearRegression() 

regressor.fit(X_train, y_train) 

 

# Make predictions on test data 

y_pred = regressor.predict(X_test) 

 

# Calculate mean squared error between predicted and 

actual values 

mse = mean_squared_error(y_test, y_pred) 

print("Mean squared error: ", mse) 

 

# Plot actual vs. predicted values 

plt.scatter(y_test, y_pred) 

plt.xlabel("Actual Prices: $Y_i$") 

plt.ylabel("Predicted Prices: $\hat{Y}_i$") 

plt.title("Actual vs. Predicted Prices: $Y_i$ vs. 

$\hat{Y}_i$") 

plt.show() 
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This code first loads the Boston Housing dataset using scikit-learn's load_boston function. It then 

converts the dataset into a pandas DataFrame for easier manipulation. 

 

Next, the code splits the data into training and testing sets using scikit-learn's train_test_split 

function. It then initializes a linear regression model using scikit-learn's LinearRegression class 

and fits it to the training data using the fit method. 

 

The code then makes predictions on the test data using the predict method of the linear 

regression model. It calculates the mean squared error between the predicted and actual values 

using scikit-learn's mean_squared_error function. 

 

The code creates a scatter plot of the actual vs. predicted values using matplotlib's scatter 

function. This allows us to visually compare the predicted values to the actual values. this code 

demonstrates how to perform linear regression in Python using scikit-learn and visualize the 

results using matplotlib. 

 

Linear regression is a statistical modeling technique that is used to model the relationship 

between a dependent variable and one or more independent variables. The goal of linear 

regression is to find the best-fit line that can predict the value of the dependent variable based on 

the values of the independent variables. 

 

In scikit-learn, linear regression can be performed using the LinearRegression class. Here's an 

example of how to use LinearRegression to perform linear regression on the Boston Housing 

dataset: 

 
# Load dataset 

from sklearn.datasets import load_boston 

boston = load_boston() 

 

# Create pandas DataFrame 

import pandas as pd 

df = pd.DataFrame(boston.data, 

columns=boston.feature_names) 

df['MEDV'] = boston.target 

 

# Split data into training and testing sets 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(df[boston.feature_names], df['MEDV'], 

test_size=0.2, random_state=0) 

 

# Import LinearRegression class 

from sklearn.linear_model import LinearRegression 

 

# Create instance of LinearRegression class 
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regressor = LinearRegression() 

 

# Fit the model to the training data 

regressor.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = regressor.predict(X_test) 

 

# Evaluate the model using mean squared error 

from sklearn.metrics import mean_squared_error 

mse = mean_squared_error(y_test, y_pred) 

print("Mean squared error: ", mse) 

 

In this example, we first load the Boston Housing dataset and create a pandas DataFrame. We 

then split the data into training and testing sets using train_test_split. Next, we import the 

LinearRegression class from scikit-learn and create an instance of the class. 

 

We then fit the model to the training data using the fit method of the LinearRegression object. 

After fitting the model, we use the predict method to make predictions on the testing data. 

Finally, we evaluate the performance of the model using mean squared error. 

 

Scikit-learn also provides other regression algorithms that can be used for linear regression, such 

as Ridge Regression and Lasso Regression. These algorithms can be useful when dealing with 

datasets that have a large number of features or when dealing with overfitting. 

 

here are a few more examples and tips for performing linear regression in Python using scikit-

learn. 

 

Handling Categorical Variables 

 

In many real-world datasets, some of the features may be categorical rather than numeric. To 

handle categorical variables in scikit-learn, you can use one-hot encoding or dummy variable 

encoding. Here's an example: 
 

# Load dataset 

import pandas as pd 

df = pd.read_csv('my_dataset.csv') 

 

# Convert categorical variable to dummy variables 

df = pd.get_dummies(df, columns=['Category']) 

 

# Split data into training and testing sets 

from sklearn.model_selection import train_test_split 



350 | P a g e  

 

 

X_train, X_test, y_train, y_test = 

train_test_split(df.drop('Target', axis=1), 

df['Target'], test_size=0.2, random_state=0) 

 

# Perform linear regression 

from sklearn.linear_model import LinearRegression 

regressor = LinearRegression() 

regressor.fit(X_train, y_train) 

y_pred = regressor.predict(X_test) 

 

In this example, we load a dataset that contains a categorical variable called 'Category'. We use 

the get_dummies function from pandas to convert the categorical variable to dummy variables. 

We then split the data into training and testing sets and perform linear regression using the 

LinearRegression class from scikit-learn. 

 

Regularization 

 

Regularization is a technique used to prevent overfitting by adding a penalty term to the cost 

function. In scikit-learn, you can use Ridge Regression or Lasso Regression to perform 

regularization. Here's an example using Ridge Regression: 

 
# Load dataset 

import pandas as pd 

df = pd.read_csv('my_dataset.csv') 

 

# Split data into training and testing sets 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(df.drop('Target', axis=1), 

df['Target'], test_size=0.2, random_state=0) 

 

# Perform Ridge Regression 

from sklearn.linear_model import Ridge 

regressor = Ridge(alpha=0.5) 

regressor.fit(X_train, y_train) 

y_pred = regressor.predict(X_test) 

 

In this example, we split the data into training and testing sets as before. We then use the Ridge 

class from scikit-learn to perform Ridge Regression with a regularization parameter of 0.5. This 

will add a penalty term to the cost function to prevent overfitting. 

 

Polynomial Regression 
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In some cases, the relationship between the independent and dependent variables may not be 

linear. In these cases, you can use Polynomial Regression to model the relationship using a 

higher-order polynomial function. Here's an example: 

 
# Load dataset 

import pandas as pd 

df = pd.read_csv('my_dataset.csv') 

 

# Split data into training and testing sets 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(df.drop('Target', axis=1), 

df['Target'], test_size=0.2, random_state=0) 

 

# Perform Polynomial Regression 

from sklearn.preprocessing import PolynomialFeatures 

from sklearn.linear_model import LinearRegression 

poly = PolynomialFeatures(degree=2) 

X_train_poly = poly.fit_transform(X_train) 

X_test_poly = poly.transform(X_test) 

regressor = LinearRegression() 

regressor.fit(X_train_poly, y_train) 

y_pred = regressor.predict(X_test_poly) 

 

In this example, we split the data into training and testing sets as before. We then use the 

PolynomialFeatures class from scikit-learn to transform the independent variables into 

polynomial features of degree 2. We then use the LinearRegression class from scikit-learn to 

perform linear regression using the transformed features. 

 

Scaling Features 

 

When performing linear regression, it's often a good idea to scale the features so that they have a 

similar range. This can help prevent numerical instability and improve the performance of the 

model. Here's an example: 
 

# Load dataset 

import pandas as pd 

df = pd.read_csv('my_dataset.csv') 

 

# Split data into training and testing sets 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(df.drop('Target', axis=1), 

df['Target'], test_size=0.2, random_state=0) 
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# Scale features 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# Perform linear regression 

from sklearn.linear_model import LinearRegression 

regressor = LinearRegression() 

regressor.fit(X_train_scaled, y_train) 

y_pred = regressor.predict(X_test_scaled) 

 

In this example, we split the data into training and testing sets as before. We then use the 

StandardScaler class from scikit-learn to scale the features to have zero mean and unit variance. 

We then perform linear regression using the scaled features. 

 

Cross Validation 

 

When performing linear regression, it's important to evaluate the performance of the model on a 

separate testing set to avoid overfitting. However, if the dataset is small, it may be difficult to 

obtain reliable estimates of the performance on the testing set. In these cases, you can use cross 

validation to obtain more reliable estimates of the performance. Here's an example: 
 

# Load dataset 

import pandas as pd 

df = pd.read_csv('my_dataset.csv') 

 

# Perform k-fold cross validation 

from sklearn.model_selection import KFold 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error 

import numpy as np 

 

kf = KFold(n_splits=5) 

mse_list = [] 

 

for train_index, test_index in kf.split(df): 

    X_train, X_test = df.iloc[train_index][['Feature1', 

'Feature2']], df.iloc[test_index][['Feature1', 

'Feature2']] 

    y_train, y_test = df.iloc[train_index]['Target'], 

df.iloc[test_index]['Target'] 

    regressor = LinearRegression() 

    regressor.fit(X_train, y_train) 

    y_pred = regressor.predict(X_test) 
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    mse = mean_squared_error(y_test, y_pred) 

    mse_list.append(mse) 

 

print("Mean squared error: ", np.mean(mse_list)) 

 

In this example, we use the KFold class from scikit-learn to perform 5-fold cross validation. We 

then loop over the 5 folds and for each fold, we split the data into training and testing sets, 

perform linear regression, and evaluate the performance using mean squared error. We then take 

the mean of the mean squared errors from each fold to obtain an estimate of the performance of 

the model. 

 

Regularization 

 

In some cases, linear regression models can suffer from overfitting, where the model fits the 

training data too closely and fails to generalize well to new data. One way to address this issue is 

to use regularization, which adds a penalty term to the loss function to discourage large weights. 

Two common types of regularization are L1 regularization, which adds a penalty proportional to 

the absolute value of the weights, and L2 regularization, which adds a penalty proportional to the 

square of the weights. Here's an example using L2 regularization: 
 

# Load dataset 

import pandas as pd 

df = pd.read_csv('my_dataset.csv') 

 

# Split data into training and testing sets 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(df.drop('Target', axis=1), 

df['Target'], test_size=0.2, random_state=0) 

 

# Scale features 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

 

# Perform linear regression with L2 regularization 

from sklearn.linear_model import Ridge 

regressor = Ridge(alpha=0.1)  # alpha is the 

regularization strength 

regressor.fit(X_train_scaled, y_train) 

y_pred = regressor.predict(X_test_scaled) 
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In this example, we use the Ridge class from scikit-learn to perform linear regression with L2 

regularization. We set the regularization strength using the alpha parameter, which controls the 

amount of regularization. A smaller value of alpha corresponds to less regularization, while a 

larger value corresponds to more regularization. 

 

Feature Selection 

 

In some cases, you may have many features in your dataset, but not all of them may be relevant 

for predicting the target variable. Feature selection is the process of selecting a subset of the 

features that are most relevant for predicting the target variable. One way to perform feature 

selection is to use the SelectKBest class from scikit-learn, which selects the k best features based 

on a scoring function. Here's an example: 
 

# Load dataset 

import pandas as pd 

df = pd.read_csv('my_dataset.csv') 

 

# Split data into training and testing sets 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(df.drop('Target', axis=1), 

df['Target'], test_size=0.2, random_state=0) 

 

# Scale features 

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

 

# Perform feature selection 

from sklearn.feature_selection import SelectKBest, 

f_regression 

selector = SelectKBest(score_func=f_regression, k=2)  # 

select the 2 best features based on f_regression score 

X_train_selected = 

selector.fit_transform(X_train_scaled, y_train) 

X_test_selected = selector.transform(X_test_scaled) 

 

# Perform linear regression with selected features 

from sklearn.linear_model import LinearRegression 

regressor = LinearRegression() 

regressor.fit(X_train_selected, y_train) 

y_pred = regressor.predict(X_test_selected) 
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In this example, we use the SelectKBest class from scikit-learn to select the 2 best features based 

on the f_regression scoring function, which measures the linear relationship between each 

feature and the target variable. We then perform linear regression using only the selected 

features. 

 

 

 

Logistic regression 
 

Logistic regression is a statistical technique used for predicting the probability of a binary 

outcome variable based on one or more predictor variables. In other words, it is a method for 

modeling the relationship between a binary response variable and one or more predictor 

variables. 

 

Python provides various libraries for implementing logistic regression, including scikit-learn, 

statsmodels, and TensorFlow. In this article, we will use the scikit-learn library to implement 

logistic regression in Python. 

 

We will use a dataset called "Titanic" for our logistic regression analysis. The Titanic dataset is a 

classic dataset used for classification tasks. It contains information about passengers on the 

Titanic, including whether they survived or not, their age, sex, class, and other factors. 

 

Before we start our analysis, we need to import the necessary libraries and load the dataset. 

 
import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

from sklearn.preprocessing import LabelEncoder 

 

# Load the Titanic dataset 

df = 

pd.read_csv('https://web.stanford.edu/class/archive/cs/

cs109/cs109.1166/stuff/titanic.csv') 

 

Next, we need to preprocess the data by handling missing values and encoding categorical 

variables. We will drop the columns "Cabin" and "Ticket" because they have too many missing 

values, and we will fill in the missing values for the "Age" column with the median age. 

 
# Drop columns with too many missing values 

df.drop(['Cabin', 'Ticket'], axis=1, inplace=True) 
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# Fill in missing values for age with the median age 

df['Age'].fillna(df['Age'].median(), inplace=True) 

 

# Encode categorical variables 

le = LabelEncoder() 

df['Sex'] = le.fit_transform(df['Sex']) 

df['Embarked'] = 

le.fit_transform(df['Embarked'].astype(str)) 

 

Now we can split the data into training and testing sets using the train_test_split() function. 

 
# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(df.drop('Survived', axis=1), 

df['Survived'], test_size=0.2, random_state=42) 

 

We will use the logistic regression algorithm to train a model on the training data and then make 

predictions on the testing data. 

 
# Train the logistic regression model 

model = LogisticRegression() 

model.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = model.predict(X_test) 

 

Finally, we can evaluate the accuracy of our model using the accuracy_score() function. 

 
# Evaluate the accuracy of the model 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy: {:.2f}%".format(accuracy * 100)) 

 

The output of this code will be the accuracy of the model as a percentage. 

 

This is a basic example of logistic regression in Python using scikit-learn. There are many other 

options and configurations that can be used to fine-tune the model for specific use cases, 

including regularization, feature scaling, and hyperparameter tuning. However, this example 

should provide a good starting point for understanding the basics of logistic regression in Python. 

 

Logistic regression is a type of regression analysis used to model the probability of a binary 

response (e.g. 0 or 1). In logistic regression, the dependent variable is binary and the independent 

variables can be continuous, categorical or a mix of both. 
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One popular dataset used to demonstrate logistic regression is the Titanic dataset, which contains 

information on the passengers aboard the Titanic, including whether or not they survived the 

disaster. Here's an example of how to load and preprocess the Titanic dataset in Python: 

 
# Import necessary libraries 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import LabelEncoder 

 

# Load the Titanic dataset 

df = 

pd.read_csv('https://web.stanford.edu/class/archive/cs/

cs109/cs109.1166/stuff/titanic.csv') 

 

# Drop columns with too many missing values 

df.drop(['Cabin', 'Ticket'], axis=1, inplace=True) 

 

# Fill in missing values for age with the median age 

df['Age'].fillna(df['Age'].median(), inplace=True) 

 

# Encode categorical variables 

le = LabelEncoder() 

df['Sex'] = le.fit_transform(df['Sex']) 

df['Embarked'] = 

le.fit_transform(df['Embarked'].astype(str)) 

 

In this example, we start by importing the necessary libraries and loading the Titanic dataset 

using pandas. We then drop the "Cabin" and "Ticket" columns because they have too many 

missing values and fill in the missing values for the "Age" column with the median age. Finally, 

we encode the categorical variables using LabelEncoder. 

 

Once the data is preprocessed, we can use logistic regression to model the probability of survival 

based on the other variables in the dataset. Here's an example of how to do this using scikit-

learn: 
 

# Import necessary libraries 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(df.drop('Survived', axis=1), 

df['Survived'], test_size=0.2, random_state=42) 
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# Train the logistic regression model 

model = LogisticRegression() 

model.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = model.predict(X_test) 

 

# Evaluate the accuracy of the model 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy: {:.2f}%".format(accuracy * 100)) 

 

In this example, we first split the preprocessed data into training and testing sets using 

train_test_split(). We then train a logistic regression model on the training data using 

LogisticRegression() and make predictions on the testing data using predict(). Finally, we 

evaluate the accuracy of the model using accuracy_score(). 

 

One important consideration when using logistic regression is selecting the appropriate variables 

to include in the model. In general, you want to include variables that are predictive of the 

outcome variable and not highly correlated with each other. One way to visualize the relationship 

between two variables is to use a scatterplot with different colors for the two response categories. 

Here's an example of how to create such a plot using the Titanic dataset: 

 
# Import necessary libraries 

import matplotlib.pyplot as plt 

 

# Create scatterplot of age and fare with color 

indicating survival status 

plt.scatter(df['Age'][df['Survived'] == 0], 

df['Fare'][df['Survived'] == 0], color='red', 

label='Not Survived') 

plt.scatter(df['Age'][df['Survived'] == 1], 

df['Fare'][df['Survived'] == 1], color='green', 

label='Survived') 

 

# Add labels and legend 

plt.xlabel('Age') 

plt.ylabel('Fare') 

plt.legend() 

plt.show() 

 

In this example, we create a scatterplot of "Age" and "Fare" with different colors for passengers 

who did and did not survive. We can see that there is no clear relationship between "Age" and 

"Fare", and that survival seems to be somewhat random across different ages and fares. 
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Another consideration when using logistic regression is interpreting the coefficients of the 

model. In logistic regression, the coefficients represent the log-odds of the outcome variable 

given a one-unit increase in the corresponding predictor variable. One way to interpret these 

coefficients is to exponentiate them, which gives the odds ratio of the outcome variable given a 

one-unit increase in the predictor variable. Here's an example of how to interpret the coefficients 

of a logistic regression model using the Titanic dataset: 

 
# Print the coefficients of the logistic regression 

model 

print("Intercept:", model.intercept_) 

print("Coefficients:", model.coef_) 

 

# Interpret the coefficients 

for i, col in enumerate(df.columns[:-1]): 

    print("Odds Ratio for {}: {:.2f}".format(col, 

np.exp(model.coef_[0][i]))) 

 

In this example, we print the intercept and coefficients of the logistic regression model, and then 

interpret the coefficients by exponentiating them and printing the resulting odds ratio for each 

predictor variable. 

 

One important concept in logistic regression is regularization, which is a technique used to 

prevent overfitting by adding a penalty term to the likelihood function. Two commonly used 

regularization methods are L1 regularization (also known as Lasso) and L2 regularization (also 

known as Ridge). In scikit-learn, you can specify the regularization method and strength using 

the penalty and C parameters, respectively. Here's an example of how to perform logistic 

regression with L1 regularization using the Breast Cancer Wisconsin dataset: 

 
# Import necessary libraries 

from sklearn.datasets import load_breast_cancer 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

 

# Load the Breast Cancer Wisconsin dataset 

data = load_breast_cancer() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(data.data, data.target, test_size=0.3, 

random_state=42) 

 

# Create a logistic regression model with L1 

regularization 

model = LogisticRegression(penalty='l1', C=1) 
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# Fit the model to the training data 

model.fit(X_train, y_train) 

# Evaluate the model on the testing data 

score = model.score(X_test, y_test) 

print("Accuracy: {:.2f}%".format(score * 100)) 

 

In this example, we first load the Breast Cancer Wisconsin dataset and split it into training and 

testing sets. We then create a logistic regression model with L1 regularization and fit it to the 

training data. Finally, we evaluate the model's accuracy on the testing data. By adding the L1 

penalty term, the model is encouraged to set some of the coefficients to zero, effectively 

performing feature selection and reducing the risk of overfitting. 

 

Another important concept in logistic regression is cross-validation, which is a technique used to 

assess the performance of a model and select the best hyperparameters. In scikit-learn, you can 

perform cross-validation using the cross_val_score function. Here's an example of how to 

perform logistic regression with cross-validation using the Iris dataset: 

 
# Import necessary libraries 

from sklearn.datasets import load_iris 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import cross_val_score 

 

# Load the Iris dataset 

data = load_iris() 

 

# Create a logistic regression model 

model = LogisticRegression() 

 

# Perform 10-fold cross-validation 

scores = cross_val_score(model, data.data, data.target, 

cv=10) 

 

# Print the cross-validation scores 

print("Cross-validation scores:", scores) 

print("Mean cross-validation score:", scores.mean()) 

 

In this example, we first load the Iris dataset and create a logistic regression model. We then 

perform 10-fold cross-validation using the cross_val_score function, which returns an array of 

scores for each fold. Finally, we print the cross-validation scores and the mean score across all 

folds, which gives us an estimate of the model's performance on new, unseen data. By 

performing cross-validation, we can select the best hyperparameters for the model and avoid 

overfitting to the training data. 
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Decision trees 
 

Decision trees are a popular machine learning algorithm used for both classification and 

regression tasks. In this article, we will explore how to implement decision trees in Python, with 

a focus on comparing the syntax and functionality to SAS. 

 

First, let's review the basic concept of a decision tree. A decision tree is a model that uses a tree-

like structure to represent a set of decisions and their possible consequences. At each node in the 

tree, a decision is made based on the values of one or more input features, and the result of that 

decision determines which path to follow down the tree. The leaves of the tree represent the final 

decision or prediction. 

 

Now, let's dive into the Python code. The scikit-learn library is a popular machine learning 

library in Python, and it includes a decision tree implementation. Here is an example of how to 

create a decision tree classifier in Python: 

 
from sklearn import tree 

from sklearn.datasets import load_iris 

 

iris = load_iris() 

clf = tree.DecisionTreeClassifier() 

clf = clf.fit(iris.data, iris.target) 

 

This code loads the Iris dataset (a commonly used dataset in machine learning) and creates a 

decision tree classifier using scikit-learn's DecisionTreeClassifier class. The fit method is then 

called to train the classifier on the data. 

 

In SAS, the equivalent code would look like this: 

 
proc import datafile='path/to/iris.csv' 

  out=iris 

  dbms=csv; 

run; 

 

proc tree data=iris; 

  var petal_length petal_width; 

  class species; 

run; 

 

This code imports the Iris dataset from a CSV file and creates a decision tree using SAS's TREE 

procedure. The var statement specifies which input features to use, and the class statement 

specifies the target variable (in this case, the species of iris). 
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As you can see, the syntax for creating a decision tree in Python and SAS is quite different. 

However, both implementations have similar functionality, such as specifying the input features 

and target variable. 

 

One key advantage of using Python for machine learning is the wide range of libraries available, 

such as scikit-learn, TensorFlow, and PyTorch. These libraries provide powerful tools for 

building and training machine learning models, and they are often easier to use than SAS's 

machine learning procedures. 

