
1 | P a g e

Real-Time Embedded Systems

Development with FreeRTOS and STM32

- Arden Vernon

2 | P a g e

ISBN: 9798391340744

Inkstall Solutions LLP.

3 | P a g e

Real-Time Embedded Systems Development with

FreeRTOS and STM32

A Comprehensive Guide to Building Reliable and Efficient Real-Time Embedded

Systems using FreeRTOS and STM32 Microcontrollers

Copyright © 2023 Inkstall Solutions

All rights reserved. No part of this book many be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the publisher,

excepting in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information

presented. However, the information contained in this book is sold without warranty, either express

or implied. Neither the author, nor Inkstall Educare, and its dealers and distributors will be held

liable for any damages caused or alleged to be caused directly or indirectly by this book.

Inkstall Educare has endeavoured to provide trademark information about all the companies and

products mentioned in this book by the appropriate use of capitals. However, Inkstall Educare

cannot guarantee the accuracy of this information.

First Published: April 2023

Published by Inkstall Solutions LLP.
www.inkstall.us

Images used in this book are being borrowed, Inkstall doesn’t hold any Copyright on the images

been used. Questions about photos should be directed to:
contact@inkstall.com

http://www.inkstall.us/

4 | P a g e

About Author:

Arden Vernon

Arden Vernon is a seasoned embedded systems developer with over 10 years of experience in the

field. He specializes in real-time operating systems, microcontroller programming, and firmware

development. Arden has a Bachelor's degree in Electrical Engineering and a Master's degree in

Computer Engineering.

Arden has worked for several leading companies in the embedded systems industry, where he has

designed and developed a wide range of products, including consumer electronics, medical

devices, and industrial automation systems. He has extensive experience with various

microcontrollers, including ARM Cortex-M-based STM32 MCUs.

In addition to his professional work, Arden is a passionate educator and has taught numerous

courses on embedded systems development, microcontroller programming, and real-time

operating systems. He is also an active contributor to the open-source community and has

developed several popular libraries and tools for embedded systems development.

Arden's latest book, "Real-Time Embedded Systems Development with FreeRTOS and STM32,"

is a comprehensive guide to building reliable and efficient real-time embedded systems using

FreeRTOS and STM32 microcontrollers. It covers everything from the basics of real-time systems

to advanced topics such as task synchronization, interrupt handling, and memory management.

With this book, Arden aims to provide readers with the knowledge and skills needed to develop

high-quality real-time embedded systems.

5 | P a g e

Table of Contents

Chapter 1:

Introduction to RTOS and Microcontrollers
1. Overview of Real-time Operating Systems (RTOS)

• Definition and characteristics of RTOS

• Types of RTOS and their applications

• Comparison with general-purpose operating systems

2. Introduction to Microcontrollers (MCUs)

• Definition and architecture of MCUs

• Types of MCUs and their features

• Comparison with microprocessors and SoCs

3. Differences between RTOS and other operating systems

• Kernel design and structure

• Memory management and allocation

• Task and interrupt handling mechanisms

4. Advantages of using an RTOS with MCUs

• Multitasking and concurrency support

• Real-time responsiveness and determinism

• Resource utilization and optimization

5. Choosing the right MCU for your project

• Criteria for selecting an MCU

• Popular MCU families and their characteristics

• Factors affecting the MCU performance and cost

6. Introduction to FreeRTOS and SEGGER debug tools

• Overview of FreeRTOS and its features

• Introduction to SEGGER debug tools and their benefits

7. Setting up the development environment

• Installing the required software and tools

• Configuring the development environment for FreeRTOS and STM32 MCUs

• Testing the setup with a simple application

6 | P a g e

Chapter 2:

FreeRTOS Architecture and Concepts
1. FreeRTOS Kernel Architecture

• Design and structure of FreeRTOS kernel

• Components of FreeRTOS kernel (tasks, scheduler, memory manager, etc.)

• Interaction between the kernel and application code

2. Task management and scheduling

• Task creation and deletion

• Task states and transitions

• Task scheduling algorithms and policies

3. Synchronization and inter-task communication

• Semaphores and mutexes for resource sharing

• Queues and pipes for message passing

• Event flags and notifications for signaling

4. Memory management

• Heap and stack memory allocation

• Memory allocation schemes and strategies

• Memory protection and safety mechanisms

5. Interrupt handling

• Interrupt service routine (ISR) and its structure

• Interrupt nesting and priority levels

• Interrupt-safe FreeRTOS API calls

6. Timer management

• Types of timers and their applications

• Configuring and using timers in FreeRTOS

• Timer synchronization and accuracy

7. FreeRTOS configuration options

• Overview of FreeRTOS configuration options

• Tuning the configuration for your project needs

• Best practices for FreeRTOS configuration

8. Debugging FreeRTOS applications with SEGGER tools

• Debugging techniques and tools for FreeRTOS

• Using SEGGER tools for real-time debugging and analysis

• Troubleshooting common FreeRTOS issues

7 | P a g e

Chapter 3:

Getting Started with STM32 MCUs and

FreeRTOS
1. Introduction to STM32 MCUs

• Overview of STM32 MCUs and their features

• STM32 MCU families and their characteristics

• Comparison with other MCU families

2. Setting up the development environment for STM32 MCUs

• Installing the required software and drivers

• Configuring the development environment for STM32 MCUs

• Testing the setup with a simple application

3. Introduction to the STM32CubeMX software

• Overview of STM32CubeMX and its features

• Creating a new project with STM32CubeMX

• Configuring the STM32 peripherals and features

4. Creating a FreeRTOS project with STM32CubeMX

• Creating a FreeRTOS task in STM32CubeMX

• Configuring the FreeRTOS kernel options

• Generating the project code and configuration files

5. Understanding the generated code and configuration files

• Analysis of the generated code and configuration files

• Overview of the project structure and files

• Understanding the FreeRTOS kernel and task code

• Analyzing the STM32 peripheral configuration code

6. Building and debugging the project with SEGGER tools

• Building the project with a cross-compiler

• Flashing the project code to the STM32 MCU

• Debugging the project code with SEGGER tools

• Analyzing the project performance and resource usage

8 | P a g e

Chapter 4:

Task Management with FreeRTOS

1. Creating and deleting tasks

• Task creation and deletion methods

• Task priority and stack size configuration

• Task parameter and argument passing

2. Task states and priorities

• Task states and transitions

• Task priorities and preemption

• Task delay and suspension

3. Task synchronization using semaphores and mutexes

• Overview of task synchronization

• Semaphore and mutex implementation in FreeRTOS

• Synchronization examples and use cases

4. Inter-task communication using queues and pipes

• Overview of inter-task communication

• Queue and pipe implementation in FreeRTOS

• Communication examples and use cases

5. Task notifications and events

• Overview of task notifications and events

• Notification and event implementation in FreeRTOS

• Use cases and examples of notifications and events

6. Idle task and stack overflow management

• Overview of the idle task and its function

• Monitoring the idle task and resource usage

• Stack overflow detection and prevention techniques

9 | P a g e

Chapter 5:

Interrupt Management with FreeRTOS
1. Introduction to interrupts

• Overview of interrupts and their function

• Types of interrupts and their sources

• Interrupt handling mechanisms and priorities

2. Configuring and handling interrupts in FreeRTOS

• Configuring interrupts in FreeRTOS projects

• Writing interrupt service routines (ISRs) in FreeRTOS

• Interrupt-safe FreeRTOS API calls and usage

3. Interrupt priorities and preemption

• Understanding interrupt priorities and their effects

• Preemption and context switching during interrupts

• Best practices for interrupt priority configuration

4. Using interrupt timers with FreeRTOS

• Overview of interrupt timers and their usage

• Configuring and using interrupt timers in FreeRTOS

• Synchronization and accuracy of interrupt timers

5. Debugging interrupt-driven applications with SEGGER tools

• Debugging techniques for interrupt-driven applications

• Using SEGGER tools for analyzing interrupt behavior

• Troubleshooting common interrupt-related issues

10 | P a g e

Chapter 6:

Memory Management with FreeRTOS
1. Introduction to memory management

• Overview of memory management and its importance

• Types of memory in embedded systems

• Memory allocation and management in FreeRTOS

2. Heap and stack memory allocation in FreeRTOS

• Overview of heap and stack memory allocation

• Memory allocation strategies and algorithms

• Configuring heap and stack in FreeRTOS

3. Memory allocation schemes and strategies

• Static memory allocation and its benefits

• Dynamic memory allocation and its challenges

• Memory allocation schemes in FreeRTOS

4. Configuring the FreeRTOS heap and stack

• Configuring the heap and stack for your project needs

• Best practices for heap and stack configuration

5. Memory usage optimization and debugging

• Techniques for optimizing memory usage in FreeRTOS

• Debugging memory-related issues with SEGGER tools

• Tools for memory profiling and analysis

6. Memory protection and safety in FreeRTOS

• Overview of memory protection and its importance

• Memory protection mechanisms in FreeRTOS

• Best practices for memory safety and protection

11 | P a g e

Chapter 7:

Communication and Synchronization with

FreeRTOS
1. Introduction to inter-task communication and synchronization

• Overview of inter-task communication and synchronization

• Types of inter-task communication and synchronization

• Benefits of using inter-task communication and synchronization

2. Synchronization primitives in FreeRTOS

• Overview of synchronization primitives

• Semaphore and mutex usage and examples

• Binary and counting semaphores usage and examples

3. Semaphores and mutexes for shared resources

• Resource sharing and protection using semaphores and mutexes

• Mutexes and priority inheritance

• Semaphores and their use cases

4. Queues and pipes for message passing

• Overview of message passing and its benefits

• Queue and pipe usage and examples

• Message buffering and synchronization

5. Mailboxes for message buffering

• Overview of mailboxes and their usage

• Mailbox configuration and examples

• Benefits and drawbacks of using mailboxes

6. Task notifications for event signaling

• Overview of task notifications and event signaling

• Notification configuration and usage in FreeRTOS

• Event signaling and synchronization using notifications

7. Debugging communication and synchronization issues with SEGGER tools

• Debugging techniques for communication and synchronization issues

• Using SEGGER tools for analyzing communication and synchronization behavior

• Troubleshooting common communication and synchronization-related issues

12 | P a g e

Chapter 8:

Timer Management with FreeRTOS
1. Introduction to timer management

• Overview of timers and their applications

• Types of timers and their features

• Benefits of using timers in FreeRTOS

2. Configuring and using timers in FreeRTOS

• Timer configuration and initialization

• Timer usage and examples

• Timer synchronization and accuracy in FreeRTOS

3. Timer types and modes

• Overview of timer types and modes

• One-shot and periodic timers and their applications

• Hardware and software timers and their features

4. Timer period and resolution

• Timer period configuration and its effects

• Timer resolution and its impact on accuracy

• Best practices for timer configuration

5. Timer synchronization and accuracy

• Overview of timer synchronization and accuracy

• Timer drift and correction mechanisms

• External clock synchronization and its benefits

6. Debugging timer-related issues with SEGGER tools

• Debugging techniques for timer-related issues

• Using SEGGER tools for analyzing timer behavior

• Troubleshooting common timer-related issues

13 | P a g e

Chapter 9:

Advanced FreeRTOS Concepts and

Techniques
1. Co-routines and their use cases

• Overview of co-routines and their benefits

• Implementing co-routines in FreeRTOS

• Use cases and examples of co-routines

2. Interrupts as tasks and interrupt nesting

• Overview of interrupts as tasks and their usage

• Interrupt nesting and its challenges

• Best practices for handling nested interrupts

3. Software timers and their applications

• Overview of software timers and their benefits

• Implementing software timers in FreeRTOS

• Use cases and examples of software timers

4. Dynamic memory allocation in FreeRTOS

• Overview of dynamic memory allocation and its challenges

• Dynamic memory allocation schemes in FreeRTOS

• Best practices for dynamic memory allocation

5. Power management and low-power modes

• Overview of power management and low-power modes

• Configuring and using low-power modes in FreeRTOS

• Best practices for power management in FreeRTOS

6. Task debugging and profiling with SEGGER tools

• Debugging and profiling techniques for FreeRTOS tasks

• Using SEGGER tools for task profiling and analysis

• Troubleshooting common task-related issues

7. FreeRTOS security and safety considerations

• Overview of security and safety considerations in FreeRTOS

• Threat modeling and risk assessment in FreeRTOS projects

8. Security and safety mechanisms in FreeRTOS

• Memory protection and isolation techniques

• Hardening the FreeRTOS kernel and application code

• Best practices for security and safety in FreeRTOS

9. Integration with other software components

• Overview of integrating FreeRTOS with other software components

• Interfacing with peripheral drivers and libraries

• Integration with third-party software components

10. Real-world project examples

• Overview of real-world projects using FreeRTOS and STM32 MCUs

• Case studies and use cases of FreeRTOS and STM32 MCUs

• Best practices and lessons learned from real-world projects

14 | P a g e

11. Future directions and trends in RTOS and microcontroller technology

• Emerging trends and innovations in RTOS and microcontroller technology

• Predictions and expectations for the future of RTOS and microcontroller technology

• Implications for developers and engineers in the RTOS and microcontroller space

15 | P a g e

Chapter 1:

Introduction to RTOS and Microcontrollers

16 | P a g e

The use of microcontrollers in embedded systems has been growing exponentially over the years.

With the increasing demand for small, efficient and low-power systems, microcontrollers have

become a popular choice for developers. However, designing and programming these systems can

be challenging due to their real-time requirements. This is where real-time operating systems

(RTOS) come into play. An RTOS is designed to manage the execution of tasks in a time-critical

environment, providing real-time response to events and allowing for the coordination of multiple

tasks.

In this chapter, we will provide an introduction to RTOS and microcontrollers. We will start by

discussing the basics of microcontrollers, including their architecture, types, and applications. We

will then delve into the various components of an RTOS, including its kernel, scheduler, and

communication mechanisms. We will also explore the advantages and disadvantages of using an

RTOS over traditional approaches for embedded systems development.

We will then introduce the concept of task scheduling and how it works in an RTOS. Task

scheduling is a critical aspect of an RTOS, as it determines the order in which tasks are executed,

the priority assigned to each task, and the allocation of system resources. We will discuss the

various scheduling algorithms used in RTOS, such as round-robin, priority-based, and preemptive

scheduling.

Next, we will cover the various communication mechanisms available in an RTOS. These include

message queues, semaphores, and event flags. We will discuss how these mechanisms work and

how they can be used to coordinate communication between tasks.

We will also discuss the importance of memory management in an RTOS. Since embedded

systems often have limited memory resources, it is crucial to have an efficient memory

management system in place. We will cover the various memory management techniques used in

RTOS, such as stack-based and heap-based memory allocation.

Finally, we will provide an overview of some popular RTOS that are available for microcontroller

development. These include FreeRTOS, µC/OS-II, and RTX. We will discuss the features,

advantages, and disadvantages of each of these RTOS.

Overview of Real-time Operating Systems

(RTOS)

Definition and characteristics of RTOS

A Real-Time Operating System (RTOS) is an operating system designed for real-time systems that

must respond to events within a strict time frame. RTOSes are commonly used in embedded

systems and other time-critical applications where response times are critical for system

functionality.

17 | P a g e

One of the most important characteristics of an RTOS is its ability to provide deterministic

behavior. This means that the operating system can guarantee that tasks and events will be executed

within a specific time frame, enabling real-time systems to meet strict timing requirements.

Another characteristic of an RTOS is its ability to support task prioritization. In a real-time system,

tasks may have different levels of priority based on their importance or time sensitivity. The RTOS

should be able to prioritize tasks and allocate system resources accordingly to ensure that critical

tasks are executed in a timely and predictable manner.

RTOSes also typically provide support for inter-task communication and synchronization. This

enables tasks to communicate and share resources in a safe and efficient manner, ensuring that the

system operates correctly and without conflicts.

Now, let's take a look at some sample code that demonstrates the characteristics of an RTOS. In

this example, we will use FreeRTOS, a popular open-source RTOS.

First, let's define two tasks with different priorities:

void task1(void* pvParameters) {

 while(1) {

 // Do something

 }

}

void task2(void* pvParameters) {

 while(1) {

 // Do something else

 }

}

void main(void) {

 xTaskCreate(task1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 xTaskCreate(task2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 vTaskStartScheduler();

18 | P a g e

}

In this code, task1 has a higher priority than task2. This means that when both tasks are ready to

execute, task1 will be executed first.

Now, let's add a delay to task1 to simulate a timing constraint:

void task1(void* pvParameters) {

 TickType_t xLastWakeTime = xTaskGetTickCount();

 while(1) {

 vTaskDelayUntil(&xLastWakeTime,

pdMS_TO_TICKS(100));

 // Do something within 100 ms

 }

}

In this code, vTaskDelayUntil is used to ensure that the task executes every 100 ms. The

xLastWakeTime variable is used to keep track of the last time the task was executed.

Finally, let's add inter-task communication and synchronization using a queue:

QueueHandle_t xQueue;

void task1(void* pvParameters) {

 TickType_t xLastWakeTime = xTaskGetTickCount();

 while(1) {

 vTaskDelayUntil(&xLastWakeTime,

pdMS_TO_TICKS(100));

 // Send a message to task2

 xQueueSend(xQueue, "Hello, Task 2!", 0);

 }

}

19 | P a g e

void task2(void* pvParameters) {

 char* pcMessage;

 while(1) {

 // Wait for a message from task1

 xQueueReceive(xQueue, &pcMessage, portMAX_DELAY);

 // Do something with the message

 }

}

void main(void) {

 xQueue = xQueueCreate(5, sizeof(char*));

 xTaskCreate(task1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 xTaskCreate(task2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 vTaskStartScheduler();

}

Types of RTOS and their applications

Real-time operating systems (RTOS) are designed to handle time-sensitive tasks and provide a

predictable and reliable response to events. There are various types of RTOS available that can be

used in different applications. In this note, we will discuss some of the commonly used types of

RTOS and their applications along with sample codes.

Hard Real-Time Operating System:

Hard real-time operating systems are designed for applications where the response time to an event

is critical. In hard real-time systems, the deadline must be met, and if it is not met, the system fails.

These systems are used in applications such as aerospace, automotive, and medical devices, where

timing is critical.

Sample code for a task in a hard real-time operating system:

20 | P a g e

void task(void)

{

 while(1)

 {

 // Perform time-critical operations here

 }

}

Soft Real-Time Operating System:

Soft real-time operating systems are designed for applications where the response time is

important, but missing a deadline does not cause system failure. These systems are used in

applications such as multimedia, gaming, and robotics.

Sample code for a task in a soft real-time operating system:

void task(void)

{

 while(1)

 {

 // Perform non-critical operations here

 }

}

Hybrid Real-Time Operating System:

Hybrid real-time operating systems are a combination of hard and soft real-time operating systems.

These systems are used in applications where some tasks require a hard real-time response, and

others require a soft real-time response.

Sample code for a task in a hybrid real-time operating system:

void task(void)

{

 while(1)

 {

 // Perform critical operations here

 // ...

21 | P a g e

 // Perform non-critical operations here

 }

}

Networked Real-Time Operating System:

Networked real-time operating systems are designed for distributed systems, where multiple

devices communicate with each other. These systems are used in applications such as industrial

automation and control systems.

Sample code for a task in a networked real-time operating system:

void task(void)

{

 while(1)

 {

 // Wait for a message from another device

 // ...

 // Process the message

 // ...

 // Send a response back to the device

 }

}

Choosing the right type of real-time operating system depends on the requirements of the

application. Hard real-time operating systems are used in critical applications where timing is

crucial, soft real-time operating systems are used in non-critical applications, hybrid real-time

operating systems are used in applications that require both hard and soft real-time responses, and

networked real-time operating systems are used in distributed systems.

Comparison with general-purpose operating systems

When it comes to operating systems, there are two main categories: general-purpose operating

systems (GPOS) and real-time operating systems (RTOS). While both types of operating systems

serve the same general purpose of managing hardware resources and providing a platform for

applications to run on, there are significant differences between them.

One of the main differences between GPOS and RTOS is the way they handle tasks and

scheduling. In GPOS, the operating system schedules tasks according to their priority and time

22 | P a g e

slice, whereas in RTOS, tasks are scheduled according to their real-time requirements, such as

deadlines and response times.

Another key difference between GPOS and RTOS is their response time. GPOS may have

unpredictable response times as they are designed to handle a wide variety of tasks, which may

not require immediate responses. On the other hand, RTOS is designed to have predictable

response times and handle real-time tasks with low latency.

Let's look at an example of code that illustrates the difference between GPOS and RTOS:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

// GPOS example

void* thread_function(void* arg) {

 printf("This is a GPOS example\n");

 return NULL;

}

int main() {

 pthread_t thread_id;

 pthread_create(&thread_id, NULL, &thread_function,

NULL);

 pthread_join(thread_id, NULL);

 return 0;

}

In this example, we create a thread using the pthread library in C. This code is an example of a

GPOS because the operating system schedules the thread according to its priority and time slice.

Now, let's look at an example of code that illustrates an RTOS:

#include <stdio.h>

23 | P a g e

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

#include <signal.h>

// RTOS example

void sig_handler(int signo) {

 printf("This is an RTOS example\n");

}

int main() {

 struct sigaction sa;

 sa.sa_handler = &sig_handler;

 sigaction(SIGALRM, &sa, NULL);

 while(1) {

 alarm(1);

 pause();

 }

 return 0;

}

In this example, we create a signal handler that is called every second using the alarm function.

This code is an example of an RTOS because it guarantees that the signal handler will be called

every second, providing a predictable response time.

While GPOS and RTOS both serve the same general purpose of managing hardware resources and

providing a platform for applications to run on, there are significant differences in the way they

handle tasks and scheduling, as well as their response times.

24 | P a g e

Introduction to Microcontrollers (MCUs)

Definition and architecture of MCUs

Microcontrollers (MCUs) are a type of embedded system that combines a microprocessor core,

memory, and input/output peripherals on a single chip. They are used in a variety of applications,

from simple household appliances to complex industrial automation systems. The architecture of

an MCU typically consists of a CPU, memory, input/output peripherals, and various

communication interfaces.

CPU:

The central processing unit (CPU) of an MCU is usually a reduced instruction set computer (RISC)

architecture, which is optimized for low-power and high-performance applications. Some popular

CPU architectures used in MCUs include ARM, AVR, and PIC.

Memory:

The memory in an MCU is used for storing program code, data, and configuration settings. There

are two types of memory in an MCU: flash memory and random access memory (RAM). Flash

memory is used for storing program code, while RAM is used for storing data and variables during

program execution. The amount of memory in an MCU can vary depending on the specific

application requirements.

Input/Output Peripherals:

Input/output peripherals are used for interfacing with the external world. They include various

types of sensors, actuators, and communication interfaces such as UART, SPI, and I2C. Some

examples of input peripherals include buttons, switches, and sensors for measuring temperature,

pressure, and motion. Output peripherals can include LEDs, LCDs, and motors for controlling

movement.

Communication Interfaces:

MCUs often come with communication interfaces to allow for data exchange between the MCU

and other devices. Some common interfaces include UART, SPI, and I2C. These interfaces can be

used for communicating with sensors and actuators or connecting to other devices in a network.