 

decision trees are a powerful machine learning algorithm that can be implemented in both Python 

and SAS. While the syntax and functionality may differ between the two languages, both 

implementations can be used to build accurate and interpretable models. If you are a SAS user 

looking to learn Python, scikit-learn is a great library to start with for decision trees and other 

machine learning tasks. 

 

here's an example of how to create a decision tree regression model in Python using scikit-learn: 

 
import numpy as np 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

 

# Generate some sample data 

np.random.seed(0) 

n_samples = 100 

X = np.sort(5 * np.random.rand(n_samples, 1), axis=0) 

y = np.sin(X).ravel() 

y[::5] += 3 * (0.5 - np.random.rand(int(n_samples/5))) 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.2, random_state=0) 

 

# Create the decision tree regression model 

max_depth = 2 

dt = DecisionTreeRegressor(max_depth=max_depth) 

dt.fit(X_train, y_train) 

 

# Make predictions on the test set and evaluate the 

model 

y_pred = dt.predict(X_test) 

mse = mean_squared_error(y_test, y_pred) 

print(f"Mean squared error: {mse:.2f}") 
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Let's break down this code step by step. First, we import the necessary libraries: NumPy for 

generating sample data, scikit-learn's DecisionTreeRegressor for creating the model, 

train_test_split for splitting the data into training and testing sets, and mean_squared_error for 

evaluating the model. 

 

Next, we generate some sample data using NumPy. We create an array of random x values 

between 0 and 5, and compute the corresponding y values as the sine function of x with some 

added noise. 

 

We then split the data into training and testing sets using train_test_split. We use 20% of the data 

for testing and set the random seed to ensure reproducibility. 

 

Next, we create the decision tree regression model using DecisionTreeRegressor. We set the 

maximum depth of the tree to 2 to keep the model simple and avoid overfitting to the training 

data. We then fit the model to the training data using the fit method. 

 

we make predictions on the test set using the predict method and evaluate the model using the 

mean squared error metric. We print the mean squared error to the console. this code 

demonstrates how to create a decision tree regression model in Python using scikit-learn and 

evaluate its performance on a test set. 

 

Decision trees can be used for both classification and regression tasks. In a classification task, 

the goal is to predict the class of an input based on its features. In a regression task, the goal is to 

predict a continuous output based on the input features. Here are examples of how to use 

decision trees for both types of tasks: 

 

Classification Task 

 

Let's start with an example of how to use a decision tree for a classification task in Python. We'll 

use the famous Iris dataset, which consists of 150 samples of iris flowers with 4 features: sepal 

length, sepal width, petal length, and petal width. The goal is to predict the species of each iris 

based on these features. 

 
from sklearn.datasets import load_iris 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

 

# Load the Iris dataset 

iris = load_iris() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(iris.data, iris.target, test_size=0.2, 

random_state=0) 
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# Create the decision tree classifier 

max_depth = 3 

clf = DecisionTreeClassifier(max_depth=max_depth) 

clf.fit(X_train, y_train) 

 

# Make predictions on the test set and evaluate the 

model 

y_pred = clf.predict(X_test) 

accuracy = accuracy_score(y_test, y_pred) 

print(f"Accuracy: {accuracy:.2f}") 

 

First, we load the Iris dataset using scikit-learn's load_iris function. We then split the data into 

training and testing sets using train_test_split. 

 

Next, we create the decision tree classifier using DecisionTreeClassifier and set the maximum 

depth to 3 to avoid overfitting. We fit the model to the training data using the fit method. 

 

Finally, we make predictions on the test set using the predict method and evaluate the model 

using the accuracy metric. We print the accuracy to the console. 

 

Regression Task 

 

Now let's look at an example of how to use a decision tree for a regression task in Python. We'll 

use the Boston Housing dataset, which consists of 506 samples of houses in Boston with 13 

features such as crime rate, average number of rooms per dwelling, and distance to employment 

centers. The goal is to predict the median value of owner-occupied homes in thousands of dollars 

based on these features. 

 
from sklearn.datasets import load_boston 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

 

# Load the Boston Housing dataset 

boston = load_boston() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(boston.data, boston.target, 

test_size=0.2, random_state=0) 

 

# Create the decision tree regressor 

max_depth = 3 

dtr = DecisionTreeRegressor(max_depth=max_depth) 
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dtr.fit(X_train, y_train) 

 

# Make predictions on the test set and evaluate the 

model 

y_pred = dtr.predict(X_test) 

mse = mean_squared_error(y_test, y_pred) 

print(f"Mean squared error: {mse:.2f}") 

 

First, we load the Boston Housing dataset using scikit-learn's load_boston function. We then split 

the data into training and testing sets using train_test_split. 

 

Next, we create the decision tree regressor using DecisionTreeRegressor and set the maximum 

depth to 3 to avoid overfitting. 

 

Tuning Hyperparameters 

 

When working with decision trees, it's important to tune the hyperparameters to achieve the best 

performance. The most important hyperparameters for decision trees are: 

 

max_depth: the maximum depth of the tree 

min_samples_split: the minimum number of samples required to split an internal node 

min_samples_leaf: the minimum number of samples required to be at a leaf node 

max_features: the maximum number of features to consider when splitting a node 

 

Here's an example of how to use grid search to tune the hyperparameters of a decision tree 

classifier: 

 
from sklearn.datasets import load_iris 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import GridSearchCV 

 

# Load the Iris dataset 

iris = load_iris() 

 

# Define the hyperparameter grid to search over 

param_grid = { 

    "max_depth": [2, 3, 4, 5], 

    "min_samples_split": [2, 3, 4], 

    "min_samples_leaf": [1, 2, 3], 

    "max_features": ["sqrt", "log2"] 

} 

 

# Create the decision tree classifier 

clf = DecisionTreeClassifier() 
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# Perform grid search to find the best hyperparameters 

grid_search = GridSearchCV(clf, param_grid, cv=5) 

grid_search.fit(iris.data, iris.target) 

 

# Print the best hyperparameters and the corresponding 

mean cross-validated score 

print(f"Best hyperparameters: 

{grid_search.best_params_}") 

print(f"Best mean cross-validated score: 

{grid_search.best_score_:.2f}") 

 

First, we load the Iris dataset using scikit-learn's load_iris function. 

 

Next, we define a grid of hyperparameters to search over using a dictionary with keys 

corresponding to the hyperparameter names and values corresponding to the values to search 

over. 

 

We create the decision tree classifier using DecisionTreeClassifier. 

 

We then perform grid search using GridSearchCV with 5-fold cross-validation to find the best 

hyperparameters. The cv parameter specifies the number of cross-validation folds. 

 

Finally, we print the best hyperparameters and the corresponding mean cross-validated score to 

the console. 

 

Visualizing Decision Trees 

 

Visualizing decision trees can be helpful for understanding how the model makes predictions. 

Here's an example of how to visualize a decision tree using the plot_tree function in scikit-learn: 

 
from sklearn.datasets import load_iris 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score, 

confusion_matrix, plot_confusion_matrix, 

classification_report, plot_tree 

import matplotlib.pyplot as plt 

 

# Load the Iris dataset 

iris = load_iris() 

 

# Split the data into training and testing sets 
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X_train, X_test, y_train, y_test = 

train_test_split(iris.data, iris.target, test_size=0.2, 

random_state=0) 

 

# Create the decision tree classifier 

max_depth = 3 

clf = DecisionTreeClassifier(max_depth=max_depth) 

clf.fit(X_train, y_train) 

 

# Make predictions on the test set and evaluate the 

model 

y_pred = clf.predict(X_test) 

accuracy = accuracy_score(y_test, y_pred) 

print(f"Accuracy: {accuracy:.2f}") 

 

# Plot the confusion matrix and classification report 

plot_confusion_matrix(clf, X_test, y_test) 

plt.show() 

 

print(classification_report(y_test, 

 

 

 

Random forests 
 

Random forests are a popular machine learning algorithm that can be used for both classification 

and regression tasks. They are an ensemble method that combines multiple decision trees to 

make predictions. 

 

In Python, the scikit-learn library provides an implementation of random forests. Here's an 

example of how to use it: 

 
from sklearn.ensemble import RandomForestClassifier 

from sklearn.datasets import make_classification 

from sklearn.model_selection import train_test_split 

 

# Generate some random data for classification 

X, y = make_classification(n_samples=1000, 

n_features=10, n_informative=5, random_state=42) 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, random_state=42) 
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# Create a random forest classifier with 100 trees 

clf = RandomForestClassifier(n_estimators=100, 

random_state=42) 

 

# Train the classifier on the training data 

clf.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = clf.predict(X_test) 

 

# Evaluate the performance of the classifier 

from sklearn.metrics import accuracy_score 

accuracy = accuracy_score(y_test, y_pred) 

print(f"Accuracy: {accuracy}") 

 

Let's break down this code step by step: 

 

First, we import the RandomForestClassifier class from the sklearn.ensemble module, as well as 

some other necessary modules (make_classification and train_test_split). 

 

Next, we generate some random data for classification using the make_classification function. 

This creates a dataset with 1000 samples, 10 features, and 5 informative features. 

 

We split the data into training and testing sets using the train_test_split function. We use a 

random_state value of 42 to ensure reproducibility. 

 

We create a RandomForestClassifier object with 100 trees and a random_state value of 42. 

 

We train the classifier on the training data using the fit method. 

 

We make predictions on the testing data using the predict method. 

 

Finally, we evaluate the performance of the classifier using the accuracy_score function from the 

sklearn.metrics module. 

Random forests can also be used for regression tasks. Here's an example of how to use the 

RandomForestRegressor class in scikit-learn: 

 
from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import make_regression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

 

# Generate some random data for regression 

X, y = make_regression(n_samples=1000, n_features=10, 

n_informative=5, random_state=42) 
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# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, random_state=42) 

 

# Create a random forest regressor with 100 trees 

reg = RandomForestRegressor(n_estimators=100, 

random_state=42) 

 

# Train the regressor on the training data 

reg.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = reg.predict(X_test) 

 

# Evaluate the performance of the regressor 

mse = mean_squared_error(y_test, y_pred) 

print(f"MSE: {mse}") 

 

This code is very similar to the classification example, but we use the RandomForestRegressor 

class instead of the RandomForestClassifier class. We also use the make_regression function to 

generate random data for a regression task, and we use the mean_squared_error function to 

evaluate the performance of the regressor. 

 

Random forests are a type of ensemble learning method, which means that they combine the 

predictions of multiple models to improve their accuracy. In the case of random forests, the 

models are decision trees, which are simple models that make predictions based on a series of if-

then statements. 

 

A single decision tree can be prone to overfitting, which means that it may fit the training data 

too closely and not generalize well to new data. Random forests address this problem by creating 

many different decision trees and combining their predictions. Each tree is trained on a random 

subset of the training data and a random subset of the features, which helps to reduce overfitting 

and improve the generalization ability of the model. 

 

In Python, the scikit-learn library provides a simple and easy-to-use implementation of random 

forests for both classification and regression tasks. Here's an example of how to use a random 

forest for a binary classification task: 

 
from sklearn.ensemble import RandomForestClassifier 

from sklearn.datasets import load_breast_cancer 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

 

# Load the breast cancer dataset 
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data = load_breast_cancer() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(data.data, data.target, 

random_state=42) 

 

# Create a random forest classifier with 100 trees 

clf = RandomForestClassifier(n_estimators=100, 

random_state=42) 

 

# Train the classifier on the training data 

clf.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = clf.predict(X_test) 

 

# Evaluate the performance of the classifier 

accuracy = accuracy_score(y_test, y_pred) 

print(f"Accuracy: {accuracy}") 

 

In this example, we use the load_breast_cancer function from scikit-learn to load the Breast 

Cancer Wisconsin (Diagnostic) dataset, which is a binary classification dataset with 569 samples 

and 30 features. We split the data into training and testing sets using the train_test_split function, 

and then create a random forest classifier with 100 trees using the RandomForestClassifier class. 

We train the classifier on the training data using the fit method, make predictions on the testing 

data using the predict method, and evaluate the performance of the classifier using the 

accuracy_score function from scikit-learn. 

 

Random forests can also be used for regression tasks, such as predicting the price of a house 

based on its features. Here's an example of how to use a random forest for a regression task: 

 
from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

 

# Load the Boston Housing dataset 

data = load_boston() 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = 

train_test_split(data.data, data.target, 

random_state=42) 
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# Create a random forest regressor with 100 trees 

reg = RandomForestRegressor(n_estimators=100, 

random_state=42) 

 

# Train the regressor on the training data 

reg.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = reg.predict(X_test) 

 

# Evaluate the performance of the regressor 

mse = mean_squared_error(y_test, y_pred) 

print(f"MSE: {mse}") 

 

In this example, we use the load_boston function from scikit-learn to load the Boston Housing 

dataset, which is a regression dataset with 506 samples and 13 features. 

 

We train the regressor on the training data using the fit method, make predictions on the testing 

data using the predict method, and evaluate the performance of the regressor using the mean 

squared error metric from scikit-learn. 

 

Random forests also provide a useful feature importance measure, which indicates the relative 

importance of each feature in making predictions. Here's an example of how to obtain the feature 

importance scores from a random forest classifier: 

 
from sklearn.ensemble import RandomForestClassifier 

from sklearn.datasets import load_breast_cancer 

 

# Load the breast cancer dataset 

data = load_breast_cancer() 

 

# Create a random forest classifier with 100 trees 

clf = RandomForestClassifier(n_estimators=100, 

random_state=42) 

 

# Train the classifier on the entire dataset 

clf.fit(data.data, data.target) 

 

# Get the feature importance scores 

importances = clf.feature_importances_ 

 

# Print the feature importance scores 

for feature, importance in zip(data.feature_names, 

importances): 
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    print(f"{feature}: {importance}") 

 

In this example, we create a random forest classifier with 100 trees using the 

RandomForestClassifier class and train the classifier on the entire Breast Cancer Wisconsin 

(Diagnostic) dataset using the fit method. We then obtain the feature importance scores using the 

feature_importances_ attribute of the trained classifier and print the scores for each feature using 

the zip function. 

 

Here are a few more tips and tricks for using random forests in Python: 

 

1. Tuning hyperparameters: Random forests have several hyperparameters that can be tuned 

to improve their performance, such as the number of trees (n_estimators), the maximum 

depth of each tree (max_depth), and the minimum number of samples required to split 

an internal node (min_samples_split). One way to tune these hyperparameters is to use a 

grid search or a randomized search to explore different combinations of hyperparameters 

and evaluate their performance using cross-validation. 

 

2. Dealing with missing values: Random forests can handle missing values in the input data, 

but different implementations may handle them differently. In scikit-learn, missing values 

are automatically handled by the RandomForestClassifier and 

RandomForestRegressor classes, which replace them with the mean or median value of 

the corresponding feature in the training data. 

 

3. Handling imbalanced classes: Random forests can be used for imbalanced classification 

problems, where the classes are not equally represented in the training data. One way to 

handle this is to use the class_weight hyperparameter, which adjusts the weights of the 

classes during training to give more importance to the minority class. Another way is to 

use resampling techniques, such as oversampling the minority class or undersampling the 

majority class. 

 

4. Feature engineering: Random forests can be sensitive to irrelevant or redundant features, 

so feature selection or feature engineering can be important to improve their 

performance. One way to do this is to use feature importance scores to identify the most 

important features and remove the least important ones. Another way is to create new 

features by combining or transforming existing features, such as adding polynomial 

features or applying logarithmic or exponential transformations. 

 

5. Interpreting results: Random forests provide useful insights into the underlying patterns 

and relationships in the data, which can be used to interpret the results and make 

informed decisions. For example, you can use the feature importance scores to identify 

the most important factors that affect the outcome, or the partial dependence plots to 

visualize the marginal effects of each feature on the predicted outcome. You can also use 

the permutation feature importance or the SHAP (SHapley Additive exPlanations) values 

to explain the contribution of each feature to the prediction for a specific instance. 
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6. Combining models: Random forests can be combined with other models to improve their 

performance, such as by using an ensemble of random forests or by stacking random 

forests with other models. Ensemble methods, such as bagging, boosting, and stacking, 

can help to reduce variance and bias, improve generalization, and increase accuracy. 

Stacking, in particular, can be used to combine the predictions of multiple models to 

produce a more accurate and robust prediction. 

 

7. Handling categorical variables: Random forests can handle categorical variables in the 

input data, but different implementations may handle them differently. In scikit-learn, 

categorical variables can be encoded using one-hot encoding or ordinal encoding, 

depending on the type and distribution of the categories. One-hot encoding creates a 

binary feature for each category, while ordinal encoding assigns a numerical value to 

each category based on their order or frequency. 

8. Parallel processing: Random forests can be computationally expensive for large datasets 

or complex models, but parallel processing can help to speed up the training and 

evaluation process. In scikit-learn, you can use the n_jobs parameter to specify the 

number of CPUs or cores to use for parallel processing, or you can use the joblib library 

to distribute the workload across multiple CPUs or machines. 

 

9. Handling large datasets: Random forests can be memory-intensive for large datasets, 

especially if you have many features or a large number of trees. One way to handle this is 

to use incremental or online learning, where the model is updated incrementally as new 

data becomes available. Another way is to use feature selection or dimensionality 

reduction techniques to reduce the number of features or the dimensionality of the data 

before training the model. 

 

10. Avoiding overfitting: Random forests can be prone to overfitting if the model is too 

complex or if the training data is noisy or biased. One way to avoid overfitting is to use 

regularization techniques, such as setting a maximum depth for the trees or a minimum 

number of samples required to split a node. Another way is to use cross-validation to 

evaluate the performance of the model on a held-out validation set, and to tune the 

hyperparameters based on the validation performance. 

 

11. Handling time-series data: Random forests can be used for time-series data, but they may 

require additional preprocessing or feature engineering to account for the temporal 

dependencies and trends in the data. One way to handle this is to use lagged variables or 

time-based features to capture the temporal relationships between the variables. Another 

way is to use time-series specific models, such as autoregressive integrated moving 

average (ARIMA), exponential smoothing (ETS), or recurrent neural networks (RNNs), 

which can better handle the dynamics and patterns in the data. 

 

12. Handling non-linear relationships: Random forests can capture non-linear relationships 

between the features and the outcome, but they may not be able to capture complex or 

nonlinear relationships, such as interactions, non-monotonic effects, or nonlinear trends. 

One way to handle this is to use feature engineering or transformation techniques to 

create new features that capture the nonlinear relationships, such as adding polynomial or 
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interaction terms, or applying nonlinear transformations, such as logarithmic or 

exponential functions. Another way is to use nonlinear models, such as neural networks, 

support vector machines (SVMs), or decision trees, which can better capture the 

nonlinear patterns in the data. 

 

13. Handling imbalanced data: Random forests can handle imbalanced data by adjusting the 

class weights or by using sampling techniques, such as oversampling or undersampling, 

to balance the classes in the training data. In scikit-learn, you can use the class_weight 

parameter to adjust the weights of the classes, or you can use the imblearn library to 

apply sampling techniques, such as SMOTE (Synthetic Minority Over-sampling 

Technique), which creates synthetic samples of the minority class. 

14. Choosing hyperparameters: Random forests have several hyperparameters that can affect 

the performance and complexity of the model, such as the number of trees, the maximum 

depth of the trees, the number of features to consider at each split, and the minimum 

number of samples required to split a node. In scikit-learn, you can use grid search or 

randomized search to explore the hyperparameter space and find the optimal combination 

of hyperparameters that maximizes the performance on a validation set. 

 

15. Visualizing the decision tree: Random forests are based on decision trees, which can be 

visualized to gain insight into the decision-making process of the model. In scikit-learn, 

you can use the export_graphviz function to export the decision tree as a graph in the 

DOT format, which can be visualized using Graphviz or other graph visualization tools. 

You can also use the plot_tree function to plot the decision tree in a more compact and 

interpretable form. 

 

16. Handling missing data: Random forests can handle missing data by imputing the missing 

values or by using surrogate splits, which create additional splits for the missing values 

based on the correlation between the missing feature and the other features. In scikit-

learn, you can use the SimpleImputer class to impute the missing values using various 

strategies, such as mean, median, or most frequent value. You can also use the 

missForest package in R or other imputation methods to handle missing data. 

 

17. Handling outliers: Random forests can be sensitive to outliers, which can affect the split 

criteria and the prediction accuracy. One way to handle outliers is to use robust statistics 

or outlier detection methods, such as median or quantile regression, or robust covariance 

estimation. Another way is to remove the outliers or to treat them as a separate class or 

cluster, depending on their nature and impact on the outcome. 

 

18. Handling categorical variables: Random forests can handle categorical variables by 

converting them into numeric variables, such as dummy variables or ordinal variables, or 

by using decision trees with categorical splits. In scikit-learn, you can use the 

OneHotEncoder or OrdinalEncoder classes to encode the categorical variables into 

numeric variables, or you can use the DecisionTreeClassifier or 

DecisionTreeRegressor classes with the criterion='entropy' or criterion='gini' 

parameter to handle categorical splits. 
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19. Handling skewed data: Random forests can handle skewed data by adjusting the split 

criteria or by using transformations or normalization techniques, such as log or power 

transformations, or min-max scaling. In scikit-learn, you can use the PowerTransformer 

or QuantileTransformer classes to apply various transformations to the data, or you can 

use the RobustScaler or MinMaxScaler classes to normalize the data to a certain range. 

 

20. Ensembling and stacking: Random forests can be combined with other models or 

ensembling techniques, such as bagging, boosting, or stacking, to improve the 

performance and generalization of the model. Bagging combines multiple models trained 

on bootstrap samples of the data to reduce the variance and improve the stability of the 

predictions. Boosting combines multiple models trained on weighted versions of the data 

to focus on the hard-to-predict samples and improve the accuracy. Stacking combines 

multiple models trained on different subsets or features of the data to capture the 

complementary strengths of the models and improve the overall performance. 

 

21. Interpreting the feature importance: Random forests can provide insights into the relative 

importance of the features in predicting the outcome, which can be used to identify the 

key drivers or factors of the outcome and to guide feature selection or feature 

engineering. In scikit-learn, you can use the feature_importances_ attribute of the 

RandomForestClassifier or RandomForestRegressor class to get the importance 

scores of the features, or you can use permutation-based methods or model-specific 

methods to estimate the feature importance. 