Example Code:

Here's an example code for an MCU using the Arduino programming language, which is

commonly used in many MCU-based applications.

void setup() {

25 | P a g e

 // Initialize the serial communication interface

 Serial.begin(9600);

}

void loop() {

 // Read the state of a button

 int buttonState = digitalRead(2);

 // If the button is pressed, send a message over UART

 if (buttonState == HIGH) {

 Serial.println("Button pressed!");

 }

 // Wait for a short time before checking the button

state again

 delay(100);

}

In this code, the setup() function is called once when the MCU is powered on or reset. It initializes

the serial communication interface with a baud rate of 9600. The loop() function is called

repeatedly while the MCU is running. It reads the state of a button connected to digital pin 2 using

the digitalRead() function. If the button is pressed, it sends a message over UART using the

Serial.println() function. Finally, the delay() function is used to pause the program execution for a

short time before checking the button state again.

Types of MCUs and their features

There are many types of microcontrollers (MCUs) available on the market, each with its own

unique features and capabilities. Here are some of the most common types of MCUs and their

features:

8-bit MCUs:

8-bit MCUs are some of the most basic and affordable MCUs available. They typically have a

small amount of memory and a limited set of peripherals, making them ideal for simple

applications that do not require a lot of processing power. Examples of 8-bit MCUs include the

Atmel AVR and Microchip PIC families.

26 | P a g e

Example Code:

Here's an example code for an 8-bit MCU using the AVR programming language:

#include <avr/io.h>

int main(void)

{

 // Set Port B Pin 5 as an output

 DDRB |= (1 << PB5);

 while (1)

 {

 // Toggle Port B Pin 5

 PORTB ^= (1 << PB5);

 // Wait for a short time

 _delay_ms(500);

 }

}

In this code, the main() function initializes Port B Pin 5 as an output using the DDRB register.

Then, it toggles the state of the pin using the PORTB register and the XOR operator. Finally, it

waits for a short time using the _delay_ms() function before toggling the pin again.

16-bit MCUs:

16-bit MCUs offer more processing power and memory than 8-bit MCUs. They are suitable for

applications that require more complex algorithms and data processing. Examples of 16-bit MCUs

include the Microchip dsPIC and TI MSP430 families.

Example Code:

Here's an example code for a 16-bit MCU using the MSP430 programming language:

#include <msp430.h>

27 | P a g e

int main(void)

{

 // Set Port 1 Pin 0 as an output

 P1DIR |= BIT0;

 while (1)

 {

 // Toggle Port 1 Pin 0

 P1OUT ^= BIT0;

 // Wait for a short time

 __delay_cycles(500000);

 }

}

In this code, the main() function initializes Port 1 Pin 0 as an output using the P1DIR register.

Then, it toggles the state of the pin using the P1OUT register and the XOR operator. Finally, it

waits for a short time using the __delay_cycles() function before toggling the pin again.

32-bit MCUs:

32-bit MCUs offer even more processing power and memory than 16-bit MCUs. They are suitable

for applications that require advanced features such as real-time operating systems and high-speed

communication interfaces. Examples of 32-bit MCUs include the ARM Cortex-M and Renesas

RX families.

Comparison with microprocessors and SoCs

Microcontrollers (MCUs) are often compared to microprocessors and system-on-chips (SoCs)

because they share many similar features. However, there are some key differences between these

three types of devices.

Microprocessors:

A microprocessor is a central processing unit (CPU) that is used in computers and other electronic

devices. Unlike MCUs, microprocessors do not typically include on-board memory or peripherals.

Instead, they rely on external components such as memory and input/output (I/O) devices to

function. Microprocessors are designed for high performance and are capable of running complex

operating systems and applications.

28 | P a g e

Example Code:

Here's an example code for a microprocessor using the C programming language:

#include <stdio.h>

int main(void)

{

 int a = 5;

 int b = 10;

 int c = a + b;

 printf("The sum of %d and %d is %d\n", a, b, c);

 return 0;

}

In this code, the main() function declares three integer variables (a, b, and c) and initializes them

with values. Then, it calculates the sum of a and b and stores the result in c. Finally, it uses the

printf() function to print the result to the screen.

SoCs:

A system-on-chip (SoC) is a type of integrated circuit that combines multiple components such as

a CPU, memory, and I/O interfaces into a single package. SoCs are designed for embedded systems

and other applications that require high levels of integration and low power consumption. Unlike

MCUs, SoCs are typically based on more powerful processors such as ARM Cortex-A or Intel

Atom.

Example Code:

Here's an example code for an SoC using the Python programming language:

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

29 | P a g e

GPIO.setup(18, GPIO.OUT)

while True:

 GPIO.output(18, GPIO.HIGH)

 time.sleep(1)

 GPIO.output(18, GPIO.LOW)

 time.sleep(1)

In this code, the RPi.GPIO library is used to control the GPIO pins on a Raspberry Pi SoC. The

GPIO.setup() function is used to set up Pin 18 as an output, and then the GPIO.output() function

is used to toggle the state of the pin with a delay using the time.sleep() function.

Comparison:

The main difference between MCUs, microprocessors, and SoCs is their level of integration.

MCUs are designed to be highly integrated with on-board memory, peripherals, and other features

that make them suitable for low-power, embedded systems. Microprocessors, on the other hand,

are designed to be used in high-performance computing systems and rely on external components

for memory and I/O. SoCs offer a middle ground between MCUs and microprocessors, providing

a high level of integration with lower power consumption than a traditional microprocessor.

Differences between RTOS and other

operating systems

Kernel design and structure

The kernel is the core component of an operating system that manages system resources and

provides a layer of abstraction between hardware and software. The design and structure of the

kernel are crucial to the overall performance and stability of the operating system. In this article,

we'll take a look at the basic design and structure of a typical kernel and explore some example

code to illustrate these concepts.

Kernel Design:

The design of a kernel can vary depending on the specific operating system it is designed for, but

most kernels share some basic characteristics. The kernel is typically divided into several layers,

each responsible for managing a different aspect of the system. The layers include:

30 | P a g e

Hardware Abstraction Layer (HAL) - This layer provides a hardware abstraction layer that isolates

the higher layers of the kernel from the specific hardware platform. It provides a uniform interface

to the hardware and handles hardware-specific details such as interrupts, memory management,

and device drivers.

Kernel Services - This layer provides low-level services to the higher layers of the kernel. This

includes process management, memory management, scheduling, and inter-process

communication.

User Services - This layer provides high-level services to user-level applications. This includes

file management, network services, and graphical user interface (GUI) services.

Kernel Structure:

The structure of the kernel is typically organized into modules or components that are responsible

for different tasks. These modules communicate with each other through well-defined interfaces,

allowing them to work together to manage system resources.

Let's take a look at an example of a kernel module written in C that demonstrates some of the key

concepts of kernel structure:

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

static int __init my_init(void)

{

 printk(KERN_INFO "Hello, world!\n");

 return 0;

}

static void __exit my_exit(void)

{

 printk(KERN_INFO "Goodbye, world!\n");

}

module_init(my_init);

module_exit(my_exit);

31 | P a g e

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Your Name");

MODULE_DESCRIPTION("A simple example Linux module.");

This code defines a simple kernel module that prints "Hello, world!" when it is loaded and

"Goodbye, world!" when it is unloaded. Let's take a closer look at how this code is structured.

The code begins with a set of include statements that pull in the necessary header files for the

kernel module. These headers provide access to various kernel data types and functions.

Next, the my_init() function is defined. This function is called when the module is loaded into the

kernel. It uses the printk() function to print a message to the kernel log. The __init macro tells the

compiler that this function is only used during initialization and can be discarded once initialization

is complete.

The my_exit() function is defined next. This function is called when the module is unloaded from

the kernel. It also uses the printk() function to print a message to the kernel log. The __exit macro

tells the compiler that this function is only used during cleanup and can be discarded once cleanup

is complete.

The module_init() and module_exit() macros are used to register the my_init() and my_exit()

functions with the kernel. These macros tell the kernel which functions to call when the module is

loaded and unloaded.

Finally, the MODULE_LICENSE(), MODULE_AUTHOR(), and MODULE_DESCRIPTION()

macros are used to provide licensing and descriptive information about the module.

The design and structure of a kernel are critical to the overall performance and stability of an

operating system. The kernel provides a layer of abstraction between hardware and software and

manages system resources such as memory, processes, and devices.

Memory management and allocation

Memory management is a critical aspect of operating system design and is responsible for

managing the allocation and deallocation of memory resources for processes and system tasks. In

real-time operating systems (RTOS), memory management is designed to meet the specific needs

of real-time systems and differs significantly from memory management in other operating

systems. In this article, we'll take a closer look at the differences between memory management

and allocation in RTOS and other operating systems.

Memory Management in RTOS:

Real-time systems are designed to operate within strict time constraints and require predictable

and deterministic behavior. This is achieved in part through specialized memory management

32 | P a g e

techniques that allow for efficient and predictable allocation and deallocation of memory

resources.

In RTOS, memory management is typically divided into two main categories: kernel memory and

user memory. Kernel memory is used by the kernel for its internal data structures, whereas user

memory is used by processes and threads running in the system. RTOS also provides specialized

memory allocation schemes, such as fixed-block and stack-based memory allocation, that are

designed to meet the specific needs of real-time systems.

Memory Allocation in RTOS:

RTOS typically uses specialized memory allocation schemes that differ significantly from those

used in other operating systems. One common approach is fixed-block memory allocation, where

memory is divided into fixed-size blocks that are allocated to processes as needed. This approach

provides fast and deterministic memory allocation, as the kernel always knows the exact location

and size of each allocated block.

Another approach is stack-based memory allocation, where each process is allocated a fixed-size

stack that is used for local variables and function calls. This approach is useful in real-time systems,

as it provides fast and deterministic memory allocation and deallocation.

RTOS also provides specialized memory allocation schemes for time-critical applications, such as

priority-based memory allocation. In this scheme, memory is allocated to processes based on their

priority, with higher priority processes receiving preferential treatment.

Differences between Memory Management in RTOS and Other Operating Systems:

The main differences between memory management and allocation in RTOS and other operating

systems are:

Deterministic Behavior: RTOS memory management is designed to provide deterministic

behavior, whereas memory management in other operating systems is designed for flexibility and

general-purpose use.

Fixed-Block Memory Allocation: RTOS typically uses fixed-block memory allocation, which

provides fast and deterministic allocation of memory resources. Other operating systems, on the

other hand, use dynamic memory allocation, which can be slower and less predictable.

Stack-Based Memory Allocation: Stack-based memory allocation is commonly used in RTOS, but

less so in other operating systems.

Priority-Based Memory Allocation: Priority-based memory allocation is a specialized memory

allocation scheme used in RTOS, but is not typically used in other operating systems.

Let's take a look at an example of memory allocation in RTOS using fixed-block memory

allocation:

33 | P a g e

#include <stdlib.h>

#include <stdio.h>

#define BLOCK_SIZE 128

#define NUM_BLOCKS 10

typedef struct block {

 void* data;

 struct block* next;

} block_t;

static block_t* free_list = NULL;

void* allocate_memory(size_t size) {

 if (size > BLOCK_SIZE) {

 return NULL;

 }

 if (free_list == NULL) {

 free_list = (block_t*) malloc(NUM_BLOCKS *

sizeof(block_t));

 for (int i = 0; i < NUM_BLOCKS; i++) {

 free_list[i].data = malloc(BLOCK_SIZE);

 free_list[i].next = &free_list[i + 1];

 }

 free_list[NUM_BLOCKS - 1].next = NULL;

 }

 block_t* block = free_list;

 free_list = free_list->next;

 return block->data;

}

34 | P a g e

Task and interrupt handling mechanisms

In real-time operating systems (RTOS), task and interrupt handling mechanisms are designed to

meet the specific needs of real-time systems and differ significantly from those in other operating

systems. In this article, we'll take a closer look at the differences between task and interrupt

handling mechanisms in RTOS and other operating systems.

Task Handling Mechanisms in RTOS:

Tasks in RTOS are similar to threads in other operating systems, but they are designed to operate

within strict time constraints and require predictable and deterministic behavior. This is achieved

through specialized task handling mechanisms that allow for efficient and predictable scheduling

of tasks.