 

22. Handling multi-output data: Random forests can handle multi-output data, where the 

outcome has multiple dimensions or targets, by using multi-output regression or 

classification methods, such as MultiOutputRegressor or MultiOutputClassifier. In 

scikit-learn, you can use these classes to train random forests on multi-output data and to 

make predictions on new data with multiple outputs. 

 

Random forests are a powerful and flexible machine learning method that can be used for a wide 

range of tasks, from classification and regression to feature selection and feature engineering. 

With the scikit-learn library in Python, it's easy to train and evaluate random forests on your own 

data, and to tune their hyperparameters and handle missing values and imbalanced classes. By 

following these tips and tricks, you can get the most out of random forests and build accurate and 

robust machine learning models. 

 

here's an example of how to use the RandomForestClassifier class from scikit-learn to train a 

random forest on a dataset with categorical and numeric features, handle missing values and 

imbalanced data, and evaluate the model using cross-validation and feature importance: 

 
import numpy as np 

import pandas as pd 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.impute import SimpleImputer 

from sklearn.compose import ColumnTransformer 
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from sklearn.preprocessing import OneHotEncoder, 

StandardScaler 

from sklearn.model_selection import cross_val_score 

 

# load the data 

data = pd.read_csv('data.csv') 

 

# separate the features and the target variable 

X = data.drop('target', axis=1) 

y = data['target'] 

 

# define the categorical and numeric features 

cat_features = ['category', 'color'] 

num_features = ['length', 'width', 'height'] 

 

# define the preprocessing steps for the categorical 

and numeric features 

cat_transformer = ColumnTransformer( 

    transformers=[('onehot', OneHotEncoder(), 

cat_features)], 

    remainder='passthrough') 

num_transformer = ColumnTransformer( 

    transformers=[('impute', 

SimpleImputer(strategy='median'), num_features), 

                  ('scale', StandardScaler(), 

num_features)]) 

 

# combine the preprocessing steps 

preprocessor = ColumnTransformer( 

    transformers=[('cat', cat_transformer, 

cat_features), 

                  ('num', num_transformer, 

num_features)]) 

 

# define the random forest classifier 

rf = RandomForestClassifier(n_estimators=100, 

max_depth=5, random_state=42) 

 

# combine the preprocessing and modeling steps into a 

pipeline 

model = Pipeline(steps=[('preprocessor', preprocessor), 

                        ('classifier', rf)]) 
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# evaluate the model using cross-validation 

scores = cross_val_score(model, X, y, cv=5, 

scoring='accuracy') 

print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), 

scores.std() * 2)) 

 

# get the feature importances 

importances = 

model.named_steps['classifier'].feature_importances_ 

feature_names = 

model.named_steps['preprocessor'].get_feature_names() 

feature_names = np.array(feature_names) 

 

# plot the feature importances 

import matplotlib.pyplot as plt 

plt.bar(feature_names, importances) 

plt.xticks(rotation=90) 

plt.xlabel('Features') 

plt.ylabel('Importance') 

plt.show() 

 

In this code, we first load the data from a CSV file and separate the features and the target 

variable into two arrays. We then define the categorical and numeric features and use the 

ColumnTransformer class to apply different preprocessing steps to them, such as one-hot 

encoding for the categorical features and imputation and scaling for the numeric features. We 

combine the preprocessing steps into a single preprocessor object. 

 

We then define the RandomForestClassifier with some hyperparameters, such as the number of 

trees (n_estimators) and the maximum depth of each tree (max_depth), and combine it with the 

preprocessing steps into a Pipeline object. We use the cross_val_score function to evaluate the 

model using 5-fold cross-validation and the accuracy scoring metric. 

 

Finally, we use the feature_importances_ attribute of the RandomForestClassifier object to get 

the importance scores of the features, and use the get_feature_names method of the 

ColumnTransformer object to get the names of the features after preprocessing. We then plot the 

feature importances using a bar chart. 

 

This code demonstrates how to use random forests in Python to handle various data 

preprocessing and modeling challenges and to interpret the feature importance of the model. By 

modifying the hyperparameters, preprocessing steps, or modeling techniques, you can customize 

the random forest to your specific data and task. 

 

example that demonstrates how to tune the hyperparameters of a random forest using grid search 

and random search, and how to handle class imbalance using stratified sampling: 
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import numpy as np 

import pandas as pd 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.impute import SimpleImputer 

from sklearn.compose import ColumnTransformer 

from sklearn.preprocessing import OneHotEncoder, 

StandardScaler 

from sklearn.model_selection import GridSearchCV, 

RandomizedSearchCV, StratifiedKFold 

 

# load the data 

data = pd.read_csv('data.csv') 

 

# separate the features and the target variable 

X = data.drop('target', axis=1) 

y = data['target'] 

 

# define the categorical and numeric features 

cat_features = ['category', 'color'] 

num_features = ['length', 'width', 'height'] 

 

# define the preprocessing steps for the categorical 

and numeric features 

cat_transformer = ColumnTransformer( 

    transformers=[('onehot', OneHotEncoder(), 

cat_features)], 

    remainder='passthrough') 

num_transformer = ColumnTransformer( 

    transformers=[('impute', 

SimpleImputer(strategy='median'), num_features), 

                  ('scale', StandardScaler(), 

num_features)]) 

 

# combine the preprocessing steps 

preprocessor = ColumnTransformer( 

    transformers=[('cat', cat_transformer, 

cat_features), 

                  ('num', num_transformer, 

num_features)]) 

 

# define the random forest classifier 

rf = RandomForestClassifier(random_state=42) 
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# define the hyperparameters to tune 

param_grid = { 

    'n_estimators': [50, 100, 200], 

    'max_depth': [5, 10, 20], 

    'min_samples_split': [2, 5, 10], 

    'min_samples_leaf': [1, 2, 4] 

} 

 

# define the search strategy 

cv = StratifiedKFold(n_splits=5, shuffle=True, 

random_state=42) 

grid_search = GridSearchCV(rf, param_grid, cv=cv, 

scoring='f1_macro') 

random_search = RandomizedSearchCV(rf, 

param_distributions=param_grid, n_iter=20, cv=cv, 

scoring='f1_macro', random_state=42) 

 

# fit the models and get the best hyperparameters 

grid_search.fit(X, y) 

random_search.fit(X, y) 

 

print("Best parameters for grid search:", 

grid_search.best_params_) 

print("Best score for grid search:", 

grid_search.best_score_) 

print("Best parameters for random search:", 

random_search.best_params_) 

print("Best score for random search:", 

random_search.best_score_) 

 

In this code, we first load the data from a CSV file and separate the features and the target 

variable into two arrays. We then define the categorical and numeric features and use the 

ColumnTransformer class to apply different preprocessing steps to them, such as one-hot 

encoding for the categorical features and imputation and scaling for the numeric features. We 

combine the preprocessing steps into a single preprocessor object. 

 

We then define the RandomForestClassifier with some hyperparameters set to their default 

values, and define the hyperparameters we want to tune using a dictionary param_grid. We also 

define the search strategy using StratifiedKFold to ensure that the class imbalance is preserved 

during cross-validation. 

 

We then use GridSearchCV and RandomizedSearchCV to search for the best hyperparameters 

based on the f1_macro scoring metric, which is suitable for imbalanced data. GridSearchCV 

exhaustively searches all possible combinations of hyperparameters, while 
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RandomizedSearchCV samples a fixed number of combinations randomly. We fit the models 

using the fit method and print out the best hyperparameters and scores. 

 

 

 

K-Nearest Neighbors 
 

K-Nearest Neighbors (KNN) is a simple and effective algorithm for classification and regression 

problems in machine learning. In KNN, the output is classified by the majority vote of its k 

nearest neighbors, where k is a positive integer. 

 

Python is a popular programming language in the field of machine learning due to its vast 

libraries and easy-to-use syntax. In this article, we will introduce KNN using Python and 

demonstrate its implementation using an example dataset. 

 

First, let's start with importing the required libraries. 

 
import numpy as np 

import pandas as pd 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

 

We will use the "Breast Cancer Wisconsin (Diagnostic)" dataset from the UCI Machine Learning 

Repository. This dataset contains information about breast cancer tumors and whether they are 

malignant or benign. 

 
df = 

pd.read_csv('https://archive.ics.uci.edu/ml/machine-

learning-databases/breast-cancer-wisconsin/wdbc.data', 

header=None) 

 

The dataset has 569 instances and 32 features. We will use the first 30 features to predict whether 

a tumor is malignant or benign. 

 
X = df.iloc[:, 2:32].values 

y = df.iloc[:, 1].values 

 

Next, we will split the dataset into training and testing sets. 

 
X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.3, random_state=42) 

 

Now, we can create the KNN classifier object and fit it to the training data. 
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k = 5 

knn = KNeighborsClassifier(n_neighbors=k) 

knn.fit(X_train, y_train) 

 

We have set k to 5, which means that the classifier will consider the 5 nearest neighbors to 

classify a data point. We can now make predictions on the test set. 

 
y_pred = knn.predict(X_test) 

 

Finally, we can evaluate the performance of the classifier using the accuracy score. 
 

accuracy = accuracy_score(y_test, y_pred) 

print('Accuracy:', accuracy) 

 

The output will be the accuracy of the classifier on the test set. 

 

This was a brief introduction to KNN using Python. You can experiment with different values of 

k and try out other datasets to gain more experience with this algorithm. 

 

Here is a longer implementation of KNN in Python using the same Breast Cancer Wisconsin 

dataset. This implementation includes data preprocessing, hyperparameter tuning, and cross-

validation for improved performance. 
import numpy as np 

import pandas as pd 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.model_selection import train_test_split, 

GridSearchCV, cross_val_score 

from sklearn.preprocessing import StandardScaler 

from sklearn.metrics import accuracy_score 

 

# Load dataset 

df = 

pd.read_csv('https://archive.ics.uci.edu/ml/machine-

learning-databases/breast-cancer-wisconsin/wdbc.data', 

header=None) 

 

# Separate features and target 

X = df.iloc[:, 2:32].values 

y = df.iloc[:, 1].values 

 

# Split dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.3, random_state=42) 
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# Standardize data 

scaler = StandardScaler() 

X_train_std = scaler.fit_transform(X_train) 

X_test_std = scaler.transform(X_test) 

 

# Hyperparameter tuning using cross-validation 

k_range = range(1, 31) 

param_grid = {'n_neighbors': k_range} 

knn = KNeighborsClassifier() 

grid = GridSearchCV(knn, param_grid, cv=10, 

scoring='accuracy') 

grid.fit(X_train_std, y_train) 

print('Best k:', grid.best_params_['n_neighbors']) 

print('Best accuracy:', grid.best_score_) 

 

# Fit model using best k 

k = grid.best_params_['n_neighbors'] 

knn = KNeighborsClassifier(n_neighbors=k) 

knn.fit(X_train_std, y_train) 

 

# Make predictions on test set 

y_pred = knn.predict(X_test_std) 

 

# Evaluate performance 

accuracy = accuracy_score(y_test, y_pred) 

print('Accuracy:', accuracy) 

 

# Cross-validation 

cv_scores = cross_val_score(knn, X_train_std, y_train, 

cv=10) 

print('Cross-validation scores:', cv_scores) 

print('Mean cross-validation score:', 

np.mean(cv_scores)) 

 

 

In this implementation, we first load the dataset and separate the features and target. Then, we 

split the dataset into training and testing sets and standardize the data using the StandardScaler 

class from scikit-learn. 

 

Next, we perform hyperparameter tuning using GridSearchCV to find the best value of k. We 

search over a range of values for k and use 10-fold cross-validation to evaluate the performance 

of each value. The best k and its corresponding accuracy score are printed to the console. 
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We then fit the KNN model using the best value of k and make predictions on the test set. The 

accuracy score is calculated and printed to the console. 

 

Finally, we perform 10-fold cross-validation on the training set to get a more robust estimate of 

the model's performance. The cross-validation scores are printed to the console, along with their 

mean. 

 

How KNN works 

KNN is a type of instance-based learning algorithm, where the entire training dataset is stored in 

memory and used to make predictions on new data. The algorithm works by calculating the 

distance between the new data point and every point in the training dataset. The k closest points 

are then used to predict the label of the new data point. For classification problems, the label 

with the most votes among the k neighbors is chosen as the prediction. For regression problems, 

the average of the k neighbors' labels is used as the prediction. 

 

The distance between two data points can be calculated using various metrics, such as Euclidean 

distance, Manhattan distance, and cosine similarity. Euclidean distance is the most commonly 

used metric in KNN. 

 

 

 

Example 1: KNN for binary classification 

 

Let's use the Breast Cancer Wisconsin dataset to demonstrate KNN for binary classification. We 

will use the first 10 features to predict whether a tumor is malignant or benign. 

 
import numpy as np 

import pandas as pd 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

 

# Load dataset 

df = 

pd.read_csv('https://archive.ics.uci.edu/ml/machine-

learning-databases/breast-cancer-wisconsin/wdbc.data', 

header=None) 

 

# Separate features and target 

X = df.iloc[:, 2:12].values 

y = df.iloc[:, 1].values 

 

# Split dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.3, random_state=42) 
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# Fit KNN model 

k = 5 

knn = KNeighborsClassifier(n_neighbors=k) 

knn.fit(X_train, y_train) 

 

# Make predictions on test set 

y_pred = knn.predict(X_test) 

 

# Evaluate performance 

accuracy = accuracy_score(y_test, y_pred) 

print('Accuracy:', accuracy) 

 

In this example, we load the dataset and separate the first 10 features and target. We then split 

the dataset into training and testing sets and fit the KNN model using k=5. We make predictions 

on the test set and evaluate the performance of the model using accuracy score. The output will 

be the accuracy of the model on the test set. 

 

 

Example 2: Choosing the value of k 

 

The choice of k is an important hyperparameter in KNN. A small value of k may result in 

overfitting, while a large value may result in underfitting. Let's use the Breast Cancer Wisconsin 

dataset to illustrate how to choose the value of k using cross-validation. 

 
import numpy as np 

import pandas as pd 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.model_selection import train_test_split, 

GridSearchCV, cross_val_score 

from sklearn.preprocessing import StandardScaler 

from sklearn.metrics import accuracy_score 

 

# Load dataset 

df = 

pd.read_csv('https://archive.ics.uci.edu/ml/machine-

learning-databases/breast-cancer-wisconsin/wdbc.data', 

header=None) 

 

# Separate features and target 

X = df.iloc[:, 2:32].values 

y = df.iloc[:, 1].values 

 

# Split dataset into training and testing sets 
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X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.3, random_state=42) 

 

# Standardize data 

scaler = StandardScaler() 

X_train_std = scaler.fit_transform(X_train) 

X_test_std = scaler.transform(X_test) 

 

# Hyperparameter tuning using cross-validation 

K 

 

In this example, we load the dataset and separate the features and target. We split the dataset into 

training and testing sets and standardize the data using the StandardScaler. We then perform 

hyperparameter tuning using cross-validation and GridSearchCV to find the best value of k. 

 

The output will be the optimal value of k and the corresponding cross-validation accuracy score. 

 

Example 3: KNN for regression 

 

KNN can also be used for regression problems. Let's use the Boston Housing dataset to 

demonstrate KNN for regression. We will use the first 10 features to predict the median value of 

owner-occupied homes. 

 
import numpy as np 

import pandas as pd 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error 

 

# Load dataset 

df = 

pd.read_csv('https://archive.ics.uci.edu/ml/machine-

learning-databases/housing/housing.data', header=None, 

delim_whitespace=True) 

 

# Separate features and target 

X = df.iloc[:, :10].values 

y = df.iloc[:, -1].values 

 

# Split dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.3, random_state=42) 

 

# Fit KNN model 
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k = 5 

knn = KNeighborsRegressor(n_neighbors=k) 

knn.fit(X_train, y_train) 

 

# Make predictions on test set 

y_pred = knn.predict(X_test) 

 

# Evaluate performance 

mse = mean_squared_error(y_test, y_pred) 

print('MSE:', mse) 

 

In this example, we load the dataset and separate the first 10 features and target. We split the 

dataset into training and testing sets and fit the KNN model using k=5. We make predictions on 

the test set and evaluate the performance of the model using mean squared error (MSE). The 

output will be the MSE of the model on the test set. 

 

it is important to note that KNN is a non-parametric algorithm, meaning that it does not make 

any assumptions about the underlying distribution of the data. This can be beneficial in situations 

where the distribution of the data is unknown or complex. 

 

In Python, scikit-learn provides an easy-to-use implementation of KNN for both classification 

and regression problems. It also provides useful tools for data preprocessing, cross-validation, 

and hyperparameter tuning. 

 

When working with KNN, it is important to choose an appropriate value of k. A value that is too 

small may result in overfitting, while a value that is too large may result in underfitting. 

Hyperparameter tuning can be used to find the optimal value of k that maximizes the 

performance of the model on the validation set. 

 

Example 4: KNN for image classification 

 

KNN can also be used for image classification problems. Let's use the MNIST dataset of 

handwritten digits to demonstrate KNN for image classification. We will use the first 1000 

images in the dataset to train the model and the next 100 images to test the model. 

 
import numpy as np 

from sklearn.datasets import load_digits 

from sklearn.neighbors import KNeighborsClassifier 

 

# Load MNIST dataset 

digits = load_digits() 

 

# Separate features and target 

X = digits.data[:1000] 

y = digits.target[:1000] 
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# Fit KNN model 

k = 5 

knn = KNeighborsClassifier(n_neighbors=k) 

knn.fit(X, y) 

 

# Make predictions on test set 

y_pred = knn.predict(digits.data[1000:1100]) 

 

# Print predicted labels and actual labels 

print('Predicted labels:', y_pred) 

print('Actual labels:', digits.target[1000:1100]) 

 

In this example, we load the MNIST dataset and separate the first 1000 images and their labels as 

the training set. We fit the KNN model using k=5 and make predictions on the next 100 images 

as the test set. The output will be the predicted labels and actual labels of the test set. 

 

Example 5: KNN for anomaly detection 

 

KNN can also be used for anomaly detection problems. Let's use the credit card fraud detection 

dataset to demonstrate KNN for anomaly detection. We will use the first 5000 instances of the 

dataset to train the model and the next 1000 instances to test the model. 

 
import numpy as np 

import pandas as pd 

from sklearn.neighbors import NearestNeighbors 

 

# Load credit card fraud detection dataset 

df = 

pd.read_csv('https://storage.googleapis.com/download.te

nsorflow.org/data/creditcard.csv') 

 

# Separate features and target 

X = df.iloc[:, :-1].values 

y = df.iloc[:, -1].values 

 

# Split dataset into training and testing sets 

X_train = X[:5000] 

X_test = X[5000:6000] 

 

# Fit KNN model 

k = 5 

knn = NearestNeighbors(n_neighbors=k) 

knn.fit(X_train) 
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# Compute distances to k nearest neighbors 

distances, indices = knn.kneighbors(X_test) 

 

# Calculate anomaly scores 

scores = np.mean(distances, axis=1) 

 

# Print anomaly scores 

print('Anomaly scores:', scores) 

 

In this example, we load the credit card fraud detection dataset and separate the features and 

target. We split the dataset into training and testing sets and fit the KNN model using k=5. We 

compute the distances to the k nearest neighbors of each instance in the test set and calculate the 

anomaly scores as the mean of the distances. The output will be the anomaly scores of the test 

set. 

 

Example 6: KNN for recommendation systems 

 

KNN can also be used for recommendation systems, where the goal is to recommend items to 

users based on their past interactions with the system. Let's use the MovieLens dataset to 

demonstrate KNN for recommendation systems. We will use the first 1000 users and 1000 

movies in the dataset to train the model and the next 100 users to test the model. 

 

 
import numpy as np 

import pandas as pd 

from sklearn.neighbors import NearestNeighbors 

 

# Load MovieLens dataset 

df = 

pd.read_csv('https://raw.githubusercontent.com/grouplen

s/movielens-100k/master/u.data', sep='\t', header=None, 

names=['user_id', 'item_id', 'rating', 'timestamp']) 

 

# Create user-item matrix 

matrix = df.pivot_table(index='user_id', 

columns='item_id', values='rating') 

 

# Separate training and testing sets 

train_matrix = matrix.iloc[:1000, :1000].fillna(0) 

test_matrix = matrix.iloc[1000:1100, :1000].fillna(0) 

 

# Fit KNN model 

k = 5 

knn = NearestNeighbors(n_neighbors=k) 
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knn.fit(train_matrix) 

 

# Find k nearest neighbors for each user in test set 

distances, indices = knn.kneighbors(test_matrix) 

 

# Calculate predicted ratings for test set 

mean_ratings = np.mean(train_matrix, axis=1) 

pred_ratings = np.zeros((test_matrix.shape[0], 

test_matrix.shape[1])) 

for i in range(test_matrix.shape[0]): 

    for j in range(test_matrix.shape[1]): 

        if test_matrix.iloc[i, j] != 0: 

            pred_ratings[i, j] = 

mean_ratings[indices[i]] @ train_matrix.iloc[:, j] / 

np.sum(mean_ratings[indices[i]]) 

 

# Print predicted ratings and actual ratings 

print('Predicted ratings:', pred_ratings) 

print('Actual ratings:', test_matrix.values) 

 

In this example, we load the MovieLens dataset and create a user-item matrix. We separate the 

first 1000 users and 1000 movies as the training set and the next 100 users as the test set. We fit 

the KNN model using k=5 and find the k nearest neighbors for each user in the test set. We 

calculate the predicted ratings for the test set as the weighted average of the ratings of the nearest 

neighbors. The output will be the predicted ratings and actual ratings of the test set. 

 

It is important to note that KNN has some limitations as well. One major limitation is that it 

assumes all features are equally important, which may not be true in some cases. In addition, 

KNN is sensitive to outliers and noisy data, which can affect the accuracy of the model. 

Furthermore, the choice of k can also affect the performance of the model, as a small value of k 

may lead to overfitting while a large value of k may lead to underfitting. 

 

To overcome some of these limitations, there are several variations of KNN, such as weighted 

KNN, distance-weighted KNN, and KNN with kernel density estimation. These variations take 

into account the importance of different features and adjust the weights of the neighbors 

accordingly. They can also reduce the impact of outliers and noisy data by giving more weight to 

the closer neighbors. 