In RTOS, tasks are typically scheduled based on priority, with higher priority tasks being

scheduled before lower priority tasks. RTOS also provides specialized task scheduling algorithms,

such as round-robin and earliest deadline first (EDF), that are designed to meet the specific needs

of real-time systems.

Task Scheduling in RTOS:

Task scheduling in RTOS is typically based on priority, with higher priority tasks being scheduled

before lower priority tasks. This approach ensures that time-critical tasks are executed as soon as

possible, while lower priority tasks are executed when time permits.

In addition to priority-based scheduling, RTOS also provides specialized task scheduling

algorithms that are designed to meet the specific needs of real-time systems. For example, round-

robin scheduling ensures that each task is given an equal amount of time to execute, while earliest

deadline first (EDF) scheduling ensures that tasks with the earliest deadlines are executed first.

Interrupt Handling Mechanisms in RTOS:

Interrupts are a critical aspect of real-time systems, as they allow for timely response to external

events. In RTOS, interrupt handling mechanisms are designed to provide fast and deterministic

response to interrupts.

In RTOS, interrupts are typically handled by interrupt service routines (ISRs), which are

specialized functions that are executed when an interrupt occurs. ISRs are designed to execute

quickly and efficiently, and they typically perform only a small amount of work before returning

control to the interrupted task.

Interrupt Handling in RTOS:

In RTOS, interrupts are typically handled by interrupt service routines (ISRs), which are

specialized functions that are executed when an interrupt occurs. ISRs are designed to execute

35 | P a g e

quickly and efficiently, and they typically perform only a small amount of work before returning

control to the interrupted task.

In addition to ISRs, RTOS also provides specialized interrupt handling mechanisms, such as

interrupt nesting and interrupt preemption, that are designed to meet the specific needs of real-time

systems. Interrupt nesting allows for the handling of multiple interrupts simultaneously, while

interrupt preemption allows for the interruption of lower priority tasks by higher priority interrupts.

Differences between Task and Interrupt Handling Mechanisms in RTOS and Other Operating

Systems:

The main differences between task and interrupt handling mechanisms in RTOS and other

operating systems are:

Deterministic Behavior: RTOS task and interrupt handling mechanisms are designed to provide

deterministic behavior, whereas task and interrupt handling in other operating systems is designed

for flexibility and general-purpose use.

Priority-Based Scheduling: RTOS typically uses priority-based scheduling, which provides fast

and deterministic response to time-critical events. Other operating systems, on the other hand, may

use other scheduling algorithms, such as fair share or round-robin scheduling.

Specialized Scheduling Algorithms: RTOS provides specialized task scheduling algorithms, such

as round-robin and EDF, that are designed to meet the specific needs of real-time systems. Other

operating systems may not provide these specialized algorithms.

Specialized Interrupt Handling Mechanisms: RTOS provides specialized interrupt handling

mechanisms, such as interrupt nesting and preemption, that are designed to meet the specific needs

of real-time systems. Other operating systems may not provide these specialized mechanisms.

Advantages of using an RTOS with MCUs

Multitasking and concurrency support

Real-time operating systems (RTOS) provide several advantages when used in conjunction with

microcontrollers (MCUs) for embedded systems. One of the key advantages is the ability to

support multitasking and concurrency, which allows for the efficient use of system resources and

improved system performance.

Multitasking and Concurrency in RTOS:

RTOS provides the ability to execute multiple tasks concurrently, which means that multiple tasks

can be executed simultaneously on a single processor. This is achieved through specialized

36 | P a g e

scheduling algorithms, such as priority-based scheduling, that allow for the efficient and

predictable scheduling of tasks.

Concurrency support is achieved through the use of task synchronization mechanisms, such as

semaphores, mutexes, and message queues, which allow tasks to communicate and coordinate with

each other. These mechanisms are designed to ensure that shared resources are accessed in a safe

and efficient manner, and that tasks are executed in the correct order.

Advantages of using an RTOS with MCUs:

Efficient Use of System Resources: RTOS provides the ability to execute multiple tasks

concurrently, which allows for the efficient use of system resources. This means that tasks can be

executed in parallel, which results in improved system performance and faster response times.

Improved System Performance: RTOS provides specialized scheduling algorithms that allow for

the efficient and predictable scheduling of tasks. This means that time-critical tasks can be

executed with low latency and high accuracy, which results in improved system performance and

faster response times.

Simplified Application Design: RTOS provides a high-level abstraction layer that simplifies the

design and implementation of complex applications. This means that developers can focus on the

application logic, rather than the low-level details of system resource management and scheduling.

Real-Time Response: RTOS provides deterministic behavior, which means that tasks can be

executed with low latency and high accuracy. This allows for real-time response to external events,

which is critical in many embedded systems applications.

Example Code:

Let's take a look at an example code that demonstrates multitasking and concurrency support in

RTOS using the FreeRTOS operating system.

/* Create a binary semaphore */

SemaphoreHandle_t xSemaphore;

/* Task 1 - sends a message to Task 2 */

void Task1(void *pvParameters)

{

 /* Wait for semaphore */

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

37 | P a g e

 /* Send message to Task 2 */

 xQueueSend(QueueHandle, "Hello from Task 1!", 0);

 /* Release semaphore */

 xSemaphoreGive(xSemaphore);

}

/* Task 2 - receives a message from Task 1 */

void Task2(void *pvParameters)

{

 char Message[20];

 /* Wait for semaphore */

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 /* Receive message from Task 1 */

 xQueueReceive(QueueHandle, Message, portMAX_DELAY);

 /* Print message to console */

 printf("%s\n", Message);

 /* Release semaphore */

 xSemaphoreGive(xSemaphore);

}

int main()

{

 /* Create semaphore */

 xSemaphore = xSemaphoreCreateBinary();

 /* Create Task 1 */

38 | P a g e

 xTaskCreate(Task1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 /* Create Task 2 */

 xTaskCreate(Task2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 /* Start the scheduler */

 vTaskStartScheduler();

 return 0;

}

In this example, we create two tasks that communicate with each other using a semaphore and a

message queue. Task 1 sends a message to Task 2, and Task 2 receives the message and prints it

to the console.

Real-time responsiveness and determinism

Real-time responsiveness and determinism are two key advantages of using a real-time operating

system (RTOS) with microcontrollers (MCUs) in embedded systems. In this note, we will discuss

how an RTOS can provide real-time responsiveness and determinism, and provide an example

code to demonstrate these concepts.

Real-time Responsiveness:

Real-time responsiveness refers to the ability of an embedded system to respond to external events

within a specific time frame. This is critical in many applications, such as industrial control

systems and medical devices, where timely and accurate response to external events is essential.

An RTOS provides the ability to execute tasks with low latency and high accuracy, which means

that time-critical tasks can be executed within the required time frame. This is achieved through

specialized scheduling algorithms, such as priority-based scheduling, that allow for the efficient

and predictable scheduling of tasks.

Determinism:

Determinism refers to the ability of an embedded system to execute tasks with consistent and

predictable timing. This is critical in many real-time applications, where tasks must be executed

in a specific order and within a specific time frame.

39 | P a g e

An RTOS provides deterministic behavior, which means that tasks are executed with consistent

and predictable timing. This is achieved through specialized scheduling algorithms and the use of

hardware timers, which allow for the accurate measurement of time intervals.

Advantages of using an RTOS with MCUs:

Real-time Responsiveness: An RTOS provides the ability to execute tasks with low latency and

high accuracy, which allows for real-time responsiveness to external events.

Determinism: An RTOS provides deterministic behavior, which means that tasks are executed

with consistent and predictable timing.

Improved System Performance: The specialized scheduling algorithms provided by an RTOS

allow for the efficient use of system resources, which results in improved system performance and

faster response times.

Simplified Application Design: An RTOS provides a high-level abstraction layer that simplifies

the design and implementation of complex applications. This means that developers can focus on

the application logic, rather than the low-level details of system resource management and

scheduling.

Example Code:

Let's take a look at an example code that demonstrates real-time responsiveness and determinism

in an RTOS using the FreeRTOS operating system.

/* Task 1 - toggles an LED every 100 ms */

void Task1(void *pvParameters)

{

 TickType_t xLastWakeTime;

 /* Initialize last wake time */

 xLastWakeTime = xTaskGetTickCount();

 while(1)

 {

 /* Toggle LED */

 LED_Toggle();

40 | P a g e

 /* Wait for 100 ms */

 vTaskDelayUntil(&xLastWakeTime,

pdMS_TO_TICKS(100));

 }

}

/* Task 2 - reads a sensor every 500 ms */

void Task2(void *pvParameters)

{

 TickType_t xLastWakeTime;

 /* Initialize last wake time */

 xLastWakeTime = xTaskGetTickCount();

 while(1)

 {

 /* Read sensor */

 Sensor_Read();

 /* Wait for 500 ms */

 vTaskDelayUntil(&xLastWakeTime,

pdMS_TO_TICKS(500));

 }

}

int main()

{

 /* Initialize LED */

 LED_Init();

 /* Create Task 1 */

41 | P a g e

 xTaskCreate(Task1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 /* Create Task 2 */

 xTaskCreate(Task2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 /* Start the scheduler */

 vTaskStartScheduler();

 return 0;

}

Resource utilization and optimization

Resource utilization and optimization are key advantages of using a real-time operating system

(RTOS) with microcontrollers (MCUs) in embedded systems. In this note, we will discuss how an

RTOS can optimize resource utilization and provide an example code to demonstrate these

concepts.

Resource Utilization:

In embedded systems, resources such as CPU time, memory, and I/O interfaces are often limited.

An RTOS can optimize resource utilization by efficiently managing these resources and ensuring

that they are used in the most effective way possible.

An RTOS achieves this by providing specialized scheduling algorithms that ensure that tasks are

executed in the most efficient way possible, taking into account the priority of each task and the

available system resources.

Optimization:

In addition to resource utilization, an RTOS can also optimize system performance by reducing

overhead and minimizing the time required to execute tasks. This is achieved through the use of

optimized system calls and efficient scheduling algorithms.

An RTOS can also optimize memory usage by dynamically allocating and deallocating memory

as required by tasks. This helps to minimize the amount of memory required by the system, which

is critical in memory-constrained embedded systems.

Advantages of using an RTOS with MCUs:

42 | P a g e

Efficient Resource Utilization: An RTOS can optimize resource utilization by efficiently managing

CPU time, memory, and I/O interfaces.

Improved System Performance: An RTOS can optimize system performance by reducing overhead

and minimizing the time required to execute tasks.

Reduced Development Time: The use of an RTOS can reduce development time by providing a

high-level abstraction layer that simplifies the design and implementation of complex applications.

Improved System Stability: An RTOS can improve system stability by providing a reliable and

consistent execution environment for tasks.

Example Code:

Let's take a look at an example code that demonstrates resource utilization and optimization in an

RTOS using the FreeRTOS operating system.

/* Task 1 - performs a time-critical operation every 10

ms */

void Task1(void *pvParameters)

{

 TickType_t xLastWakeTime;

 /* Initialize last wake time */

 xLastWakeTime = xTaskGetTickCount();

 while(1)

 {

 /* Perform time-critical operation */

 Time_Critical_Operation();

 /* Wait for 10 ms */

 vTaskDelayUntil(&xLastWakeTime,

pdMS_TO_TICKS(10));

 }

}

43 | P a g e

/* Task 2 - performs a less time-critical operation

every 50 ms */

void Task2(void *pvParameters)

{

 TickType_t xLastWakeTime;

 /* Initialize last wake time */

 xLastWakeTime = xTaskGetTickCount();

 while(1)

 {

 /* Perform less time-critical operation */

 Less_Time_Critical_Operation();

 /* Wait for 50 ms */

 vTaskDelayUntil(&xLastWakeTime,

pdMS_TO_TICKS(50));

 }

}

int main()

{

 /* Initialize system */

 System_Init();

 /* Create Task 1 */

 xTaskCreate(Task1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 /* Create Task 2 */

 xTaskCreate(Task2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

44 | P a g e

 /* Start the scheduler */

 vTaskStartScheduler();

 return 0;

}

In this example, we create two tasks that execute with different timing intervals using the

vTaskDelayUntil() function provided by the FreeRTOS operating system. The higher-priority task

(Task 1) executes every 10 ms, while the lower-priority task (Task 2) executes every 50 ms.

Choosing the right MCU for your project

Criteria for selecting an MCU

When selecting a microcontroller (MCU) for an embedded system, it is important to consider

several factors to ensure that the selected MCU is suitable for the application. In this note, we will

discuss some of the criteria for selecting an MCU and provide an example code to demonstrate

how to select an MCU based on these criteria.

Processing Power:

The processing power of an MCU is an important consideration when selecting an MCU. The

processing power of an MCU determines how fast it can execute instructions and how quickly it

can perform calculations. When selecting an MCU, it is important to choose an MCU that has

enough processing power to handle the requirements of the application.

Example Code:

/* Calculate the average value of an array of data */

float Calculate_Average(float *pData, uint16_t

uDataSize)

{

 float fSum = 0.0f;

 float fAverage;

 for(uint16_t i = 0; i < uDataSize; i++)

45 | P a g e

 {

 fSum += pData[i];

 }

 fAverage = fSum / (float)uDataSize;

 return fAverage;

}

In this example, we calculate the average value of an array of data. The speed at which this

calculation is performed is dependent on the processing power of the MCU. If the MCU does not

have enough processing power, the calculation may take too long, which could impact the overall

performance of the system.

Memory:

Memory is another important consideration when selecting an MCU. The memory of an MCU is

used to store program code, data, and other system information. When selecting an MCU, it is

important to choose an MCU that has enough memory to store all required information.

Example Code:

/* Store a message in memory */

char szMessage[32] = "Hello World!";

In this example, we store a message in memory using a character array. The size of the character

array is dependent on the amount of memory available in the MCU. If the MCU does not have

enough memory, the message may not be stored correctly, which could impact the overall

performance of the system.

Power Consumption:

Power consumption is an important consideration when selecting an MCU, especially for battery-

powered applications. The power consumption of an MCU determines how much energy it uses

when executing instructions and performing calculations. When selecting an MCU, it is important

to choose an MCU that has low power consumption to extend the battery life of the system.

Example Code:

/* Enter low-power mode to conserve energy */

46 | P a g e

void Enter_Low_Power_Mode(void)

{

 /* Set MCU to low-power mode */

 Low_Power_Mode_Setup();

 /* Wait for interrupt */

 __asm("WFI");

}

In this example, we enter a low-power mode to conserve energy. The power consumption of the

MCU in low-power mode is dependent on the MCU itself and how it is configured. If the MCU

has high power consumption, it may drain the battery quickly, which could impact the overall

performance of the system.

Peripherals:

Peripherals are external devices that connect to an MCU to provide additional functionality. When

selecting an MCU, it is important to choose an MCU that has enough peripherals to support the

requirements of the application.

Example Code:

/* Read data from a sensor */

uint16_t Read_Sensor_Data(void)

{

 /* Initialize sensor */

 Sensor_Init();

 /* Read data from sensor */

 uint16_t uData = Sensor_Read();

 return uData;

}

In this example, we read data from a sensor using a peripheral. The availability of the sensor is

dependent on the MCU and whether it has the required peripheral to support the sensor.

47 | P a g e

Popular MCU families and their characteristics

Microcontroller Units (MCUs) are essential components of modern embedded systems, and there

are numerous MCU families available in the market. Here are some of the most popular MCU

families and their characteristics:

Atmel AVR: Atmel AVR is a popular MCU family that is widely used in various embedded

systems. It is known for its low power consumption, high processing speed, and excellent

peripheral integration capabilities. AVR MCU is based on RISC architecture and is programmed

in C/C++ programming languages.

Example code for Atmel AVR:

#include <avr/io.h>

#include <util/delay.h>

int main(void)

{

 //Set Port B pins as output

 DDRB = 0xFF;

 while (1) {

 //Toggle PB5 (pin 13 on Arduino)

 PORTB ^= (1 << PB5);

 _delay_ms(1000); //Delay for 1 second

 }

 return 0;

}

Microchip PIC: Microchip PIC is another popular MCU family known for its low power

consumption and low cost. It is also based on RISC architecture and is programmed in C

programming language. The latest generation of PIC microcontrollers includes features like in-

built LCD drivers, USB communication, and advanced peripheral integration.

Example code for Microchip PIC:

#include <xc.h>

#include <stdio.h>

48 | P a g e

#define _XTAL_FREQ 4000000

void main(void)

{

 //Configure RA0 as input and RB0 as output

 TRISA = 0b00000001;

 TRISB = 0b00000000;

 while (1) {

 if (PORTAbits.RA0 == 0) {

 //If RA0 is low, turn on RB0

 LATBbits.LATB0 = 1;

 } else {

 //If RA0 is high, turn off RB0

 LATBbits.LATB0 = 0;

 }

 }

}

ARM Cortex-M: ARM Cortex-M is a popular MCU family based on ARM architecture. It is

known for its excellent power efficiency and processing speed. It also offers a wide range of

peripherals, including USB, Ethernet, and CAN communication. ARM Cortex-M is programmed

in C/C++ programming languages.

Example code for ARM Cortex-M:

#include "stm32f4xx.h"

int main(void)

{

 //Enable clock for GPIOC

 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN;

 //Configure PC13 as output

49 | P a g e

 GPIOC->MODER |= GPIO_MODER_MODE13_0;

 while (1) {

 //Toggle PC13

 GPIOC->ODR ^= GPIO_ODR_OD13;

 for (int i = 0; i < 1000000; i++); //Delay for

1 second

 }

}

Texas Instruments MSP430: Texas Instruments MSP430 is a low-power MCU family known for

its excellent power efficiency and high level of integration. It offers features like in-built LCD

drivers, USB communication, and advanced peripheral integration. MSP430 is programmed in C

programming language.

Example code for Texas Instruments MSP430:

#include <msp430.h>

void main(void)

{

 //Configure P1.0 as output

 P1DIR |= BIT0;

 while (1) {

 //Toggle P1.0

 P1OUT ^= BIT0;

 __delay_cycles(1000000); //Delay for 1 second

 }

}

Factors affecting the MCU performance and cost

When selecting an MCU for a project, there are several factors that should be considered to ensure

optimal performance and cost-effectiveness. This includes the performance capabilities of the

MCU, its power consumption, memory, I/O interfaces, and development tools. In this note, we

50 | P a g e

will discuss the factors affecting the performance and cost of MCUs and their impact on selecting

the appropriate MCU for a project.

Factors affecting MCU performance:

Clock speed: The clock speed of an MCU determines how fast it can execute instructions. A higher

clock speed allows for faster processing, but it also consumes more power, which can be a concern

for battery-powered devices.

Instruction set: The instruction set determines the types of operations that the MCU can perform.

A larger instruction set can provide more functionality, but it also increases the complexity of the

MCU and can affect its performance.

Memory: The amount of memory available on an MCU can impact its performance. Larger

amounts of memory can allow for more complex programs and data processing.

Peripheral interfaces: The number and type of peripheral interfaces on an MCU can affect its

performance. The more interfaces available, the more data can be processed in parallel.

Power consumption: Power consumption is a critical factor for battery-powered devices. Lower

power consumption can lead to longer battery life and increased portability.

Factors affecting MCU cost:

Manufacturing process: The manufacturing process of an MCU can impact its cost. More advanced

processes, such as those used in modern CPUs, can be more expensive.

Package type: The package type of an MCU can impact its cost. Smaller packages are typically

more expensive than larger ones.

Development tools: The cost of development tools can be a significant factor in the overall cost of

an MCU-based project.

Volume: The volume of MCUs ordered can also impact the cost. Ordering larger volumes can lead

to bulk discounts and lower per-unit costs.

Popular MCUs and their characteristics:

There are several popular MCU families available in the market. Each family has its own set of

characteristics that make it suitable for specific applications. Here are some of the popular MCU

families and their characteristics:

Atmel AVR: This family of MCUs is known for its low power consumption and ease of use. It is

suitable for applications that require low power consumption, such as battery-powered devices.

51 | P a g e

PIC: This family of MCUs is known for its high performance and wide range of peripheral

interfaces. It is suitable for applications that require high-speed data processing and complex I/O

operations.

ARM Cortex-M: This family of MCUs is known for its high performance and low power

consumption. It is suitable for applications that require both high performance and low power

consumption, such as mobile devices.

Texas Instruments MSP430: This family of MCUs is known for its ultra-low power consumption

and ease of use. It is suitable for applications that require low power consumption and simple

programming.

Selecting the appropriate MCU for a project requires careful consideration of various factors

affecting its performance and cost. The clock speed, instruction set, memory, peripheral interfaces,

and power consumption are factors that impact performance, while manufacturing process,

package type, development tools, and volume are factors that affect cost. Popular MCU families,

such as Atmel AVR, PIC, ARM Cortex-M, and Texas Instruments MSP430, each have their own

set of characteristics that make them suitable for specific applications.

Introduction to FreeRTOS and SEGGER

debug tools

Overview of FreeRTOS and its features

FreeRTOS is a popular open-source Real-Time Operating System (RTOS) designed for small

embedded systems. It provides an efficient way to manage multiple tasks running simultaneously

on a microcontroller, with features such as preemption, time-slicing, and task prioritization. Here

is an overview of some of its features:

Task management: FreeRTOS provides a task management mechanism for creating, scheduling,

and deleting tasks. Each task has its own stack and context, and they can communicate through

semaphores, queues, and other synchronization mechanisms.

Interrupt management: FreeRTOS provides a mechanism for handling interrupts with low latency.

It supports nested interrupts and allows interrupts to trigger tasks.

Memory management: FreeRTOS provides memory allocation mechanisms for tasks, and it allows

users to define their own memory allocation scheme.

Time management: FreeRTOS provides a tickless idle mode to save power, and it allows users to

configure the tick frequency.

52 | P a g e

Synchronization mechanisms: FreeRTOS provides synchronization mechanisms such as

semaphores, mutexes, and queues for tasks to communicate and synchronize with each other.

Event handling: FreeRTOS provides a mechanism for tasks to wait for events and to be notified

when events occur.

Portable: FreeRTOS is designed to be portable, and it is available for a wide range of

microcontrollers and architectures.

Here is an example code snippet that shows how to create and manage tasks in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

void Task1(void *pvParameters)

{

 while(1)

 {

 // task code here

 }

}

void Task2(void *pvParameters)

{

 while(1)

 {

 // task code here

 }

}

int main(void)

{

 xTaskCreate(Task1, "Task 1", 1000, NULL, 1, NULL);

 xTaskCreate(Task2, "Task 2", 1000, NULL, 2, NULL);

53 | P a g e

 vTaskStartScheduler();

 return 0;

}

In this example, we create two tasks Task1 and Task2 using the xTaskCreate() API. We specify

the task code, task name, task stack size, task priority, and task handle. We then start the scheduler

using the vTaskStartScheduler() API. The scheduler takes over the control of the tasks and

schedules them based on their priority and other factors.

Introduction to SEGGER debug tools and their benefits

SEGGER is a company that provides a range of software and hardware tools for embedded

development, including debuggers, emulators, and libraries. Their debug tools are widely used in

the industry and offer many benefits for developers. Here is an introduction to some of SEGGER's

debug tools and their benefits:

J-Link: J-Link is a popular debug probe that supports a wide range of microcontrollers and

interfaces such as JTAG, SWD, and SPI. It provides fast and reliable debugging, flash

programming, and real-time trace features. J-Link supports many popular development

environments such as Eclipse, Keil, and IAR.