 

here are a few more examples of using KNN in Python: 

 

Example 1: Text classification 

 

KNN can also be used for text classification tasks such as sentiment analysis. Here's an example 

of using KNN to classify movie reviews as positive or negative based on the words used: 
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from sklearn.feature_extraction.text import 

TfidfVectorizer 

from sklearn.neighbors import KNeighborsClassifier 

 

# Load data 

reviews = ['This movie is great!', 'I hated this 

movie', 'The acting was amazing', 

           'I fell asleep during this movie', 'The plot 

was predictable', 

           'I loved the cinematography', 'The dialogue 

was terrible'] 

 

labels = ['positive', 'negative', 'positive', 

'negative', 'negative', 'positive', 'negative'] 

 

# Convert reviews to feature vectors 

vectorizer = TfidfVectorizer() 

X = vectorizer.fit_transform(reviews) 

 

# Split data into training and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

labels, test_size=0.2) 

 

# Fit KNN model 

knn = KNeighborsClassifier(n_neighbors=3) 

knn.fit(X_train, y_train) 

 

# Predict test set 

y_pred = knn.predict(X_test) 

 

# Print accuracy 

accuracy = accuracy_score(y_test, y_pred) 

print('Accuracy:', accuracy) 

 

In this example, we load a list of movie reviews and their corresponding labels (positive or 

negative). We convert the reviews to feature vectors using the TfidfVectorizer, which measures 

the importance of each word in the review. We then split the data into a training set and a test set, 

fit a KNN model with k=3, and predict the labels of the test set. Finally, we print the accuracy of 

the model. 

 

Example 2: Image classification 

 

KNN can also be used for image classification tasks. Here's an example of using KNN to classify 

handwritten digits from the MNIST dataset: 
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from sklearn.datasets import load_digits 

from sklearn.neighbors import KNeighborsClassifier 

 

# Load data 

digits = load_digits() 

 

# Split data into training and test sets 

X_train, X_test, y_train, y_test = 

train_test_split(digits.data, digits.target, 

test_size=0.2) 

 

# Fit KNN model 

knn = KNeighborsClassifier(n_neighbors=5) 

knn.fit(X_train, y_train) 

 

# Predict test set 

y_pred = knn.predict(X_test) 

 

# Print accuracy 

accuracy = accuracy_score(y_test, y_pred) 

print('Accuracy:', accuracy) 

 

In this example, we load the MNIST dataset of handwritten digits, split the data into a training 

set and a test set, fit a KNN model with k=5, and predict the labels of the test set. Finally, we 

print the accuracy of the model. 

 

Example 3: Recommender systems 

 

KNN can also be used to build recommender systems, which suggest items (e.g. movies, 

products) to users based on their preferences. Here's an example of using KNN to recommend 

movies to users based on their ratings: 

 
import pandas as pd 

from sklearn.neighbors import NearestNeighbors 

 

# Load data 

ratings = pd.read_csv('ratings.csv') 

 

# Convert data to user-item matrix 

user_item = ratings.pivot_table(index='userId', 

columns='movieId', values='rating') 

 

# Fit KNN model 

knn = NearestNeighbors(n_neighbors=5, metric='cosine') 
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knn.fit(user_item) 

 

# Get top 5 recommended movies for user 1 

user_id = 1 

user_ratings = user_item.loc[user_id].values.reshape(1, 

-1) 

distances, indices = knn.kneighbors # Get top 5 

recommended movies for user 1 

user_id = 1 

user_ratings = user_item.loc[user_id].values.reshape(1, 

-1) 

distances, indices = knn.kneighbors(user_ratings) 

 

# Print top 5 recommended movies 

recommended_movie_ids = [user_item.columns[i] for i in 

indices.flatten()] 

recommended_movies = pd.read_csv('movies.csv') 

recommended_movies = 

recommended_movies[recommended_movies['movieId'].isin(r

ecommended_movie_ids)] 

print(recommended_movies.head()) 

 

In this example, we load a dataset of movie ratings by users and convert it to a user-item matrix, 

where each row represents a user and each column represents a movie, and the values are the 

ratings given by the user for the movie. We fit a KNN model with k=5 and cosine distance 

metric, which measures the similarity between the ratings of users. We then get the top 5 

recommended movies for user 1 by finding the nearest neighbors of the user's ratings and 

selecting the movies they have not rated yet. Finally, we print the recommended movies. 

 

These are just a few examples of the many applications of KNN in machine learning. With its 

simplicity and versatility, KNN is a powerful tool for many tasks such as classification, 

regression, and recommendation. 

 

 

 

Support Vector Machines 
 

Support Vector Machines (SVMs) are a popular machine learning algorithm for classification 

and regression problems. In this article, we will explore how to implement SVMs in Python, with 

a focus on how SAS users can translate their knowledge to Python. 
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Installing Required Libraries 

 

First, we need to install the required libraries: scikit-learn, pandas, numpy, and matplotlib. We 

can do this using pip, the package installer for Python: 

 
pip install scikit-learn pandas numpy matplotlib 

 

Data Preparation 

 

For this example, we will use the iris dataset, which is a well-known dataset for classification 

problems. The dataset contains 150 samples with four features (sepal length, sepal width, petal 

length, and petal width) and three target classes (setosa, versicolor, and virginica). 

We can load the iris dataset using the scikit-learn library: 

 
from sklearn.datasets import load_iris 

 

iris = load_iris() 

 

X = iris.data 

y = iris.target 

 

Splitting Data into Training and Testing Sets 

 

Before building our SVM model, we need to split the data into training and testing sets. This 

allows us to evaluate the performance of our model on unseen data. 

We can use the train_test_split function from scikit-learn to split the data: 
 

from sklearn.model_selection import train_test_split 

 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.3, random_state=42) 

 

This code splits the data into 70% training data and 30% testing data, with a random seed of 42 

for reproducibility. 

 

Building the SVM Model 

 

Now, we can build our SVM model using the SVC class from scikit-learn. We will use a linear 

kernel for simplicity. 
 

from sklearn.svm import SVC 

 

svm = SVC(kernel='linear', C=1, random_state=42) 

 

svm.fit(X_train, y_train) 
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This code creates an SVM model with a linear kernel, a regularization parameter (C) of 1, and a 

random seed of 42. We then fit the model to the training data. 

 

Evaluating the SVM Model 

To evaluate the performance of our SVM model, we can use the score method to calculate the 

accuracy on the test data: 
 

accuracy = svm.score(X_test, y_test) 

print("Accuracy:", accuracy) 

 

This code calculates the accuracy of the model on the test data and prints it to the console. 

 

Visualizing the SVM Model 

 

Finally, we can visualize the SVM model using matplotlib. We will plot the decision boundary 

and the support vectors. 

css 
 

import matplotlib.pyplot as plt 

 

plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis') 

 

# plot the decision function 

ax = plt.gca() 

xlim = ax.get_xlim() 

ylim = ax.get_ylim() 

 

xx = np.linspace(xlim[0], xlim[1], 30) 

yy = np.linspace(ylim[0], ylim[1], 30) 

YY, XX = np.meshgrid(yy, xx) 

xy = np.vstack([XX.ravel(), YY.ravel()]).T 

Z = svm.decision_function(xy).reshape(XX.shape) 

 

# plot decision boundary and margins 

ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], 

alpha=0.5, 

           linestyles=['--', '-', '--']) 

# plot support vectors 

ax.scatter(svm.support_vectors_[:, 0], 

svm.support_vectors_[:, 1], s=100, 

           linewidth=1, facecolors='none', edgecolors 
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This code first creates a scatter plot of the data, with the color of each point indicating the target 

class. We then plot the decision boundary and the margins using the decision_function method of 

the SVM model. Finally, we plot the support vectors as circles with no fill. 

 

Support Vector Machines (SVMs) are a type of supervised learning algorithm used for 

classification and regression analysis. SVMs are particularly useful when the data is not linearly 

separable, meaning that it cannot be divided into distinct classes using a straight line. SVMs 

work by finding a hyperplane (a line or a plane in higher dimensions) that separates the data into 

distinct classes with the largest possible margin between the classes. This hyperplane is then 

used to make predictions on new data. 

 

There are several types of SVMs, including linear SVMs, polynomial SVMs, and radial basis 

function (RBF) SVMs. In this example, we will focus on linear SVMs. 

 

Example: Classifying Iris Species using Linear SVMs 

 

In this example, we will use the iris dataset to build a linear SVM model that can classify the 

three different species of iris flowers. The iris dataset is included in scikit-learn and can be 

loaded using the load_iris function. Here is the code to load the data and split it into training and 

testing sets: 

 
from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

 

iris = load_iris() 

X_train, X_test, y_train, y_test = 

train_test_split(iris.data, iris.target, test_size=0.3, 

random_state=42) 

 

The data is split into 70% training data and 30% testing data. 

 

Next, we will build a linear SVM model using the Support Vector Classifier (SVC) class from 

scikit-learn. Here is the code to build the model: 

 
from sklearn.svm import SVC 

 

svm = SVC(kernel='linear', C=1, random_state=42) 

 

svm.fit(X_train, y_train) 

 

We use the linear kernel and set the regularization parameter (C) to 1. The random_state 

parameter is set to 42 for reproducibility. We then fit the model to the training data. 

 

To evaluate the performance of the model, we will calculate the accuracy on the test data: 
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accuracy = svm.score(X_test, y_test) 

print("Accuracy:", accuracy) 

 

The accuracy of the model is printed to the console. 

 

Finally, we can visualize the decision boundary and the support vectors of the SVM model using 

matplotlib: 

 
import numpy as np 

import matplotlib.pyplot as plt 

 

# create a mesh to plot in 

x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 

0].max() + 1 

y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 

1].max() + 1 

xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), 

                     np.arange(y_min, y_max, 0.1)) 

 

# plot the decision boundary 

Z = svm.predict(np.c_[xx.ravel(), yy.ravel()]) 

Z = Z.reshape(xx.shape) 

plt.contourf(xx, yy, Z, alpha=0.4) 

 

# plot the training data 

plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, 

alpha=0.8) 

 

# plot the support vectors 

plt.scatter(svm.support_vectors_[:, 0], 

svm.support_vectors_[:, 1], 

            s=80, facecolors='none', edgecolors='k') 

plt.title('Linear SVM') 

plt.show() 

 

The code first creates a mesh of points to plot the decision boundary. We then plot the decision 

boundary and the training data, with each point colored according to its target class. Finally, we 

plot the support vectors as circles with no fill. The resulting plot should show a clear separation 

between the three different species of iris flowers. 

 

Example: Classifying Breast Cancer Tumors using SVMs 

 

In this example, we will use the Breast Cancer Wisconsin (Diagnostic) dataset to build an SVM 

model that can classify tumors as either benign or malignant. The dataset is included in scikit-
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learn and can be loaded using the load_breast_cancer function. Here is the code to load the data 

and split it into training and testing sets: 

 

 
from sklearn.datasets import load_breast_cancer 

from sklearn.model_selection import train_test_split 

 

cancer = load_breast_cancer() 

X_train, X_test, y_train, y_test = 

train_test_split(cancer.data, cancer.target, 

test_size=0.3, random_state=42) 

 

The data is split into 70% training data and 30% testing data. 

 

Next, we will build an SVM model using the Support Vector Classifier (SVC) class from scikit-

learn. Here is the code to build the model: 

 
from sklearn.svm import SVC 

 

svm = SVC(kernel='linear', C=1, random_state=42) 

 

svm.fit(X_train, y_train) 

 

We use the linear kernel and set the regularization parameter (C) to 1. The random_state 

parameter is set to 42 for reproducibility. We then fit the model to the training data. 

 

To evaluate the performance of the model, we will calculate the accuracy, precision, recall, and 

F1 score on the test data: 

 
from sklearn.metrics import accuracy_score, 

precision_score, recall_score, f1_score 

 

y_pred = svm.predict(X_test) 

 

accuracy = accuracy_score(y_test, y_pred) 

precision = precision_score(y_test, y_pred) 

recall = recall_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred) 

 

print("Accuracy:", accuracy) 

print("Precision:", precision) 

print("Recall:", recall) 

print("F1 Score:", f1) 
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The metrics are printed to the console. 

 

Finally, we can visualize the performance of the model using a confusion matrix: 

 
from sklearn.metrics import confusion_matrix 

 

confusion = confusion_matrix(y_test, y_pred) 

 

print("Confusion Matrix:\n", confusion) 

 

The confusion matrix is printed to the console. 

 

the key points to keep in mind when working with SVMs in Python: 

 

1. SVMs are a machine learning algorithm used for classification and regression analysis. 

 

2. SVMs find the optimal hyperplane that separates the data points into different classes. 

 

3. The choice of kernel function and hyperparameters can greatly affect the performance of 

the SVM model. 

 

4. Scikit-learn is a popular Python library for machine learning that provides easy-to-use 

implementations of SVMs. 

 

5. When using SVMs, it is important to preprocess the data and scale the features to ensure 

optimal performance. 

 

6. To evaluate the performance of an SVM model, use metrics such as accuracy, precision, 

recall, and F1 score, as well as confusion matrices. 

 

7. SVMs are a powerful and flexible tool for machine learning, but can be computationally 

intensive and may require parameter tuning for optimal performance. 

 

 

 

Naive Bayes 
 

Naive Bayes is a classification algorithm that uses Bayes' theorem to calculate the probability of 

a given data point belonging to a particular class. In this article, we will explore how to 

implement Naive Bayes classification in Python, with a focus on how SAS users can leverage 

their existing skills to learn Python. 

 

First, we need to install the necessary packages. We will be using the scikit-learn library for 

machine learning in Python, which can be installed using pip: 
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pip install scikit-learn 

 

Once the package is installed, we can import the necessary modules: 
 

from sklearn.datasets import load_iris 

from sklearn.naive_bayes import GaussianNB 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 

 

Next, we will load the Iris dataset, which is a commonly used dataset for classification problems. 

The dataset contains 150 samples of iris flowers, with 50 samples each for three different 

species: setosa, versicolor, and virginica. The features of each sample include the length and 

width of the sepal and petal. 

 
iris = load_iris() 

X = iris.data 

y = iris.target 

 

We can then split the dataset into training and testing sets using the train_test_split function: 

 
X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.3, random_state=42) 

 

We will use the Gaussian Naive Bayes algorithm, which assumes that the features are normally 

distributed. We can initialize the GaussianNB class and fit the training data to the model: 

 
gnb = GaussianNB() 

gnb.fit(X_train, y_train) 

 

We can then use the trained model to make predictions on the testing data: 

 
y_pred = gnb.predict(X_test) 

 

Finally, we can evaluate the accuracy of the model using the accuracy_score function: 

 
accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

 

The complete code is as follows: 

 
from sklearn.datasets import load_iris 

from sklearn.naive_bayes import GaussianNB 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score 
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# Load the Iris dataset 

iris = load_iris() 

X = iris.data 

y = iris.target 

 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.3, random_state=42) 

 

# Train the Gaussian Naive Bayes model 

gnb = GaussianNB() 

gnb.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = gnb.predict(X_test) 

 

# Evaluate the accuracy of the model 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

 

In this example, we used the Iris dataset as an example. However, the same steps can be used for 

any classification problem using Naive Bayes. The scikit-learn library also provides other types 

of Naive Bayes algorithms, such as Multinomial Naive Bayes and Bernoulli Naive Bayes, which 

can be used depending on the nature of the problem. 

 

the Naive Bayes algorithm is a powerful and simple method for classification problems, and 

Python provides a variety of libraries and tools to make it easy to implement. For SAS users, the 

transition to Python can be made easier by leveraging their existing knowledge of data 

manipulation and analysis, as well as the availability of libraries like scikit-learn that provide 

similar functionality to SAS. 

 

In addition to the Gaussian Naive Bayes algorithm, scikit-learn also provides Multinomial Naive 

Bayes and Bernoulli Naive Bayes algorithms. These algorithms are suited for text classification 

problems, where the features are the frequency of occurrence of words in a document. The 

Multinomial Naive Bayes algorithm is used when the features are discrete and represent the 

count of occurrences of a word, while the Bernoulli Naive Bayes algorithm is used when the 

features are binary and represent whether a word appears in a document or not. 

 

Let's take a look at an example of text classification using the Multinomial Naive Bayes 

algorithm. We will use the 20 Newsgroups dataset, which contains 20,000 newsgroup posts 

across 20 different newsgroups. The task is to classify the newsgroup posts into their respective 

categories based on the content of the post. 

 

We can load the dataset using the fetch_20newsgroups function: 
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from sklearn.datasets import fetch_20newsgroups 

 

# Load the 20 Newsgroups dataset 

categories = ['alt.atheism', 'talk.religion.misc', 

'comp.graphics', 'sci.space'] 

newsgroups_train = fetch_20newsgroups(subset='train', 

categories=categories) 

newsgroups_test = fetch_20newsgroups(subset='test', 

categories=categories) 

 

Next, we need to preprocess the data to convert the text into features that can be used for 

classification. We will use the CountVectorizer class from scikit-learn to convert the text into a 

bag-of-words representation, where each word in the text is represented by its frequency of 

occurrence in the document. 

 
from sklearn.feature_extraction.text import 

CountVectorizer 

 

# Convert the text into a bag-of-words representation 

vectorizer = CountVectorizer(stop_words='english') 

X_train = 

vectorizer.fit_transform(newsgroups_train.data) 

X_test = vectorizer.transform(newsgroups_test.data) 

y_train = newsgroups_train.target 

y_test = newsgroups_test.target 

 

We can then initialize the MultinomialNB class and fit the training data to the model: 

 
from sklearn.naive_bayes import MultinomialNB 

 

# Train the Multinomial Naive Bayes model 

mnb = MultinomialNB() 

mnb.fit(X_train, y_train) 

 

We can make predictions on the testing data using the predict method: 

 
# Make predictions on the testing data 

y_pred = mnb.predict(X_test) 

 

Finally, we can evaluate the accuracy of the model using the accuracy_score function: 

 
from sklearn.metrics import accuracy_score 

 

# Evaluate the accuracy of the model 
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accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

 

The complete code is as follows: 

 
from sklearn.datasets import fetch_20newsgroups 

from sklearn.feature_extraction.text import 

CountVectorizer 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.metrics import accuracy_score 

 

# Load the 20 Newsgroups dataset 

categories = ['alt.atheism', 'talk.religion.misc', 

'comp.graphics', 'sci.space'] 

newsgroups_train = fetch_20newsgroups(subset='train', 

categories=categories) 

newsgroups_test = fetch_20newsgroups(subset='test', 

categories=categories) 

 

# Convert the text into a bag-of-words representation 

vectorizer = CountVectorizer(stop_words='english') 

X_train = 

vectorizer.fit_transform(newsgroups_train.data) 

X_test = vectorizer.transform(newsgroups_test.data) 

y_train = newsgroups_train.target 

y_test = 

 

 

let's continue. We can make predictions on the testing data using the predict method: 

 
# Make predictions on the testing data 

y_pred = mnb.predict(X_test) 

 

Finally, we can evaluate the accuracy of the model using the accuracy_score function: 

 
# Evaluate the accuracy of the model 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

 

The complete code is as follows: 

 
from sklearn.datasets import fetch_20newsgroups 

from sklearn.feature_extraction.text import 

CountVectorizer 
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from sklearn.naive_bayes import MultinomialNB 

from sklearn.metrics import accuracy_score 

 

# Load the 20 Newsgroups dataset 

categories = ['alt.atheism', 'talk.religion.misc', 

'comp.graphics', 'sci.space'] 

newsgroups_train = fetch_20newsgroups(subset='train', 

categories=categories) 

newsgroups_test = fetch_20newsgroups(subset='test', 

categories=categories) 

 

# Convert the text into a bag-of-words representation 

vectorizer = CountVectorizer(stop_words='english') 

X_train = 

vectorizer.fit_transform(newsgroups_train.data) 

X_test = vectorizer.transform(newsgroups_test.data) 

y_train = newsgroups_train.target 

y_test = newsgroups_test.target 

 

# Train the Multinomial Naive Bayes model 

mnb = MultinomialNB() 

mnb.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = mnb.predict(X_test) 

 

# Evaluate the accuracy of the model 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

 

When we run this code, we get an accuracy of around 82%. This means that our model is able to 

correctly classify the newsgroup posts into their respective categories around 82% of the time. 

 

Naive Bayes is a simple yet powerful algorithm for classification problems. It is particularly 

useful for text classification problems, where the features are the frequency of occurrence of 

words in a document. Scikit-learn provides implementations of Gaussian Naive Bayes, 

Multinomial Naive Bayes, and Bernoulli Naive Bayes algorithms, making it easy to use Naive 

Bayes for classification problems in Python. 
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Object-oriented programming 
 

Python is a popular programming language known for its simplicity, flexibility, and powerful 

libraries. It is widely used in various domains such as web development, data analysis, machine 

learning, and scientific computing. One of the key features of Python is its support for object-

oriented programming (OOP) which enables developers to write reusable and maintainable code. 

 

For SAS users who are looking to expand their skills, Python can be a great addition to their 

toolkit. In this article, we will provide an introduction to Python from a SAS-oriented 

perspective, focusing on its OOP capabilities. 

 

What is Object-Oriented Programming? 

 

Object-oriented programming is a programming paradigm that organizes code into objects, 

which are instances of classes. A class is a blueprint for creating objects that defines its 

properties and behavior. Properties are the attributes that describe an object, while behavior 

refers to the actions that an object can perform. 

 

In OOP, the key concepts are encapsulation, inheritance, and polymorphism. Encapsulation 

refers to the practice of hiding the internal workings of an object and exposing only its interface 

to the outside world. Inheritance enables a new class to be based on an existing class, inheriting 

its properties and behavior. Polymorphism allows different objects to be treated as if they were 

of the same type, by using a common interface. 

 

Python and Object-Oriented Programming 

 

Python is a fully object-oriented language, which means that everything in Python is an object. 

Even the simplest data types like integers and strings are objects. This makes Python well-suited 

for OOP, as developers can easily create and manipulate objects using Python's built-in features. 

 

Creating a Class in Python 

 

In Python, a class is defined using the class keyword, followed by the class name and a colon. 

Here's an example of a simple class definition: 

 
class Rectangle: 

    def __init__(self, length, width): 

        self.length = length 

        self.width = width 

         

    def area(self): 

        return self.length * self.width 

 

This class, called Rectangle, has two properties length and width, and one method area. The 

__init__ method is a special method called a constructor that is called when a new object is 
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created. It initializes the length and width properties of the object. The area method calculates the 

area of the rectangle. 

 

Creating an Object in Python 

 

To create an object of a class in Python, you simply call the class like a function and pass in the 

required arguments. Here's an example: 

 
my_rectangle = Rectangle(5, 3) 

 

This creates a new object of the Rectangle class with a length of 5 and a width of 3. We can 

access the properties of this object using dot notation, like this: 

 
print(my_rectangle.length)  # Output: 5 

print(my_rectangle.width)   # Output: 3 

 

We can also call the area method of the object: 

 
print(my_rectangle.area())  # Output: 15 

Inheritance in Python 

 

In Python, inheritance is accomplished using the super function, which allows a subclass to 

inherit properties and behavior from its parent class. Here's an example: 

 
class Square(Rectangle): 

    def __init__(self, side): 

        super().__init__(side, side) 

 

This class, called Square, inherits from the Rectangle class and overrides the __init__ method to 

accept a single argument, side, which is used to set both the length and width properties of the 

object to the same value. 

 

use of interfaces. An interface is a blueprint for a set of methods that a class must implement in 

order to be considered a particular type. Python does not have built-in support for interfaces, but 

they can be simulated using abstract base classes (ABCs) from the abc module. 

 

Here's an example of an ABC that defines an interface for a shape: 
 

from abc import ABC, abstractmethod 

 

class Shape(ABC): 

    @abstractmethod 

    def area(self): 

        pass 
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This class, called Shape, is an abstract base class that defines an interface for a shape. It has one 

abstract method, area, which must be implemented by any class that inherits from it. 

 

Here's an example of a class that implements the Shape interface: 

 
class Circle(Shape): 

    def __init__(self, radius): 

        self.radius = radius 

     

    def area(self): 

        return 3.14 * self.radius ** 2 

 

This class, called Circle, inherits from the Shape class and implements the area method. It 

calculates the area of a circle using the formula pi * r^2. 

 

Using Python's OOP Capabilities in SAS 

 

SAS users can leverage Python's OOP capabilities by using SAS's PROC PYTHON procedure, 

which allows SAS code to call Python code. This enables users to create Python classes and 

objects from within SAS, and use them to perform various tasks such as data manipulation, 

statistical analysis, and machine learning. 

 

Here's an example of using the PROC PYTHON procedure to create a Python class and object 

from within SAS: 

 
proc python; 

  submit; 

    class Rectangle: 

        def __init__(self, length, width): 

            self.length = length 

            self.width = width 

         

        def area(self): 

            return self.length * self.width 

 

    my_rectangle = Rectangle(5, 3) 

  endsubmit; 

quit; 

 

This code creates a Rectangle class and object in Python, and initializes the object with a length 

of 5 and a width of 3. The PROC PYTHON procedure then returns the my_rectangle object to 

SAS, where it can be used in subsequent SAS code. 

 

In addition to using PROC PYTHON, SAS users can also integrate Python code directly into 

SAS code using the SASPy package. SASPy is a Python package that provides a Python 
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interface to SAS, allowing users to call SAS procedures and functions from within Python code. 

This enables users to leverage Python's OOP capabilities and SAS's analytical capabilities in the 

same codebase. 

 

Here's an example of using SASPy to call a SAS procedure from within Python code: 

 
import saspy 

 

sas = saspy.SASsession() 

sas.submit('proc means data=sashelp.iris; run;') 

sas.disconnect() 

 

This code creates a SAS session using the SASsession class from the SASPy package, and 

submits a PROC MEANS procedure on the sashelp.iris dataset. The disconnect method is then 

called to close the SAS session. 

 

Using Python's OOP capabilities in SAS can provide SAS users with a powerful set of tools for 

developing analytical solutions. By combining SAS's analytical capabilities with Python's 

flexibility and ease of use, users can develop sophisticated solutions to complex problems. 

 

Python's support for object-oriented programming makes it a powerful language for developing 

reusable and maintainable code. SAS users can take advantage of Python's OOP capabilities by 

using SAS's PROC PYTHON procedure or SASPy package to create and use Python classes and 

objects from within SAS. By combining SAS's analytical capabilities with Python's flexibility 

and ease of use, users can develop sophisticated solutions to complex problems. 

 

 

Here's an example of creating a Python class in SAS using the PROC PYTHON procedure and 

using it in SAS code: 

 
proc python; 

  submit; 

    class Rectangle: 

        def __init__(self, length, width): 

            self.length = length 

            self.width = width 

         

        def area(self): 

            return self.length * self.width 

 

  endsubmit; 

quit; 

 

data rectangle; 

  length = 5; 
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  width = 3; 

 

  proc python; 

    submit; 

      my_rectangle = Rectangle(length, width) 

    endsubmit; 

 

    out = getvalue('my_rectangle.area()'); 

  quit; 

 

  area = input(out, 8.); 

run; 

 
proc print data=rectangle; 

run; 

 

In this code, we create a Rectangle class in Python using the PROC PYTHON procedure, and 

then use it in a SAS data step to calculate the area of a rectangle with a length of 5 and a width of 

3. The SUBMIT block creates a Rectangle object with the specified length and width, and then 

calculates its area using the area() method. The GETVALUE function retrieves the result of the 

calculation from the Python session, and the INPUT function converts it to a SAS numeric value. 

Finally, the AREA variable is assigned the calculated area, and the RECTANGLE data set is 

printed to verify the result. 

 

Here's an example of using SASPy to call a SAS procedure from within Python code: 

 
import saspy 

 

sas = saspy.SASsession() 

sas.submit('proc means data=sashelp.iris; run;') 

results = sas.sasdata('MEANSOUT').to_df() 

sas.disconnect() 

 

print(results.head()) 

 

In this code, we create a SAS session using the SASsession class from the SASPy package, and 

then submit a PROC MEANS procedure on the sashelp.iris dataset. The SASDATA function 

retrieves the output of the procedure as a Pandas dataframe, and the DISCONNECT method is 

called to close the SAS session. Finally, the results are printed to verify the output. 

 

 
class SalesData: 

    def __init__(self, file): 

        self.file = file 



410 | P a g e  

 

 

        self.sas = saspy.SASsession() 

        self.sas.submit(f"data sales; set {file}; 

run;") 

     

    def total_sales(self): 

        results = self.sas.submit('proc means 

data=sales; var sales; output out=total_sales sum=; 

run;') 

        return results['total_sales'].to_df() 

 

    def sales_by_region(self): 

        results = self.sas.submit('proc sql; select 

region, sum(sales) as total_sales from sales group by 

region; quit;') 

        return results['WORK.SQL_1'].to_df() 

 

    def disconnect(self): 

        self.sas.disconnect() 

 

sales_data = SalesData('sales_data.csv') 

 

total_sales = sales_data.total_sales() 

print(f"Total sales: {total_sales['Sum'][0]}") 

 

sales_by_region = sales_data.sales_by_region() 

print(sales_by_region) 

 

sales_data.disconnect() 

 

In this code, we define a SalesData class that reads a sales data file into SAS using the 

SASsession class from SASPy. The total_sales method calculates the total sales from the data 

using a PROC MEANS procedure, and the sales_by_region method calculates the total sales by 

region using a PROC SQL procedure. Finally, the disconnect method is called to close the SAS 

session. 

 

We create an instance of the SalesData class with the filename of the sales data file, and then call 

the total_sales and sales_by_region methods to calculate the sales data.  

By using Python's OOP capabilities in SAS, SAS users can develop more flexible and 

maintainable code, and leverage the powerful analytical capabilities of both SAS and Python in 

the same codebase. 

 

this time using the SWIGSAS package to create a Python class that calls a SAS macro: 

 
import swigsas 
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class DataPrep: 

    def __init__(self, data): 

        self.data = data 

        self.sas = swigsas.SASsession() 

        self.sas.submit('%macro preprocess(data); data 

&data; set &data; if age < 18 then age_grp = "Under 

18"; else if age < 30 then age_grp = "18-29"; else if 

age < 50 then age_grp = "30-49"; else age_grp = "50+"; 

run; %mend;') 

 

    def preprocess_data(self): 

        

self.sas.submit(f'%preprocess(data={self.data});') 

        results = self.sas.sasdata('WORK.DATA').to_df() 

        return results 

 

    def disconnect(self): 

        self.sas.disconnect() 

 

data_prep = DataPrep('customer_data.csv') 

preprocessed_data = data_prep.preprocess_data() 

print(preprocessed_data.head()) 

 

data_prep.disconnect() 

 

In this code, we define a DataPrep class that preprocesses customer data by creating a new 

variable age_grp based on the age variable. The preprocessing is performed using a SAS macro 

defined using the %MACRO and %MEND statements. 

 

We create an instance of the DataPrep class with the filename of the customer data file, and then 

call the preprocess_data method to preprocess the data using the SAS macro. The SASDATA 

function retrieves the preprocessed data as a Pandas dataframe, and the results are printed to the 

console. Finally, the disconnect method is called to close the SAS session. 

 

By using Python's OOP capabilities in SAS, we can create more modular and maintainable code 

that combines the power of SAS macros with the flexibility and ease of use of Python. 

 

Here's another example of using Python's OOP capabilities in SAS, this time using the saspy 

package to create a Python class that reads in data from a SAS dataset, performs a linear 

regression, and plots the results: 

 
import saspy 

import pandas as pd 

import seaborn as sns 



412 | P a g e  

 

 

import matplotlib.pyplot as plt 

 

class RegressionAnalysis: 

    def __init__(self, dataset): 

        self.dataset = dataset 

        self.sas = saspy.SASsession() 

     

    def run_regression(self, x_vars, y_var): 

        sas_code = f"""proc reg data={self.dataset}; 

model {y_var} = {' '.join(x_vars)} / 

scatterplot=matrix; run;""" 

        results = self.sas.submit(sas_code) 

        return results 

 

    def plot_results(self, x_vars, y_var): 

        sas_code = f"""proc reg data={self.dataset}; 

model {y_var} = {' '.join(x_vars)} / outest=est; 

run;""" 

        self.sas.submit(sas_code) 

        est = self.sas.sasdata('EST').to_df() 

        sns.pairplot(pd.concat([est, 

self.sas.sasdata(self.dataset).to_df()[[y_var] + 

x_vars]], axis=1), x_vars=x_vars, y_vars=y_var) 

        plt.show() 

 

    def disconnect(self): 

        self.sas.disconnect() 

 

analysis = RegressionAnalysis('cars') 

results = analysis.run_regression(['mpg', 'weight'], 

'horsepower') 

print(results['Output'].to_string()) 

 

analysis.plot_results(['mpg', 'weight'], 'horsepower') 

 

analysis.disconnect() 

 

In this code, we define a RegressionAnalysis class that performs a linear regression on a SAS 

dataset using the PROC REG procedure. The run_regression method takes a list of predictor 

variables x_vars and a response variable y_var, and returns the results of the regression as a SAS 

output object. 

 

The plot_results method also takes x_vars and y_var, but this time it performs the regression and 

then plots the results using the seaborn and matplotlib libraries. The regression results are stored 
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in a temporary SAS dataset named EST, which is read in using the SASDATA function from 

saspy, and then concatenated with the original dataset for plotting. 

 

We create an instance of the RegressionAnalysis class with the name of the SAS dataset cars, 

and then call the run_regression method with ['mpg', 'weight'] as x_vars and horsepower as 

y_var. The results are then printed to the console using the to_string method of the SAS output 

object. Finally, the plot_results method is called to plot the regression results, and the disconnect 

method is called to close the SAS session. 

 

By using Python's OOP capabilities in SAS, we can create more flexible and customizable code 

that combines the analytical power of SAS with the visualization capabilities of Python libraries 

like seaborn and matplotlib. 

 

Here's another example of using Python's OOP capabilities in SAS, this time using the swat 

package to create a Python class that performs a logistic regression on a SAS dataset and 

calculates the accuracy of the model: 

 
import swat 

from sklearn.metrics import accuracy_score 

 

class LogisticRegression: 

    def __init__(self, dataset): 

        self.dataset = dataset 

        self.conn = swat.CAS('server', port, 

'username', 'password') 

 

    def fit(self, x_vars, y_var): 

        tbl = self.conn.CASTable(self.dataset) 

        model = tbl.logistic(target=y_var, 

inputs=x_vars) 

        return model 

 

    def predict(self, x_vars, y_var): 

        tbl = self.conn.CASTable(self.dataset) 

        model = tbl.logistic(target=y_var, 

inputs=x_vars) 

        preds = model.predict(tbl) 

        return preds 

 

    def accuracy(self, x_vars, y_var): 

        tbl = self.conn.CASTable(self.dataset) 

        model = tbl.logistic(target=y_var, 

inputs=x_vars) 

        preds = model.predict(tbl) 
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        true_vals = 

tbl[y_var].to_frame().values.ravel() 

        return accuracy_score(true_vals, preds) 

 

    def disconnect(self): 

        self.conn.close() 

 

logreg = LogisticRegression('credit') 

model = logreg.fit(['income', 'age', 'debtinc'], 

'default') 

preds = logreg.predict(['income', 'age', 'debtinc'], 

'default') 

accuracy = logreg.accuracy(['income', 'age', 

'debtinc'], 'default') 

 

print(f"Accuracy: {accuracy}") 

 

logreg.disconnect() 

 

In this code, we define a LogisticRegression class that performs a logistic regression on a SAS 

dataset using the CASTable class from swat. The fit method takes a list of predictor variables 

x_vars and a response variable y_var, and returns the fitted logistic regression model. The predict 

method also takes x_vars and y_var, but this time it uses the fitted model to make predictions on 

the input data. The accuracy method takes x_vars and y_var and calculates the accuracy of the 

model by comparing the predicted values to the true values using the accuracy_score function 

from sklearn.metrics. 

 

We create an instance of the LogisticRegression class with the name of the SAS dataset credit, 

and then call the fit method with ['income', 'age', 'debtinc'] as x_vars and default as y_var. The 

fitted model is stored in the model variable, and the predict method is called with the same 

x_vars and y_var to make predictions on the input data. The accuracy method is then called to 

calculate the accuracy of the model, and the results are printed to the console. 

 

Finally, the disconnect method is called to close the connection to the SAS server. 

 

By using Python's OOP capabilities in SAS, we can create more powerful and flexible machine 

learning models that leverage the computational power of SAS and the ease of use of Python 

libraries like sklearn. 

 

Here's another example of using OOP in Python for SAS users, this time to create a class that 

performs a linear regression and calculates the R-squared value: 

 
import swat 

 

class LinearRegression: 
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    def __init__(self, server, port, username, 

password): 

        self.conn = swat.CAS(server, port, username, 

password) 

 

    def fit(self, dataset, x_vars, y_var): 

        tbl = self.conn.CASTable(dataset) 

        model = tbl.regression(target=y_var, 

inputs=x_vars) 

        return model 

 

    def rsq(self, dataset, x_vars, y_var): 

        tbl = self.conn.CASTable(dataset) 

        model = tbl.regression(target=y_var, 

inputs=x_vars) 

        return model.Summary()['ModelInfo'].loc[0, 

'RSquare'] 

 

    def disconnect(self): 

        self.conn.close() 

 

linreg = LinearRegression('server', port, 'username', 

'password') 

model = linreg.fit('cars', ['MPG_City', 'MPG_Highway'], 

'Price') 

rsq = linreg.rsq('cars', ['MPG_City', 'MPG_Highway'], 

'Price') 

 

print(f"R-squared: {rsq}") 

 

linreg.disconnect() 

 

In this code, we define a LinearRegression class that performs a linear regression on a SAS 

dataset using the CASTable class from swat. The fit method takes the name of the SAS dataset 

dataset, a list of predictor variables x_vars, and a response variable y_var, and returns the fitted 

linear regression model. The rsq method takes the same arguments as fit, but this time it uses the 

fitted model to calculate the R-squared value of the regression. 

 

We create an instance of the LinearRegression class with the name of the SAS server, port, 

username, and password, and then call the fit method with ['MPG_City', 'MPG_Highway'] as 

x_vars and Price as y_var for the cars dataset. The fitted model is stored in the model variable, 

and the rsq method is called with the same x_vars and y_var to calculate the R-squared value of 

the regression. The results are printed to the console. 
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Finally, the disconnect method is called to close the connection to the SAS server. 

 

Here's another example of using OOP in Python for SAS users to create a class that performs 

logistic regression and evaluates the model's performance using ROC analysis: 

 
import swat 

from sklearn.metrics import roc_curve, roc_auc_score 

 

class LogisticRegression: 

    def __init__(self, server, port, username, 

password): 

        self.conn = swat.CAS(server, port, username, 

password) 

 

    def fit(self, dataset, x_vars, y_var): 

        tbl = self.conn.CASTable(dataset) 

        model = tbl.logistic(target=y_var, 

inputs=x_vars) 

        return model 

 

    def roc_curve(self, dataset, x_vars, y_var): 

        tbl = self.conn.CASTable(dataset) 

        model = tbl.logistic(target=y_var, 

inputs=x_vars) 

        preds = model.predict_prob(tbl).Prob1.values 

        fpr, tpr, _ = roc_curve(tbl[y_var].values, 

preds) 

        return fpr, tpr 

 

    def auc(self, dataset, x_vars, y_var): 

        tbl = self.conn.CASTable(dataset) 

        model = tbl.logistic(target=y_var, 

inputs=x_vars) 

        preds = model.predict_prob(tbl).Prob1.values 

        auc = roc_auc_score(tbl[y_var].values, preds) 

        return auc 

 

    def disconnect(self): 

        self.conn.close() 

 

logreg = LogisticRegression('server', port, 'username', 

'password') 
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model = logreg.fit('credit', ['Age', 'Education', 

'Gender'], 'Bad') 

fpr, tpr = logreg.roc_curve('credit', ['Age', 

'Education', 'Gender'], 'Bad') 

auc = logreg.auc('credit', ['Age', 'Education', 

'Gender'], 'Bad') 

 

print(f"AUC: {auc}") 

 

logreg.disconnect() 

 

In this code, we define a LogisticRegression class that performs logistic regression on a SAS 

dataset using the CASTable class from swat. The fit method takes the name of the SAS dataset 

dataset, a list of predictor variables x_vars, and a binary response variable y_var, and returns the 

fitted logistic regression model. The roc_curve method takes the same arguments as fit, but this 

time it uses the fitted model to calculate the false positive rate (fpr) and true positive rate (tpr) of 

the model using ROC analysis. The auc method also takes the same arguments as fit, but returns 

the area under the ROC curve (AUC) of the model. 

 

We create an instance of the LogisticRegression class with the name of the SAS server, port, 

username, and password, and then call the fit method with ['Age', 'Education', 'Gender'] as x_vars 

and Bad as y_var for the credit dataset. The fitted model is stored in the model variable, and the 

roc_curve method is called with the same x_vars and y_var to calculate the ROC curve of the 

model. The auc method is also called with the same x_vars and y_var to calculate the AUC of 

the model. The results are printed to the console. 

 

Here's another example of using OOP in Python for SAS users to create a class that performs k-

means clustering on a SAS dataset: 

 
import swat 

from sklearn.cluster import KMeans 

 

class KMeansClustering: 

    def __init__(self, server, port, username, 

password): 

        self.conn = swat.CAS(server, port, username, 

password) 

 

    def fit(self, dataset, n_clusters): 

        tbl = self.conn.CASTable(dataset) 

        X = tbl.drop(tbl.columns[0], axis=1) 

        kmeans = KMeans(n_clusters=n_clusters, 

random_state=0).fit(X) 

        tbl['cluster'] = kmeans.labels_ 
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        tbl.replace({'cluster': {i: f'Cluster {i}' for 

i in range(n_clusters)}}, inplace=True) 

        return tbl 

 

    def disconnect(self): 

        self.conn.close() 

 

kmeans = KMeansClustering('server', port, 'username', 

'password') 

clusters = kmeans.fit('iris', 3) 

 

print(clusters.head()) 

 

kmeans.disconnect() 

 

In this code, we define a KMeansClustering class that performs k-means clustering on a SAS 

dataset using the CASTable class from swat. The fit method takes the name of the SAS dataset 

dataset and the number of clusters n_clusters, and returns a new CASTable object with an 

additional column cluster that contains the cluster labels for each observation in the dataset. The 

replace method is called to convert the integer cluster labels to string labels for readability. 

 

We create an instance of the KMeansClustering class with the name of the SAS server, port, 

username, and password, and then call the fit method with 3 as n_clusters for the iris dataset. The 

resulting CASTable object with the cluster labels is stored in the clusters variable and printed to 

the console. 

 

 

Here's another example of using OOP in Python for SAS users to create a class that performs 

logistic regression on a SAS dataset: 

 
import swat 

from sklearn.linear_model import LogisticRegression 

class SASLogisticRegression: 

    def __init__(self, server, port, username, 

password): 

        self.conn = swat.CAS(server, port, username, 

password) 

 

    def fit(self, dataset, target, features): 

        tbl = self.conn.CASTable(dataset) 

        X = tbl[features] 

        y = tbl[target] 

        logreg = 

LogisticRegression(max_iter=1000).fit(X, y) 
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        return logreg 

 

    def predict(self, dataset, target, features): 

        tbl = self.conn.CASTable(dataset) 

        X = tbl[features] 

        y_pred = self.logreg.predict(X) 

        tbl['predicted'] = y_pred 

        return tbl 

 

    def disconnect(self): 

        self.conn.close() 

 

logreg = SASLogisticRegression('server', port, 

'username', 'password') 

logreg.fit('heart', 'chd', ['age', 'sbp', 'tobacco', 

'ldl']) 

predictions = logreg.predict('heart', 'chd', ['age', 

'sbp', 'tobacco', 'ldl']) 

 

print(predictions.head()) 

 

logreg.disconnect() 

 

In this code, we define a SASLogisticRegression class that performs logistic regression on a SAS 

dataset using the CASTable class from swat. The fit method takes the name of the SAS dataset 

dataset, the name of the target variable target, and a list of feature names features, and returns a 

LogisticRegression object that has been fit to the specified dataset and features. 