Ozone: Ozone is a powerful debugger that provides real-time tracing and profiling for embedded

systems. It supports J-Link and other debug probes, and it allows developers to view and analyze

real-time system behavior. Ozone supports a range of microcontrollers and interfaces, and it

integrates with popular development environments such as Eclipse and Visual Studio.

SystemView: SystemView is a real-time analysis and visualization tool that allows developers to

monitor and analyze system behavior in real-time. It provides a range of features such as event

tracking, task visualization, and resource utilization analysis. SystemView can be used with J-Link

and other debug probes, and it supports a range of microcontrollers and operating systems.

Embedded Studio: Embedded Studio is an Integrated Development Environment (IDE) for

embedded systems that provides a range of features such as code editing, debugging, and project

management. It supports a range of microcontrollers and development boards, and it integrates

with J-Link and other debug probes. Embedded Studio also includes SEGGER's libraries and

middleware, such as emUSB, emFile, and embOS.

Here is an example code snippet that shows how to use the J-Link debugger with Embedded

Studio:

#include "SEGGER_RTT.h"

int main(void)

54 | P a g e

{

 SEGGER_RTT_Init();

 while (1)

 {

 SEGGER_RTT_printf(0, "Hello, World!\n");

 }

}

In this example, we use the SEGGER_RTT library to output a message to the J-Link debugger's

Real-Time Transfer (RTT) channel. We initialize the RTT channel using the SEGGER_RTT_Init()

function, and we use the SEGGER_RTT_printf() function to output the message. The message is

then displayed in the J-Link debugger's RTT Viewer window in real-time.

Overall, SEGGER's debug tools offer many benefits for embedded developers, including fast and

reliable debugging, real-time analysis and profiling, and seamless integration with popular

development environments.

Setting up the development environment

Installing the required software and tools

Setting up the development environment is an important step in embedded system development.

It involves installing the necessary software and tools to write, compile, and debug code for the

target MCU. Here is a step-by-step guide on how to install the required software and tools for an

embedded development environment:

Install an Integrated Development Environment (IDE): An IDE is a software application that

provides a graphical user interface (GUI) for developing and debugging code. There are many

IDEs available for embedded development, such as Keil, IAR Embedded Workbench, and Eclipse.

Choose an IDE that supports your target MCU and operating system.

Install a compiler: A compiler is a software tool that translates high-level code into machine code

that the target MCU can understand. Many IDEs come with a built-in compiler, but you may need

to install a separate compiler if your IDE does not include one. Popular compilers for embedded

development include GNU GCC, ARMCC, and IAR C/C++ Compiler.

Install a debugger: A debugger is a tool that allows you to test and debug your code on the target

MCU. Many IDEs come with a built-in debugger, but you may need to install a separate debugger

55 | P a g e

if your IDE does not include one. Popular debuggers for embedded development include J-Link,

OpenOCD, and GDB.

Install device drivers: You may need to install device drivers for your target MCU if your IDE or

debugger requires them. Check the manufacturer's website for the latest device drivers.

Install communication interface drivers: If your target MCU uses a specific communication

interface such as USB or UART, you may need to install drivers for the communication interface.

Install additional software libraries and tools: Depending on your project requirements, you may

need to install additional software libraries and tools such as RTOS, middleware, and peripheral

drivers.

Here is an example code snippet that shows how to use the STM32CubeIDE IDE to create a new

project for the STM32F4 Discovery board:

Download and install the STM32CubeIDE from the STMicroelectronics website.

Open STM32CubeIDE and select "New STM32 Project" from the "Quickstart Panel".

Select your target MCU, in this case, the STM32F4, and choose a project name and location.

Choose a toolchain, such as the GNU Arm Embedded Toolchain, and click "Finish".

In the "Project Explorer" panel, right-click on the project name and select "Properties".

In the "C/C++ Build" settings, configure the compiler and linker options.

In the "Debugger" settings, configure the debugger options such as the debug probe and

communication interface.

Build the project by selecting "Build Project" from the "Project" menu.

Debug the project by selecting "Debug As" and choosing a debug configuration.

Overall, setting up the development environment requires careful consideration of the software

and tools required for your project. By following the steps above and consulting the manufacturer's

documentation, you can create a robust and efficient development environment for your embedded

system.

Configuring the development environment for FreeRTOS and STM32 MCUs

Configuring the development environment for FreeRTOS and STM32 MCUs involves setting up

the required software and tools, including the IDE (Integrated Development Environment),

compiler, debugger, and appropriate drivers for the STM32 board. The following are the steps to

configure the development environment for FreeRTOS and STM32 MCUs:

56 | P a g e

Step 1: Download and install the STM32CubeIDE

The STM32CubeIDE is an all-in-one development environment that includes the STM32CubeMX

configuration tool, the GCC-based C/C++ compiler, and a debugger. It is a free tool that can be

downloaded from the STMicroelectronics website. After downloading the installer, run it, and

follow the instructions to install the STM32CubeIDE.

Step 2: Download and install the STM32CubeMX

The STM32CubeMX is a graphical tool that allows users to configure the STM32 microcontroller

peripherals and generate initialization code. It is integrated into the STM32CubeIDE but can also

be downloaded separately from the STMicroelectronics website. Install it by running the installer

and following the instructions.

Step 3: Download and install the ST-Link Utility

The ST-Link Utility is a software tool used to program and debug STM32 microcontrollers. It is a

free tool that can be downloaded from the STMicroelectronics website. After downloading the

installer, run it, and follow the instructions to install the ST-Link Utility.

Step 4: Configure the STM32 board in STM32CubeMX

Open STM32CubeMX, and select the appropriate STM32 board from the list. Then, configure the

clock settings, peripherals, and pins as required. After completing the configuration, click on the

"Generate Code" button, and STM32CubeMX will generate the initialization code for the project.

Step 5: Import the FreeRTOS libraries into the project

Download the FreeRTOS library from the official website and extract it into the project folder. In

STM32CubeIDE, create a new project, and select the appropriate STM32 board. Then, click on

the "Add Library" button and select the FreeRTOS library from the project folder.

Step 6: Configure the FreeRTOS settings in STM32CubeMX

In STM32CubeMX, click on the "Project Manager" tab, and select the "RTOS" option. Then,

select "FreeRTOS" from the drop-down menu, and configure the FreeRTOS settings, including

the heap and stack size, and the number of tasks.

Step 7: Write the application code

Write the application code using the FreeRTOS API, including creating tasks and synchronization

mechanisms, such as semaphores and mutexes. After writing the application code, compile it using

the GCC-based C/C++ compiler, and program the STM32 board using the ST-Link Utility.

Configuring the development environment for FreeRTOS and STM32 MCUs involves setting up

the required software and tools, configuring the STM32 board, importing the FreeRTOS libraries,

configuring the FreeRTOS settings, and writing the application code using the FreeRTOS API.

Once the development environment is set up, developers can take advantage of the features of

FreeRTOS, including multitasking, synchronization, and real-time responsiveness, to develop

efficient and reliable embedded systems.

57 | P a g e

Testing the setup with a simple application

Testing the setup with a simple application in FreeRTOS and STM32 MCUs:

Once you have set up the development environment for FreeRTOS and STM32 MCUs, the next

step is to test the setup with a simple application. Here, we will create a task to blink an LED

connected to the STM32 MCU board.

Creating the project:

In order to create a new project, open the STM32CubeIDE and click on "File" -> "New" ->

"STM32 Project". Select the appropriate MCU and fill in the required details like project name,

location, etc.

Adding FreeRTOS library:

Once the project is created, we need to add the FreeRTOS library to our project. To do this, go to

"Project Explorer" -> Right-click on your project -> "Properties" -> "C/C++ Build" -> "Settings"

-> "Tool Settings" -> "MCU GCC Compiler" -> "Includes" -> Add the path to the FreeRTOS

library.

Configuring the FreeRTOS kernel:

In order to configure the FreeRTOS kernel, we need to add the following files to our project:

FreeRTOSConfig.h: This file contains the configuration settings for FreeRTOS. You can modify

the settings like the number of tasks, stack size, etc.

port.c: This file contains the port-specific code for your MCU. You need to select the appropriate

file for your MCU.

Creating the task:

We will create a task to blink an LED connected to the STM32 MCU board. Here is the code for

the task:

void LED_Task(void *pvParameters)

{

 while(1)

 {

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); //

Toggle the LED

 vTaskDelay(1000/portTICK_PERIOD_MS); // Delay

for 1 second

58 | P a g e

 }

}

Here, we are using the HAL library to toggle the LED connected to GPIOA Pin 5. We are using

the vTaskDelay function to delay the task for 1 second.

Creating the main function:

Here is the code for the main function:

int main(void)

{

 HAL_Init();

 SystemClock_Config();

 MX_GPIO_Init();

 MX_FREERTOS_Init();

 xTaskCreate(LED_Task, "LED Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 vTaskStartScheduler();

 while (1)

 {

 }

}

Here, we are initializing the HAL, configuring the system clock, initializing the GPIO, initializing

FreeRTOS, creating the LED task, and starting the scheduler.

Building and running the project:

Once the code is ready, build the project and flash it to the STM32 MCU board using a debugger.

The LED connected to GPIOA Pin 5 should start blinking.

59 | P a g e

In this way, we can test our setup with a simple application in FreeRTOS and STM32 MCUs. This

can be further extended to more complex applications and tasks.

60 | P a g e

Chapter 2:

FreeRTOS Architecture and Concepts

61 | P a g e

Real-time operating systems (RTOS) are becoming increasingly popular in modern embedded

systems due to their ability to handle complex multitasking, timing, and synchronization

requirements. One of the most popular open-source RTOSs is FreeRTOS, which provides a real-

time kernel for microcontrollers and small microprocessors. FreeRTOS is designed to be small,

efficient, and easy to use, making it an attractive option for embedded systems developers.

In this chapter, we will explore the architecture and concepts of FreeRTOS. We will start with an

overview of the system architecture and the different components that make up FreeRTOS. We

will then delve into the concepts of tasks, scheduling, and synchronization, which are essential to

understand when using FreeRTOS.

FreeRTOS is a preemptive, priority-based RTOS, which means that tasks are scheduled based on

their priority. Tasks are the basic unit of work in FreeRTOS, and they represent independent

threads of execution. Each task has its own stack and context, which allows it to execute

independently of other tasks. Tasks can be created, deleted, and suspended dynamically at runtime,

making it easy to manage complex systems with many different tasks.

Scheduling is the process of determining which task should be executed next based on its priority

and the available system resources. FreeRTOS uses a priority-based scheduler, which means that

higher priority tasks are always executed before lower priority tasks. In addition, FreeRTOS

supports several different scheduling algorithms, such as round-robin and preemptive algorithms,

which allow developers to fine-tune the system behavior to meet specific requirements.

Synchronization is the process of coordinating the execution of tasks to ensure that they do not

interfere with each other. FreeRTOS provides several synchronization primitives, such as

semaphores, mutexes, and queues, which allow tasks to communicate and share resources in a safe

and predictable manner. These primitives are essential for building complex systems with multiple

tasks that need to interact with each other.

FreeRTOS also provides support for interrupt handling, memory management, and timing.

Interrupt handling is a critical component of any RTOS, and FreeRTOS provides a flexible and

efficient interrupt handling mechanism that allows tasks to respond to external events in a timely

manner. Memory management is another important aspect of FreeRTOS, and it provides a set of

functions that allow tasks to dynamically allocate and deallocate memory.

FreeRTOS Kernel Architecture

Design and structure of FreeRTOS kernel

FreeRTOS is an open-source real-time operating system (RTOS) kernel designed for

microcontrollers (MCUs) and small microprocessors. It provides a complete set of scheduling,

synchronization, memory management, and communication primitives to build a real-time

62 | P a g e

embedded system. In this note, we will discuss the design and structure of the FreeRTOS kernel,

including its components, modules, and interfaces.