 

The predict method takes the same arguments as fit, but instead of returning a 

LogisticRegression object, it returns a new CASTable object with an additional column predicted 

that contains the predicted values for the target variable. 

 

We create an instance of the SASLogisticRegression class with the name of the SAS server, port, 

username, and password, and then call the fit method with ['age', 'sbp', 'tobacco', 'ldl'] as features 

for the heart dataset and chd as target. The resulting LogisticRegression object is stored in the 

logreg variable. 

 

Then, we call the predict method with the same arguments as fit, passing in logreg as an attribute 

of the SASLogisticRegression instance. The resulting CASTable object with the predicted values 

is stored in the predictions variable and printed to the console. 

 

Finally, the disconnect method is called to close the connection to the SAS server. 
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By using Python's OOP capabilities in SAS, we can easily create and reuse classes that 

encapsulate common data analysis tasks, such as regression and classification, making our data 

science projects more efficient and scalable. 

 

 

 

Regular expressions 
 

Regular expressions are a powerful tool for pattern matching and text processing in Python. They 

are a sequence of characters that define a search pattern, allowing you to find and manipulate 

text based on specific criteria. 

 

Python provides a built-in module called "re" (short for regular expressions) that allows you to 

work with regular expressions. The syntax for regular expressions in Python is similar to that of 

other programming languages, but there are some differences and nuances to be aware of. 

 

In SAS, regular expressions are not a built-in feature, but can be used through the use of external 

functions or the SAS Perl regular expression engine. However, in Python, regular expressions are 

an integral part of the language, making it easier to work with them directly. 

 

Here are some examples of how regular expressions can be used in Python: 

 

Matching a pattern in a string: 

You can use the "re.search()" function to search for a specific pattern in a string. For example, 

the following code will search for the word "Python" in the string "I love Python": 

 
import re 

 

string = "I love Python" 

match = re.search("Python", string) 

if match: 

    print("Match found!") 

 

The output will be "Match found!", indicating that the pattern was found in the string. 

 

Extracting text using regular expressions: 

Regular expressions can also be used to extract specific parts of a string. For example, if you 

have a string containing a date in the format "mm/dd/yyyy", you can use a regular expression to 

extract the year: 

 
import re 

 

string = "Today's date is 03/19/2023" 

match = re.search("\d{4}", string) 
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if match: 

    print(match.group()) 

 

The output will be "2023", which is the year extracted from the string. 

 

Replacing text using regular expressions: 

You can also use regular expressions to replace specific parts of a string with other text. For 

example, if you have a string containing the word "color", but you prefer to use the British 

spelling "colour", you can use a regular expression to replace all instances of "color" with 

"colour": 

 
import re 

 

string = "The color of the sky is blue" 

new_string = re.sub("color", "colour", string) 

print(new_string) 

 

The output will be "The colour of the sky is blue", which is the original string with the word 

"color" replaced with "colour". 

 

regular expressions are a powerful tool for pattern matching and text processing in Python. They 

are an important part of the language, and SAS users who are new to Python should take the time 

to learn how to use them effectively. With regular expressions, you can manipulate text in a wide 

variety of ways, from simple pattern matching to complex text extraction and replacement. 

 

Here are some additional examples of how regular expressions can be used in Python: 

 

Matching a pattern at the beginning or end of a string: 

You can use the "^" symbol to indicate that a pattern should match at the beginning of a string, 

and the "$" symbol to indicate that a pattern should match at the end of a string. For example, the 

following code will check if the string "Python is awesome" starts with the word "Python": 

 
import re 

 

string = "Python is awesome" 

match = re.search("^Python", string) 

if match: 

    print("Match found!") 

 

The output will be "Match found!", indicating that the pattern was found at the beginning of the 

string. 

 

Matching a pattern multiple times: 
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You can use the "*" symbol to indicate that a pattern should match zero or more times, and the 

"+" symbol to indicate that a pattern should match one or more times. For example, the following 

code will search for any sequence of digits in a string: 

 
import re 

 

string = "The price of the item is $123.45" 

matches = re.findall("\d+", string) 

print(matches) 

 

The output will be a list containing the two matches found in the string: ["123", "45"]. 

 

Using groups to extract specific parts of a match: 

You can use parentheses to create groups within a regular expression, which can be used to 

extract specific parts of a match. For example, the following code will extract the day, month, 

and year from a date string in the format "mm/dd/yyyy": 

 
import re 

 

string = "Today's date is 03/19/2023" 

match = re.search("(\d{2})/(\d{2})/(\d{4})", string) 

if match: 

    month = match.group(1) 

    day = match.group(2) 

    year = match.group(3) 

    print("Month:", month) 

    print("Day:", day) 

    print("Year:", year) 

 

The output will be: 

 
Month: 03 

Day: 19 

Year: 2023 

 

This shows how groups can be used to extract specific parts of a match and store them as 

variables for further processing. 

 

Using lookaheads and lookbehinds: 

Lookaheads and lookbehinds are zero-width assertions that allow you to match patterns based on 

what comes before or after a string, without actually including that string in the match. For 

example, the following code will match the word "Python" only if it is followed by the word 

"programming": 

 
import re 
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string = "Python programming is awesome" 

match = re.search("Python(?= programming)", string) 

if match: 

    print("Match found!") 

 

The output will be "Match found!", indicating that the pattern was found. 

 

Using alternation to match multiple patterns: 

You can use the "|" symbol to create an alternation, which allows you to match multiple patterns. 

For example, the following code will match either "cat" or "dog" in a string: 

 
import re 

 

string = "The cat and the dog are friends" 

matches = re.findall("cat|dog", string) 

print(matches) 

 

The output will be a list containing both matches found in the string: ["cat", "dog"]. 

 

Using backreferences to match repeated patterns: 

You can use backreferences to match patterns that occur multiple times within a string. A 

backreference is created by using the "" symbol followed by the group number. For example, the 

following code will match any repeated word in a string: 
 

import re 

 

string = "The quick brown fox jumps over the lazy lazy 

dog" 

matches = re.findall(r"\b(\w+)\b(?:\s+\1)+", string) 

print(matches) 

 

 

The output will be a list containing the repeated word found in the string: ["lazy"]. 

These are just a few examples of the many ways regular expressions can be used in Python. With 

a solid understanding of regular expressions. 

 

Suppose you have a text file with the following lines: 

 
Name: John Doe 

Age: 35 

Occupation: Data Analyst 

Salary: $75,000 

 

You want to extract the values for each field (i.e., "John Doe" for Name, "35" for Age, etc.) 

using regular expressions in Python. Here's how you can do it: 



424 | P a g e  

 

 

import re 

 

with open("data.txt", "r") as f: 

    contents = f.read() 

 

name_match = re.search(r"Name:\s+(\w+\s+\w+)", 

contents) 

if name_match: 

    name = name_match.group(1) 

 

age_match = re.search(r"Age:\s+(\d+)", contents) 

if age_match: 

    age = age_match.group(1) 

 

occupation_match = re.search(r"Occupation:\s+(.+)", 

contents) 

if occupation_match: 

    occupation = occupation_match.group(1) 

 

salary_match = 

re.search(r"Salary:\s+\$(\d{1,3}(?:,\d{3})*)", 

contents) 

if salary_match: 

    salary = salary_match.group(1) 

 

print("Name:", name) 

print("Age:", age) 

print("Occupation:", occupation) 

print("Salary:", salary) 

 

In this code, we first read the contents of the text file into a variable called "contents". We then 

use regular expressions to search for each field and extract its value. 

 

For the "Name" field, we use the regular expression "Name:\s+(\w+\s+\w+)" to match the field 

name followed by one or more whitespace characters, followed by the person's full name (which 

consists of one or more word characters separated by a whitespace character). The parentheses 

around the name pattern create a capture group, which we can access using the "group(1)" 

method. 

 

For the "Age" field, we use the regular expression "Age:\s+(\d+)" to match the field name 

followed by one or more whitespace characters, followed by one or more digits. Again, the 

parentheses create a capture group that we can access using "group(1)". 

For the "Occupation" field, we use the regular expression "Occupation:\s+(.+)" to match the field 

name followed by one or more whitespace characters, followed by one or more of any character 
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(except a newline). This allows us to capture the entire occupation string, which may contain 

spaces or other special characters. 

 

For the "Salary" field, we use the regular expression "Salary:\s+$(\d{1,3}(?:,\d{3})*)" to match 

the field name followed by one or more whitespace characters, followed by a dollar sign, 

followed by one or more digits (which may be separated by commas to indicate thousands). The 

parentheses around the digit pattern create a capture group, which we can access using 

"group(1)". 

 

Suppose you have a dataset that includes phone numbers in various formats, such as "(123) 456-

7890", "123-456-7890", "123.456.7890", and "1234567890". You want to standardize all of 

these phone numbers to the format "(123) 456-7890". Here's how you can use regular 

expressions to accomplish this: 

 
import re 

 

# Define a regular expression pattern that matches 

various phone number formats 

phone_pattern = r"\b(?:\+1[-. ])?\(?(\d{3})\)?[-. 

]?(\d{3})[-. ]?(\d{4})\b" 

 

# Load a list of phone numbers from a file 

with open("phone_numbers.txt", "r") as f: 

    phone_numbers = f.read().splitlines() 

 

# Iterate over each phone number and standardize it 

for i, phone_number in enumerate(phone_numbers): 

    match = re.search(phone_pattern, phone_number) 

    if match: 

        standardized_number = "({}) {}-

{}".format(match.group(1), match.group(2), 

match.group(3)) 

        phone_numbers[i] = standardized_number 

 

# Write the standardized phone numbers back to the file 

with open("standardized_phone_numbers.txt", "w") as f: 

    f.write("\n".join(phone_numbers)) 

 

In this code, we first define a regular expression pattern called "phone_pattern" that matches 

various phone number formats. The pattern includes optional "+" and "1" characters (for 

international and U.S. numbers, respectively), optional parentheses around the area code, and 

optional separators between the three number groups (i.e., hyphens, periods, or spaces). 

 

We then load a list of phone numbers from a file, iterate over each phone number using a for 

loop, and search for a match to the phone_pattern using the "search" method of the "re" module. 
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If a match is found, we extract the three number groups using the "group" method and format 

them into the standardized format using string formatting. 

 

Finally, we overwrite the original phone_numbers.txt file with the standardized phone numbers 

by joining the list of phone numbers with newline characters and writing them to the file using 

the "write" method. 

 

Another common use case for regular expressions in Python is data validation. Regular 

expressions can be used to check whether a string matches a certain pattern or format, such as an 

email address, a URL, or a credit card number. 

 

Here's an example of using regular expressions for email validation: 

 
import re 

 

def validate_email(email): 

    pattern = r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-

zA-Z]{2,}$" 

    return re.match(pattern, email) 

 

# Test the function with some example emails 

print(validate_email("john.doe@example.com"))   # Match 

print(validate_email("jane@example."))          # No 

match 

print(validate_email("bob@company.co.uk"))      # Match 

 

In this code, we define a function called "validate_email" that takes an email address as input and 

returns a match object if the email matches the pattern, or None if it doesn't match. The regular 

expression pattern matches any string that starts with one or more alphanumeric characters, dots, 

underscores, percent signs, or plus or hyphen symbols, followed by an "@" symbol, followed by 

one or more alphanumeric characters, dots, or hyphens, followed by a dot and two or more 

alphabetic characters. 

 

We then test the function with some example email addresses to verify that it correctly identifies 

matches and non-matches. 

 

Suppose you have a list of file names that include a version number in the format "vX.Y.Z", 

where X, Y, and Z are integers representing the major, minor, and patch versions, respectively. 

You want to extract the version numbers from each file name and sort the files in descending 

order of version number. Here's how you can use regular expressions to accomplish this: 

 
import re 

 

# Define a regular expression pattern that matches 

version numbers 
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version_pattern = r"v(\d+)\.(\d+)\.(\d+)" 

 

# Load a list of file names 

file_names = ["file_v1.0.0.txt", "file_v1.2.3.csv", 

"file_v2.1.0.txt", "file_v1.3.2.docx"] 

 

# Extract the version numbers from each file name and 

store them in a dictionary 

versions = {} 

for file_name in file_names: 

    match = re.search(version_pattern, file_name) 

    if match: 

        major, minor, patch = match.groups() 

        version_number = int(major) * 10000 + 

int(minor) * 100 + int(patch) 

        versions[file_name] = version_number 

 

# Sort the file names by version number in descending 

order 

sorted_files = sorted(file_names, key=lambda x: 

versions.get(x, 0), reverse=True) 

# Print the sorted file names 

print(sorted_files) 

 

In this code, we first define a regular expression pattern called "version_pattern" that matches 

version numbers in the format "vX.Y.Z", where X, Y, and Z are one or more digits. We then load 

a list of file names and iterate over each file name using a for loop. 

 

For each file name, we search for a match to the version_pattern using the "search" method of 

the "re" module. If a match is found, we extract the major, minor, and patch version numbers 

from the match using the "groups" method, convert them to integers, and calculate a version 

number as a single integer in the format "XXYYZZ" (where XX, YY, and ZZ are two-digit 

representations of the major, minor, and patch version numbers, respectively). 

 

We then store the version number for each file name in a dictionary called "versions", using the 

file name as the key and the version number as the value. 

 

Finally, we sort the file names by version number in descending order using the "sorted" function 

and a lambda function that retrieves the version number from the "versions" dictionary. The 

sorted_files list contains the sorted file names, in descending order of version number. 

 

This example demonstrates how regular expressions can be used to extract information from 

unstructured data and use it for sorting and other processing tasks. By using regular expressions 

to identify patterns in the file names, we can automate the process of extracting version numbers 

and sorting the files, which can save time and effort in our data management tasks. 
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Suppose you have a large text file containing a mixture of text and numbers, and you want to 

extract all the numbers from the file and calculate their sum. Here's how you can use regular 

expressions to accomplish this: 
 

import re 

 

# Define a regular expression pattern that matches 

numbers 

number_pattern = r"\d+" 

 

# Load the text file and read its contents 

with open("text_file.txt", "r") as f: 

    text = f.read() 

 

# Extract all the numbers from the text using the 

"findall" method of the "re" module 

numbers = re.findall(number_pattern, text) 

 

# Convert the numbers to integers and calculate their 

sum 

sum_of_numbers = sum(map(int, numbers)) 

 

# Print the sum of the numbers 

print("The sum of the numbers in the file is:", 

sum_of_numbers) 

 

In this code, we first define a regular expression pattern called "number_pattern" that matches 

one or more digits (\d+). We then load a text file called "text_file.txt" using the "open" function, 

and read its contents into a string variable called "text". 

 

Next, we use the "findall" method of the "re" module to extract all the numbers from the text file 

that match the "number_pattern". The "findall" method returns a list of all non-overlapping 

matches in the string, so we get a list of all the numbers in the file. 

 

We then use the "map" function to convert each number in the list to an integer using the "int" 

function, and calculate the sum of the numbers using the "sum" function. 

 

Suppose you have a CSV file containing a list of employees with their names, ages, and salaries, 

and you want to filter the employees based on their ages and salaries. Here's how you can use 

regular expressions to accomplish this: 

 
import re 

import csv 
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# Define regular expression patterns that match ages 

and salaries 

age_pattern = r"\d+" 

salary_pattern = r"\d+,\d+" 

 

# Load the CSV file and read its contents 

with open("employee_data.csv", "r") as f: 

    reader = csv.reader(f) 

    next(reader)  # Skip the header row 

    rows = list(reader) 

 

# Define a function to filter the rows based on age and 

salary criteria 

def filter_rows(rows, age_min, age_max, salary_min, 

salary_max): 

    filtered_rows = [] 

    for row in rows: 

        age = int(re.search(age_pattern, 

row[1]).group()) 

        salary = int(re.sub(",", "", 

re.search(salary_pattern, row[2]).group())) 

        if age_min <= age <= age_max and salary_min <= 

salary <= salary_max: 

            filtered_rows.append(row) 

    return filtered_rows 

 

# Filter the rows based on age and salary criteria 

filtered_rows = filter_rows(rows, 25, 40, 40000, 60000) 

 

# Print the filtered rows 

for row in filtered_rows: 

    print(row) 

 

In this code, we first define regular expression patterns called "age_pattern" and "salary_pattern" 

that match ages (one or more digits) and salaries (digits separated by commas), respectively. 

 

We then load a CSV file called "employee_data.csv" using the "csv" module, and read its 

contents into a list of rows called "rows". We skip the header row using the "next" function to 

avoid filtering based on column headers. 

 

Next, we define a function called "filter_rows" that takes the list of rows and age and salary 

criteria as arguments, and returns a filtered list of rows that meet the criteria. For each row, we 

extract the age and salary values using regular expressions, convert them to integers, and check if 
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they fall within the specified age and salary ranges. If the row meets the criteria, we append it to 

a new list called "filtered_rows". 

 

Finally, we call the "filter_rows" function with the specified age and salary criteria, and print the 

resulting list of filtered rows to the console. 

 

This example demonstrates how regular expressions can be used in conjunction with other data 

processing modules (such as "csv") to filter and analyze structured data. By identifying patterns 

in the data using regular expressions, we can automate the process of data extraction and 

filtering, which can save time and effort in our data management tasks. 

 

 

 

Working with dates and times 
 

Python has a robust library for working with dates and times called datetime. In this section, we 

will explore the basics of working with dates and times in Python, specifically from a SAS user's 

perspective. 

 

First, we'll start with the datetime module. This module provides classes for working with dates 

and times. The main classes are datetime, date, time, timedelta, and tzinfo. The datetime class 

represents a specific date and time, while the date class represents only a date, and the time class 

represents only a time. timedelta is a duration, which represents the difference between two dates 

or times. tzinfo represents time zone information. 

 

Let's start with the datetime class. Here is an example of creating a datetime object for a specific 

date and time: 

 
import datetime 

 

dt = datetime.datetime(2023, 3, 19, 9, 30) 

 

This creates a datetime object for March 19th, 2023 at 9:30 AM. We can access various parts of 

this datetime object using attributes such as year, month, day, hour, minute, second, and 

microsecond: 
 

print(dt.year) # Output: 2023 

print(dt.month) # Output: 3 

print(dt.day) # Output: 19 

print(dt.hour) # Output: 9 

print(dt.minute) # Output: 30 
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We can also format the datetime object as a string using the strftime method. Here is an example: 

 
print(dt.strftime('%Y-%m-%d %H:%M:%S')) # Output: 2023-

03-19 09:30:00 

 

Now, let's look at the date class. Here is an example of creating a date object: 

 
import datetime 

 

d = datetime.date(2023, 3, 19) 

 

This creates a date object for March 19th, 2023. We can access various parts of this date object 

using attributes such as year, month, and day: 

 
print(d.year) # Output: 2023 

print(d.month) # Output: 3 

print(d.day) # Output: 19 

 

We can also format the date object as a string using the strftime method. Here is an example: 

 
 

print(d.strftime('%Y-%m-%d')) # Output: 2023-03-19 

 

Now, let's look at the time class. Here is an example of creating a time object: 

 
import datetime 

 

t = datetime.time(9, 30) 

 

This creates a time object for 9:30 AM. We can access various parts of this time object using 

attributes such as hour, minute, second, and microsecond: 

 
print(t.hour) # Output: 9 

print(t.minute) # Output: 30 

We can also format the time object as a string using the strftime method. Here is an example: 

 
print(t.strftime('%H:%M:%S')) # Output: 09:30:00 

 

Now, let's look at timedelta. timedelta is a duration, which represents the difference between two 

dates or times. Here is an example of creating a timedelta object: 

 
import datetime 

 

td = datetime.timedelta(days=2, hours=3, minutes=30) 
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This creates a timedelta object for two days, three hours, and thirty minutes. We can perform 

arithmetic with timedelta objects: 

 
dt1 = datetime.datetime(2023, 3, 19, 9, 30) 

dt2 = dt1 + td 

print(dt2.strftime('%Y-%m-%d %H:% 

 

 

In addition to the basic classes and methods for working with dates and times in Python, there 

are some other useful libraries and tools that can be helpful for SAS users. 

 

One such library is dateutil, which provides some additional functionality for working with dates 

and times, such as parsing and formatting strings into datetime objects, handling time zones, and 

calculating differences between dates and times. Here is an example of using dateutil to parse a 

string into a datetime object: 

 
from dateutil.parser import parse 

 

dt_str = '2023-03-19 09:30:00' 

dt = parse(dt_str) 

print(dt) # Output: 2023-03-19 09:30:00 

 

This can be especially useful when working with data in different formats, or when reading data 

from external sources. 

 

Another tool that can be helpful for working with dates and times is Pandas, which is a popular 

library for data analysis in Python. Pandas provides some additional functionality for working 

with dates and times, such as creating time series data, resampling data at different frequencies, 

and performing date-based calculations. Here is an example of using Pandas to create a time 

series: 

 
import pandas as pd 

 

dates = pd.date_range(start='2023-03-19', end='2023-03-

25', freq='D') 

print(dates) # Output: DatetimeIndex(['2023-03-19', 

'2023-03-20', '2023-03-21', '2023-03-22', '2023-03-23', 

'2023-03-24', '2023-03-25'], dtype='datetime64[ns]', 

freq='D') 

 

This creates a time series of dates from March 19th, 2023 to March 25th, 2023 at a daily 

frequency. 

 

Lastly, it's worth noting that working with time zones can be a complex topic, and there are a 

number of libraries and tools available for handling time zones in Python. One popular library is 
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pytz, which provides a database of time zones and tools for working with them. Here is an 

example of using pytz to create a datetime object with a specific time zone: 

 
import pytz 

 

tz = pytz.timezone('US/Eastern') 

dt = datetime.datetime(2023, 3, 19, 9, 30, tzinfo=tz) 

 

print(dt.strftime('%Y-%m-%d %H:%M:%S %Z')) # Output: 2023-03-19 09:30:00 EDT 

 

This creates a datetime object for March 19th, 2023 at 9:30 AM in the US/Eastern time zone, and 

formats the output with the time zone abbreviation (EDT). 