The FreeRTOS kernel is structured as a collection of C source files, each of which implements a

specific feature or service. The kernel is organized into several modules, including:

Task management: The task management module handles the creation, deletion, and scheduling

of tasks. Each task has a priority, stack, and execution context. The task management module also

provides synchronization mechanisms, such as semaphores, mutexes, and event flags, to

coordinate the execution of tasks.

Interrupt management: The interrupt management module handles the handling of interrupts and

provides mechanisms for interrupt nesting, prioritization, and synchronization. The interrupt

management module also interacts with the task management module to schedule tasks that are

waiting for interrupts.

Memory management: The memory management module handles the allocation and deallocation

of dynamic memory for tasks and kernel objects. The memory management module uses a heap

allocator or a static memory allocator, depending on the configuration.

Timer management: The timer management module provides a software timer service that can

trigger a task or an interrupt at a specified time. The timer management module uses the system

tick timer, which generates a periodic interrupt at a fixed interval.

Queue management: The queue management module provides a message passing mechanism that

allows tasks to send and receive messages in a first-in, first-out (FIFO) order. The queue

management module provides blocking and non-blocking operations and supports multiple queues

with different sizes.

Semaphore management: The semaphore management module provides a synchronization

mechanism that allows tasks to acquire and release shared resources. The semaphore management

module supports binary and counting semaphores and can be used to implement mutual exclusion,

critical sections, and producer-consumer patterns.

Event group management: The event group management module provides a synchronization

mechanism that allows tasks to wait for a set of events to occur. The event group management

module supports up to 24 events per group and can be used to implement complex synchronization

patterns.

Stream buffer management: The stream buffer management module provides a streaming

mechanism that allows tasks to send and receive data in a circular buffer. The stream buffer

management module supports blocking and non-blocking operations and can be used to implement

inter-task communication or serial communication.

The FreeRTOS kernel uses a priority-based preemptive scheduling algorithm to determine which

task to run next. Tasks with higher priority are always scheduled before tasks with lower priority.

63 | P a g e

If two or more tasks have the same priority, the scheduler uses a round-robin algorithm to share

the CPU time between them. The FreeRTOS kernel also supports task preemption by interrupts,

which means that a higher priority task can preempt a lower priority task if an interrupt occurs.

The FreeRTOS kernel is a well-structured and modular real-time operating system that provides a

rich set of services and primitives for building real-time embedded systems. Its design is based on

a priority-based preemptive scheduler and supports interrupt handling, memory management,

timer management, queue management, semaphore management, event group management, and

stream buffer management.

Components of FreeRTOS kernel (tasks, scheduler, memory manager, etc.)

FreeRTOS is a real-time operating system that provides a kernel to manage tasks, interrupts, and

resources in an embedded system. The FreeRTOS kernel is designed to be small, portable, and

efficient, making it an ideal choice for many embedded applications.

The FreeRTOS kernel has several components that work together to provide a complete operating

system. These components include:

Tasks: The FreeRTOS kernel provides a task management mechanism that allows multiple tasks

to run concurrently. Each task has its own stack and context, and can be created, started, stopped,

and deleted dynamically. Tasks are the basic building blocks of a FreeRTOS system, and can be

used to implement various application functions.

Scheduler: The FreeRTOS scheduler is responsible for selecting which task to run next. The

scheduler uses a priority-based scheduling algorithm to determine the next task to run. The highest

priority task that is ready to run is selected to run next, and lower priority tasks are only run when

higher priority tasks are blocked or waiting for some event to occur.

Interrupt handling: FreeRTOS provides a mechanism for handling interrupts in a real-time manner.

Interrupt service routines (ISRs) can use FreeRTOS API functions to communicate with tasks and

synchronize access to shared resources. Interrupt priorities are automatically managed by the

kernel to ensure that the highest priority ISR is always serviced first.

Memory management: FreeRTOS provides a dynamic memory allocation mechanism that allows

tasks to allocate and deallocate memory dynamically. The memory management scheme is based

on heap memory allocation, which provides a flexible and efficient way to manage memory.

Timers: The FreeRTOS kernel provides a timer management mechanism that allows tasks to be

delayed or blocked for a specified period of time. Timers can be used for periodic tasks, timeouts,

and other timing-related functions.

Queues: The FreeRTOS kernel provides a message passing mechanism that allows tasks to

communicate with each other in a real-time manner. Queues are used to send and receive messages

between tasks, and can be used for inter-task communication and synchronization.

64 | P a g e

Here's an example code snippet that shows how to create a simple FreeRTOS task:

void vTask1(void *pvParameters)

{

 for(;;)

 {

 /* Task code here */

 }

}

int main(void)

{

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

 vTaskStartScheduler();

 /* Should never reach here */

 return 0;

}

In this example, the vTask1() function is the task function that is executed when the task is started.

The xTaskCreate() function is used to create the task and specify its parameters, such as the task

function, task name, stack size, and priority. Finally, the vTaskStartScheduler() function is called

to start the FreeRTOS scheduler and begin executing tasks.

Interaction between the kernel and application code

In an RTOS such as FreeRTOS, the kernel and application code interact through tasks and

interrupts. Tasks are independent units of code that execute concurrently in the system, while

interrupts are events that temporarily halt the execution of the current task to handle a specific

event.

The application code is responsible for creating and managing tasks, which are executed by the

kernel in a cooperative manner. This means that each task must voluntarily yield control to the

kernel to allow other tasks to execute. The scheduler is responsible for managing the execution of

tasks based on their priority and other factors such as time slice and preemptive settings.

65 | P a g e

Here is an example of creating a task in FreeRTOS using the STM32CubeIDE:

void vTask1(void *pvParameters)

{

 // Task code here

}

int main(void)

{

 // Initialize system and peripherals

 // ...

 // Create task 1

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 // Start scheduler

 vTaskStartScheduler();

 // Should never reach here

 while (1);

}

In this example, we define a function vTask1 that will be executed as a task. We then use the

xTaskCreate function to create a new task with the name "Task 1" and priority level 1. We also

specify the task's stack size and parameters, which are not used in this case.

After creating the task, we start the FreeRTOS scheduler with the vTaskStartScheduler function.

This function will never return, as the scheduler will continue to execute tasks until the system is

reset.

To interact with hardware peripherals or handle events that require immediate attention, an

interrupt service routine (ISR) can be used. ISRs are typically short, fast-executing functions that

handle the event and then return control to the currently executing task. Here is an example of

setting up an ISR in FreeRTOS:

void EXTI0_IRQHandler(void)

66 | P a g e

{

 // Handle interrupt event

 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 xSemaphoreGiveFromISR(xSemaphore,

&xHigherPriorityTaskWoken);

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

int main(void)

{

 // Initialize system and peripherals

 // ...

 // Create semaphore

 xSemaphore = xSemaphoreCreateBinary();

 // Configure interrupt on EXTI0

 HAL_NVIC_SetPriority(EXTI0_IRQn, 5, 0);

 HAL_NVIC_EnableIRQ(EXTI0_IRQn);

 // Start scheduler

 vTaskStartScheduler();

 // Should never reach here

 while (1);

}

In this example, we define an ISR function EXTI0_IRQHandler that handles an interrupt event on

the EXTI0 line. We use the xSemaphoreGiveFromISR function to give a semaphore that can be

used by a task to indicate that the interrupt has been handled. We also use the

portYIELD_FROM_ISR macro to yield control to the highest-priority task that is waiting for the

semaphore.

67 | P a g e

In the main function, we create a binary semaphore using the xSemaphoreCreateBinary function.

We then configure the EXTI0 interrupt with a priority level of 5 and enable the interrupt using the

HAL_NVIC_SetPriority and HAL_NVIC_EnableIRQ functions.

After configuring the interrupt, we start the FreeRTOS scheduler and enter an infinite loop. The

ISR will execute whenever an interrupt event occurs and signal the semaphore, allowing the

waiting task to resume execution.

Task management and scheduling

Task creation and deletion

Task creation and deletion are fundamental concepts in FreeRTOS. A task is a lightweight process

that performs a specific job in an embedded system. FreeRTOS provides APIs for creating,

deleting, and managing tasks dynamically during the execution of the system.

To create a task in FreeRTOS, the xTaskCreate() API is used. This API takes four parameters:

• A pointer to the task function

• A human-readable name for the task

• The stack size in words (not bytes)

• A parameter to be passed to the task function

For example, the following code creates a task called "Task1" with a stack size of 100 words and

passes a parameter of 42 to the task function:

void taskFunction(void* parameter)

{

 int myParameter = *((int*)parameter);

 // Do something with myParameter

}

void createTask()

{

 int parameter = 42;

 xTaskCreate(taskFunction, "Task1", 100, ¶meter,

1, NULL);

68 | P a g e

}

To delete a task, the vTaskDelete() API is used. This

API takes a handle to the task as its parameter. For

example, the following code deletes the task created in

the previous example:

scss

Copy code

void deleteTask()

{

 TaskHandle_t taskHandle = /* obtain the handle to

the task */;

 vTaskDelete(taskHandle);

}

Tasks can communicate with each other and with the kernel using FreeRTOS's inter-task

communication mechanisms. Tasks can send and receive messages, share data through queues,

and synchronize their execution using semaphores and mutexes.

FreeRTOS also provides APIs for suspending, resuming, and delaying tasks. Tasks can be

suspended to free up system resources or to synchronize their execution with other tasks. Tasks

can be resumed when their required resources become available or when a certain condition is met.

Tasks can also delay their execution for a specified period using the vTaskDelay() API.

Task creation and deletion are essential concepts in FreeRTOS. FreeRTOS provides APIs for

creating, deleting, and managing tasks dynamically during the execution of the system. Tasks can

communicate with each other and with the kernel using FreeRTOS's inter-task communication

mechanisms. FreeRTOS also provides APIs for suspending, resuming, delaying tasks.

Task states and transitions

In FreeRTOS, tasks are the basic unit of work and are used to perform specific functions or

operations. Each task has its own state, which can be used to determine its current status and

behavior within the system.

There are three primary states that a task can be in:

Running State: This is the state in which the task is currently executing and is being actively

processed by the system.

69 | P a g e

Ready State: This is the state in which the task is ready to run but is waiting for the scheduler to

give it a CPU time slice. Tasks in the ready state are sorted based on priority, with higher priority

tasks being processed before lower priority tasks.

Blocked State: This is the state in which the task is waiting for some event or condition to occur

before it can continue execution. Tasks in the blocked state can be waiting for input/output

operations to complete, for a semaphore or mutex to become available, or for a specific time delay

to elapse.

Tasks in FreeRTOS can transition between states based on certain events or conditions. For

example, a task that is blocked waiting for a semaphore to become available will transition to the

ready state once the semaphore is released and becomes available. Similarly, a task that is currently

executing can be preempted and moved to the ready state if a higher priority task becomes available

to run.

Here's an example code snippet that creates a simple task and toggles an LED using STM32F4

Discovery Board:

#include "FreeRTOS.h"

#include "task.h"

#include "stm32f4xx.h"

// Task function that toggles an LED

void vTaskFunction(void* pvParameters) {

 // Toggle LED1 every 1 second

 while(1) {

 GPIO_ToggleBits(GPIOD, GPIO_Pin_12);

 vTaskDelay(1000 / portTICK_RATE_MS);

 }

}

int main(void) {

 // Initialize LED1 on GPIOD Pin 12

 GPIO_InitTypeDef GPIO_InitStruct;

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD,

ENABLE);

70 | P a g e

 GPIO_InitStruct.GPIO_Pin = GPIO_Pin_12;

 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;

 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;

 GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;

 GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;

 GPIO_Init(GPIOD, &GPIO_InitStruct);

 // Create a new task with priority 1 and stack size

100

 xTaskCreate(vTaskFunction, "LED Task", 100, NULL,

1, NULL);

 // Start the scheduler

 vTaskStartScheduler();

 while(1) {}

}

In this example, a new task is created using the xTaskCreate function with a priority of 1 and a

stack size of 100. The task function vTaskFunction toggles an LED connected to GPIOD Pin 12

using the GPIO_ToggleBits function and then waits for 1 second using the vTaskDelay function.