 

Example 1: Calculating differences between dates 
 

import datetime 

 

# Define two dates 

date1 = datetime.date(2023, 3, 19) 

date2 = datetime.date(2023, 3, 22) 

 

# Calculate the difference between the two dates 

delta = date2 - date1 

print(delta.days) # Output: 3 

This code defines two dates using the datetime.date() 

method, and calculates the difference between them 

using the - operator. The result is a 

datetime.timedelta object, which represents the 

difference between two dates or times in days, seconds, 

and microseconds. 

 

Example 2: Working with time zones 

python 

Copy code 

import datetime 

import pytz 

 

# Define a datetime object with a time zone 

tz = pytz.timezone('US/Eastern') 

dt = datetime.datetime(2023, 3, 19, 9, 30, tzinfo=tz) 

 

# Convert to a different time zone 

new_tz = pytz.timezone('US/Pacific') 

new_dt = dt.astimezone(new_tz) 
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print(new_dt.strftime('%Y-%m-%d %H:%M:%S %Z')) # 

Output: 2023-03-19 06:30:00 PDT 

 

This code defines a datetime object for March 19th, 2023 at 9:30 AM in the US/Eastern time 

zone, and uses the pytz.timezone() method to define a new time zone (US/Pacific). The 

astimezone() method is used to convert the datetime object to the new time zone, and the 

strftime() method is used to format the output with the time zone abbreviation (PDT). 

 

Example 3: Resampling time series data with Pandas 
 

import pandas as pd 

 

# Define a time series of hourly data 

dates = pd.date_range(start='2023-03-19', end='2023-03-

20', freq='H') 

data = pd.DataFrame({'value': [1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

23, 24]}, index=dates) 

 

# Resample to daily data 

daily_data = data.resample('D').sum() 

print(daily_data) 

 

This code defines a time series of hourly data using the pd.date_range() and pd.DataFrame() 

methods. The resample() method is used to resample the data at a daily frequency (using the D 

argument), and the sum() method is used to calculate the daily sum of the data. The output is a 

new Pandas DataFrame with the daily data. 

 

 

Example 4: Parsing dates from strings 
 

import datetime 

 

# Define a string representing a date 

date_string = '2023-03-19' 

 

# Parse the date string into a datetime object 

date_obj = datetime.datetime.strptime(date_string, '%Y-

%m-%d') 

 

# Print the datetime object 

print(date_obj) # Output: 2023-03-19 00:00:00 
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This code uses the strptime() method from the datetime module to parse a date string into a 

datetime object. The %Y, %m, and %d format codes are used to specify the year, month, and day 

components of the date string. 

 

Example 5: Generating date ranges with NumPy 
 

import numpy as np 

 

# Generate a range of dates 

dates = np.arange('2023-03-19', '2023-03-25', 

dtype='datetime64[D]') 

 

# Print the dates 

print(dates) # Output: ['2023-03-19' '2023-03-20' 

'2023-03-21' '2023-03-22' '2023-03-23' '2023-03-24'] 

 

This code uses the arange() function from the numpy module to generate a range of dates 

between March 19th and March 24th, 2023. The dtype argument is set to datetime64[D] to 

indicate that the dates should be represented as numpy datetime objects with a day-level 

resolution. 

 

Example 6: Converting timestamps to dates 
 

import pandas as pd 

 

# Define a timestamp representing a date and time 

timestamp = pd.Timestamp('2023-03-19 12:30:00') 

 

# Convert the timestamp to a date 

date = timestamp.date() 

 

# Print the date 

print(date) # Output: 2023-03-19 

 

This code defines a pandas timestamp object representing March 19th, 2023 at 12:30 PM, and 

uses the date() method to extract the date component of the timestamp as a datetime.date object. 

 

Example 7: Working with time intervals 
 

import pandas as pd 

 

# Define a time interval 

interval = pd.Timedelta(hours=3, minutes=30) 
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# Define two datetimes 

start = pd.Timestamp('2023-03-19 10:00:00') 

end = start + interval 

 

# Print the start and end datetimes 

print(start) # Output: 2023-03-19 10:00:00 

print(end) # Output: 2023-03-19 13:30:00 

 

This code defines a time interval of 3 hours and 30 minutes using the pd.Timedelta() method, 

and uses it to calculate the end time based on a start time of 10:00 AM on March 19th, 2023. The 

result is two pandas.Timestamp objects representing the start and end times of the interval. 

Example 8: Formatting dates and times with strftime() 
 

import datetime 

 

# Define a datetime object 

dt = datetime.datetime(2023, 3, 19, 12, 30) 

 

# Format the datetime object as a string 

date_string = dt.strftime('%Y-%m-%d') 

time_string = dt.strftime('%H:%M:%S') 

 

# Print the formatted strings 

print(date_string) # Output: 2023-03-19 

print(time_string) # Output: 12:30:00 

 

This code defines a datetime object representing March 19th, 2023 at 12:30 PM, and uses the 

strftime() method to format the date and time components as strings. The %Y, %m, %d, %H, 

%M, and %S format codes are used to specify the year, month, day, hour, minute, and second 

components of the datetime object. 

 

Example 9: Working with time deltas 
 

import datetime 

 

# Define two datetime objects 

dt1 = datetime.datetime(2023, 3, 19, 12, 30) 

dt2 = datetime.datetime(2023, 3, 20, 10, 0) 

 

# Calculate the difference between the two datetimes 

delta = dt2 - dt1 

 

# Print the difference as a time delta object 

print(delta) # Output: 0:17:30 
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This code defines two datetime objects representing March 19th, 2023 at 12:30 PM and March 

20th, 2023 at 10:00 AM, and uses the - operator to calculate the time difference between them. 

The result is a datetime.timedelta object representing 17 hours and 30 minutes. 

 

Example 10: Working with time zones 
 

import pytz 

import datetime 

 

# Define a timezone 

timezone = pytz.timezone('US/Eastern') 

 

# Define a datetime object in UTC 

utc_time = datetime.datetime(2023, 3, 19, 12, 30, 

tzinfo=pytz.utc) 

 

# Convert the datetime object to the specified timezone 

local_time = utc_time.astimezone(timezone) 

 

# Print the local time 

print(local_time) # Output: 2023-03-19 08:30:00-04:00 

 

This code uses the pytz module to work with time zones. It defines a timezone object for 

US/Eastern, creates a datetime object representing 12:30 PM UTC on March 19th, 2023 with 

tzinfo=pytz.utc, and uses the astimezone() method to convert the datetime object to the specified 

timezone. The result is a datetime object representing 8:30 AM Eastern Daylight Time (EDT) on 

March 19th, 2023. 

 

Example 11: Working with business days 
 

import pandas as pd 

 

# Define a date range 

date_range = pd.date_range('2023-03-01', '2023-03-31', 

freq='B') 

 

# Print the business days in the date range 

print(date_range) # Output: DatetimeIndex(['2023-03-

01', '2023-03-02', '2023-03-03', '2023-03-06', 

#                                         '2023-03-07', 

'2023-03-08', '2023-03-09', '2023-03-10', 

#                                         '2023-03-13', 

'2023-03-14', '2023-03-15', '2023-03-16', 
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#                                         '2023-03-17', 

'2023-03-20', '2023-03-21', '2023-03-22', 

#                                         '2023-03-23', 

'2023-03-24', '2023-03-27', '2023-03-28', 

#                                         '2023-03-29', 

'2023-03-30', '2023-03-31'], 

#                                        

dtype='datetime64[ns]', freq='B') 

 

This code uses the pandas module to generate a date range representing business days in March 

2023. The freq='B' argument is used to specify that the frequency should be business days only 

(i.e. weekdays, excluding holidays). 

 

Example 12: Converting between time zones 
 

import pytz 

import datetime 

 

# Define a datetime object in US/Eastern timezone 

eastern_time = datetime.datetime(2023, 3, 19, 12, 30, 

tzinfo=pytz.timezone('US/Eastern')) 

 

# Convert the datetime object to UTC 

utc_time = eastern_time.astimezone(pytz.utc) 

 

# Print the UTC time 

print(utc_time) # Output: 2023-03-19 16:30:00+00:00 

 

This code defines a datetime object representing 12:30 PM Eastern Daylight Time (EDT) on 

March 19th, 2023, and uses the astimezone() method to convert it to UTC. The result is a 

datetime object representing 4:30 PM Coordinated Universal Time (UTC) on March 19th, 2023. 

 

 

 

Web scraping 
 

Web scraping involves extracting data from websites and saving it in a structured format. This 

can be useful for a variety of applications, such as gathering data for research or monitoring 

prices on e-commerce sites. Python provides a range of libraries and tools that make web 

scraping relatively easy, even for beginners. 

 

One popular library for web scraping in Python is BeautifulSoup. This library provides a range 

of tools for parsing HTML and XML documents, allowing you to extract specific information 

from web pages. 
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To get started with web scraping in Python, you first need to install the necessary libraries. You 

can do this using the pip package manager, which is included with most Python installations. 

Open a terminal or command prompt and type the following command: 

 
pip install beautifulsoup4 requests 

 

This command installs the BeautifulSoup and requests libraries, which we will use for web 

scraping. 

 

Once you have installed the necessary libraries, you can start scraping data from websites. The 

first step is to send a request to the website you want to scrape. You can do this using the 

requests library, which provides a simple interface for sending HTTP requests. 

 

Here's an example of how to send a request to the Wikipedia homepage: 

 
import requests 

 

response = 

requests.get("https://en.wikipedia.org/wiki/Main_Page") 

 

This code sends a GET request to the Wikipedia homepage and stores the response in a variable 

called response. 

 

The next step is to parse the HTML content of the response using BeautifulSoup. Here's an 

example of how to do this: 

 
from bs4 import BeautifulSoup 

 

soup = BeautifulSoup(response.content, "html.parser") 

 

This code creates a BeautifulSoup object called soup, which contains the parsed HTML content 

of the response. 

 

Once you have the parsed HTML content, you can extract specific information from the web 

page using BeautifulSoup's find and find_all methods. For example, if you wanted to extract the 

text of the first heading on the Wikipedia homepage, you could use the following code: 

 
heading = soup.find("h1", {"class": "firstHeading"}) 

print(heading.text) 

 

This code uses the find method to locate the first h1 element on the page with a class of 

firstHeading. It then prints the text of this element. 

 

Of course, web scraping can be more complex than this simple example. You may need to 

navigate through multiple pages, interact with forms or other user input, or handle dynamic 
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content. However, the basic principles remain the same: send a request to the website, parse the 

HTML content, and extract the information you need. 

 

Python provides a range of powerful tools for web scraping, including the BeautifulSoup library. 

By learning how to use these tools, SAS users can expand their skills and unlock new 

possibilities for data analysis and research. 

 

Scraping HTML with BeautifulSoup 

 

As we mentioned earlier, BeautifulSoup is a powerful library for parsing HTML and XML 

documents. Let's see some more examples of how we can use it for web scraping. 

 

Finding Elements by Tag Name 

 

One of the most common ways to extract information from an HTML document is to find 

elements by their tag name. For example, to extract all the links from a webpage, we can use the 

find_all() method with the tag name a: 

 
from bs4 import BeautifulSoup 

import requests 

 

url = 

"https://en.wikipedia.org/wiki/Python_(programming_lang

uage)" 

response = requests.get(url) 

soup = BeautifulSoup(response.content, "html.parser") 

 

links = soup.find_all("a") 

 

for link in links: 

    print(link.get("href")) 

 

This code sends a GET request to the Wikipedia page for Python and uses BeautifulSoup to 

parse the HTML content. It then finds all the a elements on the page and prints the value of their 

href attribute. 

 

Finding Elements by Class Name or ID 

 

In addition to tag names, we can also find elements by their class name or ID. For example, to 

extract the text of the first heading on the Wikipedia page for Python, we can use the find() 

method with the class name firstHeading: 

 
from bs4 import BeautifulSoup 

import requests 
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url = 

"https://en.wikipedia.org/wiki/Python_(programming_lang

uage)" 

response = requests.get(url) 

soup = BeautifulSoup(response.content, "html.parser") 

 

heading = soup.find("h1", {"class": "firstHeading"}) 

print(heading.text) 

 

This code finds the h1 element with the class name firstHeading and prints its text. 

 

Navigating the HTML Document 

 

Sometimes we need to navigate the HTML document to find the elements we're interested in. 

For example, to extract the list of contributors from the Wikipedia page for Python, we need to 

navigate through several levels of nested elements: 

 
from bs4 import BeautifulSoup 

import requests 

 

url = 

"https://en.wikipedia.org/wiki/Python_(programming_lang

uage)" 

response = requests.get(url) 

soup = BeautifulSoup(response.content, "html.parser") 

 

contributors_list = soup.find("div", {"class": "mw-

parser-output"}) \ 

                      .find("div", {"class": 

"hatnote"}).find_next_sibling() \ 

                      .find("div", {"class": 

"hlist"}).find_all("a") 

 

for contributor in contributors_list: 

    print(contributor.text) 

 

This code finds the div element with the class name mw-parser-output, then finds the next sibling 

that contains the contributors list, and finally extracts the text of all the a elements inside the div 

with class name hlist. 

 

Scraping Dynamic Content 

 

Sometimes the content we're interested in is generated dynamically by JavaScript or other client-

side code. In these cases, we need to use a different approach to scrape the data. 
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One way to scrape dynamic content is to use a headless browser like Selenium, which allows us 

to simulate user interactions and scrape the HTML content after the JavaScript has executed. 

Here's an example of how to use Selenium to scrape the Google search results for a query: 

 
from selenium import webdriver 

from bs4 import BeautifulSoup 

 

url = "https://www.google.com/search?q=python" 

driver = webdriver.Chrome() 

driver.get(url) 

 

html = driver.page_source 

soup = BeautifulSoup(html, "html.parser") 

 

results = soup.find_all("div", {"class": "g"}) 

 

for result in results: 

    title = result.find("h3", {"class": "LC20lb 

DKV0Md"}).text 

    link = result.find("a")["href"] 

    description = result.find("span", {"class": 

"aCOpRe"}).text 

 

    print(title) 

    print(link) 

    print(description) 

    print() 

 

This code uses Selenium to open the Google search results page for the query "python". It then 

retrieves the HTML content of the page and passes it to BeautifulSoup for parsing. Finally, it 

extracts the title, link, and description of each search result and prints them. 

 

here's another example of web scraping in Python, this time using the popular library Scrapy: 

 
import scrapy 

 

class QuotesSpider(scrapy.Spider): 

    name = "quotes" 

    start_urls = [ 

        'http://quotes.toscrape.com/page/1/', 

    ] 

 

    def parse(self, response): 

        for quote in response.css('div.quote'): 
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            yield { 

                'text': 

quote.css('span.text::text').get(), 

                'author': quote.css('span 

small::text').get(), 

                'tags': quote.css('div.tags 

a.tag::text').getall(), 

            } 

 

        next_page = response.css('li.next 

a::attr(href)').get() 

        if next_page is not None: 

            yield response.follow(next_page, 

self.parse) 

 

This code defines a Scrapy spider called QuotesSpider that starts at the URL 

"http://quotes.toscrape.com/page/1/". It uses CSS selectors to extract the text, author, and tags of 

each quote on the page and yields them as a dictionary. It then looks for a link to the next page of 

quotes and follows it recursively until there are no more pages to scrape. 

 

Scrapy is a powerful and versatile web scraping framework that provides a high-level interface 

for building spiders and handling requests and responses. It also supports advanced features like 

middleware, pipelines, and item pipelines that allow for fine-grained control over the scraping 

process. 

 

here's another example of web scraping in Python using the BeautifulSoup library, this time for 

extracting data from a table on a webpage: 

 
import requests 

from bs4 import BeautifulSoup 

 

url = 

"https://en.wikipedia.org/wiki/List_of_largest_selling_

pharmaceutical_products" 

response = requests.get(url) 

soup = BeautifulSoup(response.content, "html.parser") 

 

table = soup.find("table", {"class": "wikitable 

sortable"}) 

rows = table.find_all("tr") 

 

for row in rows: 

    cells = row.find_all("td") 

    if len(cells) == 5: 
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        rank = cells[0].text.strip() 

        name = cells[1].text.strip() 

        company = cells[2].text.strip() 

        revenue = cells[3].text.strip() 

        year = cells[4].text.strip() 

        print(rank, name, company, revenue, year) 

 

This code scrapes the Wikipedia page for the list of largest selling pharmaceutical products and 

extracts the data from the table using BeautifulSoup. It iterates over each row in the table, 

extracts the data from each cell, and prints it to the console. 

 

Web scraping with Python and BeautifulSoup can be used for a wide range of applications, such 

as collecting data for research, monitoring prices and availability of products, analyzing social 

media sentiment, and much more. With its powerful and flexible syntax, Python makes it easy to 

automate the process of web scraping and extract valuable insights from online sources. 

 

However, it's important to be aware of legal and ethical considerations when scraping data from 

websites, such as respecting the website's terms of use and robots.txt file, avoiding excessive 

requests that can overload servers, and ensuring that the data is used responsibly and ethically. 

 

example of web scraping in Python, this time using the Scrapy library to extract data from 

multiple pages of a website: 

 
import scrapy 

 

class QuotesSpider(scrapy.Spider): 

    name = "quotes" 

    start_urls = [ 

        'http://quotes.toscrape.com/page/1/', 

    ] 

 

    def parse(self, response): 

        for quote in response.css('div.quote'): 

            yield { 

                'text': 

quote.css('span.text::text').get(), 

                'author': quote.css('span 

small::text').get(), 

                'tags': quote.css('div.tags 

a.tag::text').getall(), 

            } 

 

        next_page = response.css('li.next 

a::attr(href)').get() 



445 | P a g e  

 

 

        if next_page is not None: 

            yield response.follow(next_page, 

self.parse) 

 

This code defines a Scrapy spider called QuotesSpider that starts at the URL 

"http://quotes.toscrape.com/page/1/". It uses CSS selectors to extract the text, author, and tags of 

each quote on the page and yields them as a dictionary. It then looks for a link to the next page of 

quotes and follows it recursively until there are no more pages to scrape. 

 

Scrapy is a powerful and versatile web scraping framework that provides a high-level interface 

for building spiders and handling requests and responses. It also supports advanced features like 

middleware, pipelines, and item pipelines that allow for fine-grained control over the scraping 

process. 

 

 

 

Introduction to Django 
 

Django is a high-level web framework that allows developers to build web applications quickly 

and efficiently. It follows the Model-View-Controller (MVC) architectural pattern, where the 

Model represents the data and business logic, the View represents the user interface, and the 

Controller handles user requests and updates the Model and View accordingly. 

 

Django is written in Python and is based on several Python libraries, including the ORM (Object-

Relational Mapping) library, which makes it easy to work with databases, and the templating 

engine, which simplifies the creation of HTML pages. 

 

To get started with Django, you need to have Python installed on your system. You can 

download Python from the official website (https://www.python.org/downloads/) and install it on 

your computer. Once you have Python installed, you can install Django using pip, the Python 

package manager, by running the following command in the terminal or command prompt: 

 

 
pip install Django 

 

After installing Django, you can create a new Django project by running the following command 

in the terminal or command prompt: 

 
django-admin startproject projectname 

 

This will create a new Django project with the given name. You can then navigate to the project 

directory and run the development server using the following command: 

 
python manage.py runserver 
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This will start the development server, and you can access your Django application by visiting 

http://localhost:8000/ in your web browser. 

 

Creating a Django Application: 

 

In Django, a project is composed of one or more applications, which are reusable components 

that can be used in multiple projects. To create a new Django application, you can run the 

following command in the terminal or command prompt: 

 
python manage.py startapp appname 

 

This will create a new Django application with the given name. The application will contain 

several files, including models.py, views.py, and urls.py, which we will discuss in more detail 

below. 

 

Creating Models: 

 

In Django, a model represents a database table, and it is defined in models.py using a Python 

class that inherits from django.db.models.Model. For example, let's create a model for a simple 

blog post: 

 
from django.db import models 

 

class Post(models.Model): 

    title = models.CharField(max_length=200) 

    content = models.TextField() 

    pub_date = models.DateTimeField(auto_now_add=True) 

 

In this example, we have defined a Post model with three fields: title, content, and pub_date. The 

title field is a CharField with a maximum length of 200 characters, the content field is a 

TextField, and the pub_date field is a DateTimeField that is automatically set to the current date 

and time when a new post is created. 

 

Creating Views: 

 

In Django, a view is a Python function that takes a request object and returns a response object. 

Views are defined in views.py and are responsible for processing user requests and returning the 

appropriate response. For example, let's create a view that displays a list of all blog posts: 
from django.shortcuts import render 

from .models import Post 

 

def post_list(request): 

    posts = Post.objects.all() 

    return render(request, 'blog/post_list.html', 

{'posts': posts}) 
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In this example, we have defined a post_list view that retrieves all blog posts from the database 

using the Post.objects.all() method and passes them to the template for rendering. The render() 

function takes three arguments: the request object, the name of the template to render 

('blog/post_list.html'), and a context dictionary containing any additional variables that should be 

available in the template (in this case, the posts variable). 

 

Creating Templates: 

 

In Django, a template is an HTML file that defines the structure and content of a web page. 

Templates are stored in the templates directory of each application and are rendered by views 

using the render() function. For example, let's create a template for the post_list view: 

 
{% extends 'base.html' %} 

 

{% block content %} 

    <h1>Blog Posts</h1> 

    {% for post in posts %} 

        <h2>{{ post.title }}</h2> 

        <p>{{ post.content }}</p> 

        <p>{{ post.pub_date }}</p> 

    {% endfor %} 

{% endblock %} 

 

In this example, we have defined a template that extends a base template ('base.html') and 

defines a content block. The content block contains a heading and a loop that iterates over all 

blog posts and displays their title, content, and publication date. 

 

Creating URLs: 

 

In Django, a URL is a pattern that maps a URL to a view. URLs are defined in urls.py and are 

responsible for routing user requests to the appropriate view. For example, let's create a URL 

pattern for the post_list view: 

 
from django.urls import path 

from .views import post_list 

 

urlpatterns = [ 

    path('', post_list, name='post_list'), 

] 

 

In this example, we have defined a URL pattern that matches the root URL ('') and maps it to the 

post_list view using the path() function. The name parameter specifies the name of the URL 

pattern, which can be used to reverse the URL in templates and views.  

 

Django Project Structure: 
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Before we move forward with examples, let's discuss the project structure in Django. 

 

A typical Django project contains multiple applications, each responsible for a specific 

functionality. Here's how a Django project structure looks like: 

 
project/ 

├── app1/ 

│   ├── __init__.py 

│   ├── admin.py 

│   ├── apps.py 

│   ├── models.py 

│   ├── tests.py 

│   └── views.py 

├── app2/ 

│   ├── __init__.py 

│   ├── admin.py 

│   ├── apps.py 

│   ├── models.py 

│   ├── tests.py 

│   └── views.py 

├── project/ 

│   ├── __init__.py 

│   ├── settings.py 

│   ├── urls.py 

│   └── wsgi.py 

└── manage.py 

 

As you can see, each application contains a models.py file, which defines the database schema 

and business logic, and a views.py file, which defines the views and request handlers. 

 

Now that you have an idea about Django project structure, let's move forward with some 

examples. 

 

Example 1: Creating a simple "Hello World" app 

 

To create a simple "Hello World" app, follow these steps: 

Step 1: Create a new Django project 

 

Open the terminal/command prompt and type the following command to create a new Django 

project: 

 

 
django-admin startproject helloworld 

 

This will create a new Django project with the name "helloworld". 
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Step 2: Create a new Django app 

 

Now, create a new Django app using the following command: 

 

 
python manage.py startapp hello 

 

This will create a new Django app named "hello". 

 

Step 3: Write views and URLs 

 

Create a new file named views.py in the hello app and add the following code: 

 
from django.http import HttpResponse 

 

def hello(request): 

    return HttpResponse("Hello, world!") 

 

This defines a view function named "hello" that returns a simple "Hello, world!" message. 

 

Now, create a new file named urls.py in the hello app and add the following code: 

 
from django.urls import path 

from . import views 

 

urlpatterns = [ 

    path('', views.hello, name='hello'), 

] 

This maps the root URL ('/') to the "hello" view. 

 

Step 4: Register the app 

 

Open the project settings file (settings.py) and add the "hello" app to the INSTALLED_APPS 

list: 

 
INSTALLED_APPS = [ 

    # ... 

    'hello', 

] 

 

Step 5: Run the app 

 

Finally, start the development server using the following command: 

 
python manage.py runserver 
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Visit http://localhost:8000/ in your web browser, and you should see the "Hello, world!" 

message. 

 

Example 2: Creating a blog app 

 

To create a blog app, follow these steps: 

 

Step 1: Create a new Django app 

 

Create a new Django app named "blog" using the following command: 

 
python manage.py startapp blog 

 

Step 2: Define the database schema 

 

In the blog app's models.py file, define the database schema as follows: 

 
from django.db import models 

 

class Post(models.Model): 

    title = models.CharField(max_length=200) 

    content = models.TextField() 

    pub_date = models.DateTimeField(auto_now_add=True) 

 

    def __str__(self): 

        return self.title 

 

This defines a Post model with three fields: title, content, and pub_date. 

 

 

 

Creating a web application with Django 
 

Django is a web framework written in Python. It helps in building web applications quickly and 

easily. Django follows the Model-View-Controller (MVC) architecture which makes it easy to 

separate the presentation layer from the logic layer. In this tutorial, we will build a web 

application with Django using Python for SAS Users. We will start by setting up a Django 

project and then create a simple web application. 

 

Prerequisites: 

 

Before we start building the web application, we need to install Django. We can do this by 

running the following command: 

 



451 | P a g e  

 

 

pip install Django 

Creating a Django Project: 

 

To create a new Django project, we need to run the following command: 

 
django-admin startproject project_name 

 

Replace project_name with the name of your project. This command will create a new directory 

with the given project name and will contain the following files and directories: 

 

manage.py: This file is used to manage the Django project. We can use it to create database 

tables, start the development server, run tests, etc. 

 

project_name/: This directory contains the settings and configuration files for the Django project. 

 

Creating a Django App: 

 

Now that we have created a Django project, we can create a new Django app using the following 

command: 

 
python manage.py startapp app_name 

 

Replace app_name with the name of your app. This command will create a new directory with 

the given app name and will contain the following files and directories: 

 

models.py: This file contains the database models for the app. 

 

views.py: This file contains the views (or controllers) for the app. 

 

templates/: This directory contains the HTML templates for the app. 

 

static/: This directory contains the static files (CSS, JavaScript, images) for the app. 

 

Defining Models: 

 

In Django, a model is a Python class that represents a database table. We can define models in 

the models.py file of our app. For this tutorial, we will create a simple model to store information 

about customers. 

 
from django.db import models 

 

class Customer(models.Model): 

    name = models.CharField(max_length=100) 

    email = models.EmailField() 

    address = models.CharField(max_length=200) 
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    phone = models.CharField(max_length=20) 

 

In the above code, we have defined a Customer model with four fields: name, email, address, and 

phone. The name field is a CharField with a maximum length of 100 characters. The email field 

is an EmailField which stores an email address. The address field is a CharField with a 

maximum length of 200 characters. The phone field is a CharField with a maximum length of 20 

characters. 

 

Defining Views: 

 

In Django, a view is a Python function that takes a request and returns a response. We can define 

views in the views.py file of our app. For this tutorial, we will create a simple view to display a 

list of customers. 
 

from django.shortcuts import render 

from .models import Customer 

 

def customer_list(request): 

    customers = Customer.objects.all() 

    return render(request, 'customer_list.html', 

{'customers': customers}) 

 

In the above code, we have defined a customer_list view which retrieves all the customers from 

the database and passes them to the customer_list.html template. The render function is used to 

render the template with the given context. 

 

Creating Templates: 

 

In Django, a template is an HTML file that contains placeholders for dynamic content. We can 

create templates in the templates/ directory of our app. For this tutorial, we will create a simple 

template to display the list of customers. 
<!DOCTYPE html> 

<html> 

<head> 

    <title>Customer List</title> 

</head> 

<body> 

    <h1>Customer List</h1> 

    <ul> 

        {% for customer in customers %} 

        <li>{{ customer.name }} - {{ customer.email 

}}</li> 

        {% endfor %} 

    </ul> 

</body> 
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</html> 

 

In the above code, we have defined a template that displays a list of customers. The {% for %} 

loop is used to iterate over the list of customers and display their names and email addresses. 

 

Configuring URLs: 

 

In Django, URLs are mapped to views using URL patterns. We can define URL patterns in the 

urls.py file of our app. For this tutorial, we will create a simple URL pattern to map the root URL 

to the customer_list view. 

 
from django.urls import path 

from .views import customer_list 

 

urlpatterns = [ 

    path('', customer_list, name='customer_list'), 

] 

 

In the above code, we have defined a URL pattern that maps the root URL ('') to the 

customer_list view. The name parameter is used to give the URL pattern a name that can be used 

to reverse the URL later. 

 

 

 

Creating a REST API 
 

Python has become a popular programming language for data analysis and machine learning. Its 

ease of use and versatility have made it a go-to language for data science tasks, including 

building REST APIs. In this tutorial, we'll cover how to build a REST API in Python, with a 

focus on SAS users who may be new to Python. 

 

Prerequisites 

 

To follow along with this tutorial, you should have a basic understanding of Python, as well as 

an understanding of REST APIs and HTTP requests. You should also have Python 3.x installed 

on your machine. 

 

Step 1: Set Up Your Environment 

 

First, we need to set up our environment. Open your preferred IDE or text editor, such as 

PyCharm or VS Code. Create a new Python file and name it something like "app.py". 

 

Next, we need to install the necessary packages. We'll be using the Flask framework to build our 

API. Open a terminal and type the following command to install Flask: 
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pip install flask 

 

Step 2: Import Dependencies 

 

In your Python file, import the necessary dependencies. We'll be using Flask to build our API, so 

we'll import Flask along with the jsonify module, which we'll use to return JSON responses: 

 
from flask import Flask, jsonify 

 

Step 3: Set Up Your Flask App 

 

Now that we've imported the necessary dependencies, let's set up our Flask app. Create a new 

instance of the Flask class: 

 
app = Flask(__name__) 

 

We've named our app "app", but you can name it whatever you like. 

 

Step 4: Define Your Endpoints 

 

Next, we'll define our endpoints. Endpoints are the URLs that clients can use to interact with our 

API. In this tutorial, we'll define two endpoints: one to return a list of users and one to return a 

single user by ID. 

 

To define our endpoints, we'll use the @app.route decorator, which tells Flask which URL to 

map to the function that follows it. 
 

@app.route('/users', methods=['GET']) 

def get_users(): 

    users = [ 

        { 

            'id': 1, 

            'name': 'John Doe', 

            'email': 'john.doe@example.com' 

        }, 

        { 

            'id': 2, 

            'name': 'Jane Doe', 

            'email': 'jane.doe@example.com' 

        } 

    ] 

    return jsonify({'users': users}) 

 

@app.route('/users/<int:user_id>', methods=['GET']) 

def get_user(user_id): 
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    user = { 

        'id': user_id, 

        'name': 'John Doe', 

        'email': 'john.doe@example.com' 

    } 

    return jsonify(user) 

 

The first endpoint returns a list of users in JSON format. The second endpoint returns a single 

user by ID. 

 

Step 5: Run Your Flask App 

 

Finally, we'll run our Flask app. Add the following code to the bottom of your Python file: 

 
if __name__ == '__main__': 

    app.run(debug=True) 

 

This tells Flask to run the app in debug mode. To start the app, run your Python file from the 

command line: 

 
python app.py 

 

You should see output similar to the following: 

 
* Running on http://127.0.0.1:5000/ (Press CTRL+C to 

quit) 

 

This means that your app is running and listening for requests on port 5000. Open a web browser 

and navigate to http://127.0.0.1:5000/users. You should see a JSON response containing a list of 

users. 

 

Step 6: Interact with Your API 

 

Now that our API is up and running, let's interact with it using Python. We'll use the requests 

package to make HTTP requests to our API. 

 

First, let's get a list of users. Add the following code to your Python file: 

 
import requests 

 

response = requests.get('http://127.0.0.1:5000/users') 

 

if response.status_code == 200: 

    users = response.json()['users'] 

    print(users) 
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else: 

    print('Error:', response.status_code) 

 

This code sends a GET request to the /users endpoint and prints the list of users if the response is 

successful. 

 

Next, let's get a single user. Add the following code to your Python file: 

 
import requests 

 

response = 

requests.get('http://127.0.0.1:5000/users/1') 

 

if response.status_code == 200: 

    user = response.json() 

    print(user) 

else: 

    print('Error:', response.status_code) 

 

This code sends a GET request to the /users/1 endpoint and prints the user with ID 1 if the 

response is successful. 

 

1. Add POST, PUT, and DELETE endpoints - In addition to GET endpoints, you can add 

endpoints for creating, updating, and deleting resources. You can use the Flask request 

object to get data from the client and the Flask abort function to return error messages. 

2. Use a database - In our example, we hardcoded the user data in our Python code. In a 

real-world scenario, you'd likely store your data in a database. You can use a Python 

database library, such as SQLAlchemy or pymongo, to interact with your database. 

3. Add authentication and authorization - You can add authentication and authorization to 

your API to ensure that only authorized users can access certain endpoints. Flask has 

several extensions that can help you implement authentication and authorization, such as 

Flask-Login and Flask-JWT. 

4. Add validation - You can add validation to your API to ensure that the data sent by the 

client is valid. You can use a Python validation library, such as Cerberus or WTForms, to 

validate the data. 

5. Deploy your API - Once you've built your API, you can deploy it to a web server so that 

it can be accessed by clients over the internet. There are several web hosting services that 

support Python, such as Heroku and AWS Elastic Beanstalk. 

 

Building a REST API in Python is a powerful tool for SAS users to add to their skillset. It allows 

for easy integration of Python-based analysis and modeling with other software systems. With 

these tips and tricks, you can take your API development to the next level and create robust and 

scalable APIs. 
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Next steps for SAS users who want to 

continue learning Python 
 

Python is a popular programming language that is rapidly gaining traction in the world of data 

science and analytics. Many SAS users are beginning to explore Python as a complementary tool 

to SAS, and to leverage its powerful data manipulation, visualization, and machine learning 

capabilities. 

 

If you are a SAS user interested in learning Python, there are many resources available to help 

you get started. Here are some next steps you can take to continue your Python learning journey: 

 

Install Python: Before you can start learning Python, you'll need to have it installed on your 

computer. You can download Python for free from the official Python website 

(https://www.python.org/downloads/). There are also pre-packaged distributions like Anaconda 

(https://www.anaconda.com/products/individual) that come with many of the commonly used 

Python libraries for data science. 

 

Familiarize yourself with Python syntax: While there are some similarities between SAS and 

Python syntax, there are also many differences. A good place to start is with a basic Python 

tutorial or course, such as Codecademy's Python course 

(https://www.codecademy.com/learn/learn-python) or DataCamp's Introduction to Python 

(https://www.datacamp.com/courses/intro-to-python-for-data-science). 

Learn how to manipulate data in Python: One of the most powerful features of Python is its 

ability to manipulate data using packages like Pandas and NumPy. SAS users will find many 

similarities between these Python packages and SAS data manipulation techniques. The Pandas 

documentation (https://pandas.pydata.org/docs/) and NumPy documentation 

(https://numpy.org/doc/stable/) are great resources to get started. 

 

Explore data visualization in Python: Python has many powerful data visualization libraries, such 

as Matplotlib, Seaborn, and Plotly. These libraries can be used to create sophisticated charts and 

graphs that can help you gain insights from your data. The Matplotlib documentation 

(https://matplotlib.org/stable/contents.html) and Seaborn documentation 

(https://seaborn.pydata.org/tutorial.html) are great resources to get started. 

 

Dive into machine learning with Python: Python has become a popular language for machine 

learning, with libraries such as Scikit-learn, TensorFlow, and PyTorch. These libraries can be 

used to build predictive models, classify data, and perform other machine learning tasks. The 

Scikit-learn documentation (https://scikit-learn.org/stable/user_guide.html) is a great resource to 

get started with machine learning in Python. 

 

Connect Python with SAS: Python and SAS can work together seamlessly, with the SASPy 

library providing a way to execute SAS code from within Python. This can be particularly useful 

for SAS users who want to leverage Python's machine learning capabilities while still using SAS 
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for data preparation and reporting. The SASPy documentation 

(https://sassoftware.github.io/saspy/index.html) is a great resource to get started. 

 

Join a Python community: There are many online communities dedicated to Python and data 

science, such as the Python subreddit (https://www.reddit.com/r/Python/) and the Data Science 

Central community (https://www.datasciencecentral.com/). Joining a community can be a great 

way to learn from others, get feedback on your work, and stay up-to-date on the latest 

developments in Python and data science. 

 

One of the benefits of learning Python as a SAS user is the ability to take advantage of the many 

Python libraries and packages available for data analysis and machine learning. These libraries, 

such as Pandas, NumPy, Matplotlib, Scikit-learn, and TensorFlow, can help you perform 

complex data manipulations, create sophisticated visualizations, and build predictive models. 

Many of these libraries are open-source and have active communities of developers and users, 

which means that they are constantly being updated and improved. 

 

Another benefit of learning Python as a SAS user is the ability to work with big data. While SAS 

is a powerful tool for data analysis, it can struggle with very large datasets. Python, on the other 

hand, can handle large datasets more efficiently and can work seamlessly with distributed 

computing platforms like Apache Spark. By learning Python, SAS users can expand their data 

analysis capabilities and tackle more complex data challenges. 

 

In addition to its technical capabilities, learning Python can also be beneficial for your career as a 

data analyst or data scientist. Python is one of the most popular programming languages in the 

world, and is widely used in the data science industry. By adding Python to your skillset, you 

may be able to qualify for more job opportunities and advance your career. 

 

Here's a longer example of Python code that could be useful for SAS users: 

 
# Import necessary libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LinearRegression 

 

# Read in data from SAS 

sas_data = pd.read_sas('sas_data.sas7bdat') 

 

# Filter data to include only males 

male_data = sas_data[sas_data['gender'] == 'M'] 

 

# Create a new variable for BMI 

male_data['bmi'] = male_data['weight'] / 

(male_data['height'] / 100) ** 2 
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# Plot BMI against age 

plt.scatter(male_data['age'], male_data['bmi']) 

plt.xlabel('Age') 

plt.ylabel('BMI') 

plt.title('BMI by Age for Males') 

plt.show() 

 

# Create a linear regression model for predicting BMI 

based on age 

lr = LinearRegression() 

X = male_data[['age']] 

y = male_data['bmi'] 

lr.fit(X, y) 

 

# Print the coefficients of the model 

print(lr.coef_, lr.intercept_) 

 

# Use the model to predict BMI for a 30-year-old male 

predicted_bmi = lr.predict([[30]]) 

print(predicted_bmi) 

 

In this example, we start by importing several useful libraries for data analysis, including Pandas, 

NumPy, Matplotlib, and Scikit-learn. We then use Pandas' read_sas function to read in a SAS 

data file called sas_data.sas7bdat and store it in a variable called sas_data. We filter the data to 

include only males and create a new variable for BMI using the weight and height variables in 

the data. We then use Matplotlib to create a scatter plot of BMI against age for males. 

 

Next, we use Scikit-learn's LinearRegression class to create a linear regression model for 

predicting BMI based on age. We fit the model using the age and BMI variables from the male 

data, and then print out the coefficients of the model (i.e., the slope and intercept of the 

regression line). Finally, we use the model to predict the BMI of a 30-year-old male, and print 

out the result. 

 

This example demonstrates how Python can be used to perform sophisticated data analysis tasks 

that may be difficult or impossible to do with SAS alone. By combining the data manipulation 

capabilities of Pandas with the visualization and machine learning capabilities of Matplotlib and 

Scikit-learn, SAS users can expand their data analysis toolkit and take on more complex data 

challenges. 

 

Reading and writing data 
 

# Read data from a CSV file 

import pandas as pd 

df = pd.read_csv('data.csv') 
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# Write data to a CSV file 

df.to_csv('output.csv', index=False) 

 

This code demonstrates how to read data from a CSV file using Pandas' read_csv function, and 

how to write data to a CSV file using the to_csv method. 

 

Data manipulation with Pandas 
 

# Subset data based on a condition 

male_data = df[df['gender'] == 'M'] 

 

# Calculate a new variable using existing variables 

df['bmi'] = df['weight'] / (df['height'] / 100) ** 2 

 

# Group data by a variable and calculate summary 

statistics 

age_salary_mean = df.groupby('age')['salary'].mean() 

 

These examples demonstrate some of the data manipulation capabilities of Pandas, including 

subsetting data based on a condition, creating a new variable using existing variables, and 

grouping data by a variable and calculating summary statistics. 

 

Data visualization with Matplotlib 
 

# Create a scatter plot 

import matplotlib.pyplot as plt 

plt.scatter(df['age'], df['salary']) 

plt.xlabel('Age') 

plt.ylabel('Salary') 

plt.title('Salary by Age') 

plt.show() 

 

# Create a bar chart 

counts = df['gender'].value_counts() 

plt.bar(counts.index, counts.values) 

plt.xlabel('Gender') 

plt.ylabel('Count') 

plt.title('Gender Distribution') 

plt.show() 

 

These examples demonstrate how to create a scatter plot and a bar chart using Matplotlib, two of 

the most common types of data visualizations. 

 

Machine learning with Scikit-learn 
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# Split data into training and testing sets 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(df[['age', 'salary']], df['gender'], 

test_size=0.2) 

 

# Create a logistic regression model 

from sklearn.linear_model import LogisticRegression 

lr = LogisticRegression() 

lr.fit(X_train, y_train) 

 

# Make predictions on the testing set 

y_pred = lr.predict(X_test) 

 

# Calculate accuracy of the model 

from sklearn.metrics import accuracy_score 

accuracy = accuracy_score(y_test, y_pred) 

print(accuracy) 

 

This code demonstrates how to split data into training and testing sets using Scikit-learn's 

train_test_split function, how to create a logistic regression model using Scikit-learn's 

LogisticRegression class, how to make predictions on the testing set, and how to calculate the 

accuracy of the model using Scikit-learn's accuracy_score function. 

 

Reading and writing data with SQL 
 

# Read data from a SQL database 

import pandas as pd 

import sqlite3 

conn = sqlite3.connect('data.db') 

df = pd.read_sql_query("SELECT * FROM mytable", conn) 

 

# Write data to a SQL database 

df.to_sql('output', conn, if_exists='replace', 

index=False) 

 

This code demonstrates how to read data from a SQLite database using Pandas' read_sql_query 

function, and how to write data to a SQLite database using the to_sql method. 

 

Data manipulation with NumPy 
 

# Calculate the mean of an array 

import numpy as np 

arr = np.array([1, 2, 3, 4, 5]) 
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mean = np.mean(arr) 

 

# Subset an array based on a condition 

subset = arr[arr > 3] 

 

# Create a new array using broadcasting 

new_arr = arr * 2 

 

These examples demonstrate some of the data manipulation capabilities of NumPy, including 

calculating the mean of an array, subsetting an array based on a condition, and creating a new 

array using broadcasting. 

Data visualization with Seaborn 
 

# Create a scatter plot with a regression line 

import seaborn as sns 

sns.regplot(x='age', y='salary', data=df) 

 

# Create a box plot 

sns.boxplot(x='gender', y='salary', data=df) 

 

These examples demonstrate how to create a scatter plot with a regression line and a box plot 

using Seaborn, two popular data visualization libraries. 

 

Machine learning with Keras 
 

# Split data into training and testing sets 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(df[['age', 'salary']], df['gender'], 

test_size=0.2) 

 

# Create a neural network model 

import keras 

from keras.models import Sequential 

from keras.layers import Dense 

model = Sequential() 

model.add(Dense(10, input_dim=2, activation='relu')) 

model.add(Dense(1, activation='sigmoid')) 

model.compile(loss='binary_crossentropy', 

optimizer='adam', metrics=['accuracy']) 

 

# Train the model 

model.fit(X_train, y_train, epochs=50, batch_size=32) 
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# Evaluate the model on the testing set 

score = model.evaluate(X_test, y_test) 

print(score[1]) 

 

This code demonstrates how to split data into training and testing sets using Scikit-learn's 

train_test_split function, how to create a neural network model using Keras, how to train the 

model, and how to evaluate the model on the testing set using Keras' evaluate method. 
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                                             THE END 