The main function initializes the LED and starts the scheduler using the vTaskStartScheduler

function. Once the scheduler starts, it will begin executing the vTaskFunction task, which will

toggle the LED every 1 second.

This example demonstrates how tasks can be created and executed in FreeRTOS, and how they

can transition between different states depending on their behavior and the events occurring in the

system.

Task scheduling algorithms and policies

Task scheduling is a crucial aspect of any real-time operating system, including FreeRTOS. In

FreeRTOS, the scheduling algorithm is responsible for selecting the next task to run from the set

of runnable tasks. This ensures that the system remains responsive and meets its real-time

requirements.

71 | P a g e

FreeRTOS uses a preemptive priority-based scheduling algorithm. This means that tasks are

scheduled based on their priority level, and a higher-priority task will preempt a lower-priority

task if it becomes runnable. This ensures that high-priority tasks are executed first, and the system

can respond to critical events quickly.

In FreeRTOS, each task is assigned a priority level, ranging from 0 (lowest) to

configMAX_PRIORITIES - 1 (highest). The default value of configMAX_PRIORITIES is set to

5, but this can be changed in the FreeRTOS configuration file.

FreeRTOS also supports dynamic priority levels, which allows tasks to increase or decrease their

priority level based on the current system state. This is useful in scenarios where tasks need to

temporarily boost their priority to respond to a critical event.

The scheduling policy in FreeRTOS is based on a cooperative model, which means that tasks

voluntarily relinquish control to the scheduler by calling the vTaskDelay() or vTaskSuspend()

functions. These functions allow other tasks with a higher priority level to execute and prevent

lower-priority tasks from hogging the CPU.

Here is an example of how to create a task with a specific priority level in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

void vTaskFunction(void *pvParameters)

{

 /* Task code goes here */

}

void main(void)

{

 TaskHandle_t xTaskHandle;

 /* Create a task with priority level 1 */

 xTaskCreate(vTaskFunction, "Task",

configMINIMAL_STACK_SIZE, NULL, 1, &xTaskHandle);

 /* Start the scheduler */

72 | P a g e

 vTaskStartScheduler();

}

In this example, the xTaskCreate() function is used to create a new task called "Task". The priority

level of the task is set to 1, which means it has a higher priority than the default priority level of 0.

Overall, the task scheduling algorithm in FreeRTOS ensures that tasks are executed in a timely

and deterministic manner, which is crucial in real-time systems. The priority-based model allows

tasks to be prioritized based on their importance, and the cooperative scheduling policy ensures

that tasks do not monopolize the CPU.

Synchronization and inter-task

communication

Semaphores and mutexes for resource sharing

Semaphores and mutexes are synchronization mechanisms used in FreeRTOS to control access to

shared resources among multiple tasks. Semaphores and mutexes prevent race conditions and

deadlocks that can occur when multiple tasks try to access the same resource simultaneously.

A semaphore is a counter that is used to control access to a shared resource. The counter can be

incremented or decremented by tasks that want to access the resource. If the counter is positive,

the resource is available, and the task can access it. If the counter is zero, the resource is not

available, and the task will be blocked until the semaphore is signaled by another task.

Here is an example of creating a semaphore in FreeRTOS:

SemaphoreHandle_t xSemaphore;

xSemaphore = xSemaphoreCreateBinary();

The xSemaphoreCreateBinary() function creates a binary semaphore that is initially empty (with

a count of zero). A binary semaphore can only be signaled or unsignaled, so it is useful when

protecting a single shared resource.

A mutex is a synchronization mechanism that allows only one task to access a shared resource at

a time. It is similar to a binary semaphore, but it can also enforce ownership. If a task tries to take

a mutex that is already owned by another task, it will be blocked until the mutex is released by the

owner.

Here is an example of creating a mutex in FreeRTOS:

73 | P a g e

SemaphoreHandle_t xMutex;

xMutex = xSemaphoreCreateMutex();

The xSemaphoreCreateMutex() function creates a mutex that is initially available. A mutex can

be taken and released by different tasks, so it is useful when protecting a shared resource that can

be accessed by multiple tasks.

To use a semaphore or a mutex, tasks must call the xSemaphoreTake() and xSemaphoreGive()

functions to acquire and release the semaphore or mutex. Here is an example of using a mutex to

protect a shared resource:

SemaphoreHandle_t xMutex;

int shared_resource = 0;

void task1(void *pvParameters)

{

 while (1)

 {

 xSemaphoreTake(xMutex, portMAX_DELAY);

 shared_resource++;

 xSemaphoreGive(xMutex);

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

}

void task2(void *pvParameters)

{

 while (1)

 {

 xSemaphoreTake(xMutex, portMAX_DELAY);

 shared_resource--;

 xSemaphoreGive(xMutex);

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

74 | P a g e

}

In this example, two tasks task1 and task2 access a shared variable shared_resource. The access to

the variable is protected by a mutex xMutex. The xSemaphoreTake() function is used to acquire

the mutex before accessing the variable, and the xSemaphoreGive() function is used to release the

mutex after accessing the variable.

Semaphores and mutexes are important synchronization mechanisms in FreeRTOS that can be

used to control access to shared resources among multiple tasks. Semaphores are useful for

controlling access to a shared resource with multiple instances, while mutexes are useful for

controlling access to a shared resource with a single instance.

Queues and pipes for message passing

In FreeRTOS, queues and pipes are used for inter-task communication and synchronization. They

are data structures that allow tasks to send and receive messages or data between each other.

A queue is a data structure that allows a task to send data to another task, where the data is added

to the end of the queue. The receiving task can then remove the data from the front of the queue.

A queue can be either a standard queue, where data is added to the end and removed from the

front, or a priority queue, where data is added based on its priority and removed in order of priority.

A pipe is similar to a queue, but it allows two-way communication between tasks. Data can be sent

and received from both ends of the pipe.

To use queues and pipes in FreeRTOS, the following API functions are provided:

• xQueueCreate() - creates a new queue.

• xQueueSend() - sends data to the queue.

• xQueueReceive() - receives data from the queue.

• xQueuePeek() - retrieves data from the queue without removing it.

• xQueueReset() - resets the queue.

• xQueueSemaphoreTake() - take the semaphore associated with a queue.

• xQueueSemaphoreGive() - give the semaphore associated with a queue.

• xStreamBufferCreate() - creates a new stream buffer.

• xStreamBufferSend() - sends data to the stream buffer.

• xStreamBufferReceive() - receives data from the stream buffer.

Here's an example code snippet that demonstrates the use of a queue in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

75 | P a g e

#define QUEUE_LENGTH 5

#define ITEM_SIZE sizeof(int)

static void sender_task(void *pvParameters)

{

 QueueHandle_t xQueue = (QueueHandle_t)pvParameters;

 int i = 0;

 while(1)

 {

 xQueueSend(xQueue, &i, 0);

 i++;

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

}

static void receiver_task(void *pvParameters)

{

 QueueHandle_t xQueue = (QueueHandle_t)pvParameters;

 int received_data;

 while(1)

 {

 if(xQueueReceive(xQueue, &received_data,

portMAX_DELAY) == pdTRUE)

 {

 // Data successfully received from the

queue

 printf("Received data: %d\n",

received_data);

 }

 }

76 | P a g e

}

int main(void)

{

 QueueHandle_t xQueue;

 xQueue = xQueueCreate(QUEUE_LENGTH, ITEM_SIZE);

 xTaskCreate(sender_task, "Sender", 1000, (void

*)xQueue, 1, NULL);

 xTaskCreate(receiver_task, "Receiver", 1000, (void

*)xQueue, 2, NULL);

 vTaskStartScheduler();

 return 0;

}

In this example, we create a queue using xQueueCreate() and pass it to two tasks, a sender and a

receiver. The sender task adds data to the queue using xQueueSend(), while the receiver task

retrieves data from the queue using xQueueReceive(). The pdMS_TO_TICKS() macro is used to

convert milliseconds to ticks, which is the time unit used by FreeRTOS. The portMAX_DELAY

parameter passed to xQueueReceive() means that the task will wait indefinitely for data to become

available in the queue.

Queues and pipes are powerful mechanisms that allow tasks to communicate with each other in a

synchronized and coordinated manner. They are especially useful in real-time applications where

multiple tasks need to exchange data.

Event flags and notifications for signaling

In an RTOS environment, inter-task communication and synchronization are essential features.

Event flags and notifications are used to signal specific events to a task or set of tasks. The event

signaling mechanism allows for a task to wait for a specific event to occur before proceeding.

Event flags are binary flags that can be set or cleared by a task or an interrupt service routine (ISR).

A task can block and wait for a specific combination of flags to be set or cleared. Once the desired

combination of flags is set or cleared, the waiting task is unblocked and resumed.

77 | P a g e

Notifications, on the other hand, are similar to event flags, but they can carry additional

information such as a numerical value or a pointer. Notifications are commonly used to pass small

amounts of data between tasks.

FreeRTOS provides event group and notification mechanisms for inter-task communication and

synchronization.

Event Groups:

Event groups allow tasks to wait for a specific combination of event flags to be set or cleared. An

event group is represented by an event group handle, which is created using the

xEventGroupCreate() API. Tasks can then wait for a specific set of event flags to be set or cleared

using the xEventGroupWaitBits() API.

Here is an example of using event groups in FreeRTOS:

// Create an event group handle

EventGroupHandle_t xEventGroup;

void vTask1(void *pvParameters)

{

 EventBits_t uxBits;

 // Wait for bit 0 and bit 1 to be set

 uxBits = xEventGroupWaitBits(xEventGroup, (1 << 0

) | (1 << 1), pdTRUE, pdFALSE, portMAX_DELAY);

 if((uxBits & (1 << 0)) && (uxBits & (1 << 1

)))

 {

 // Both bit 0 and bit 1 are set

 // Do something...

 }

}

void vTask2(void *pvParameters)

78 | P a g e

{

 // Set bit 0

 xEventGroupSetBits(xEventGroup, (1 << 0));

 // Do something...

 // Set bit 1

 xEventGroupSetBits(xEventGroup, (1 << 1));

}

int main(void)

{

 // Create the event group handle

 xEventGroup = xEventGroupCreate();

 // Create tasks...

}

In this example, vTask1() waits for bit 0 and bit 1 to be set, while vTask2() sets bit 0 and bit 1.

Once both bits are set, vTask1() continues execution.

Notifications:

Notifications are used to signal a task that an event has occurred, and they can carry additional

data such as a numerical value or a pointer. A task can wait for a notification using the

ulTaskNotifyTake() API.

Here is an example of using notifications in FreeRTOS:

// Create a task notification handle

TaskHandle_t xTaskHandle;

QueueHandle_t xQueue;

void vTask1(void *pvParameters)

{

79 | P a g e

 uint32_t ulNotificationValue;

 // Wait for a notification

 ulNotificationValue = ulTaskNotifyTake(pdTRUE,

portMAX_DELAY);

 if(ulNotificationValue == 1)

 {

 // Do something...

 }

 else if(ulNotificationValue == 2)

 {

 // Do something else...

 }

}

Memory management

Heap and stack memory allocation

Memory allocation is an important aspect of any embedded system design, and this is no different

when using a real-time operating system (RTOS) such as FreeRTOS. Heap and stack memory are

two common types of memory allocation that can be used in a FreeRTOS project. In this note, we

will discuss heap and stack memory allocation in FreeRTOS and provide suitable codes for

illustration.

Heap Memory Allocation:

Heap memory is a dynamic memory allocation technique where memory is allocated at runtime

from a pool of available memory. Heap memory is allocated when a task requires a block of

memory of a particular size. This type of memory allocation is useful when the size of the required

memory block is not known at compile time. In FreeRTOS, heap memory allocation can be

achieved using the pvPortMalloc() function. The pvPortMalloc() function takes the size of the

memory block to be allocated as its parameter and returns a pointer to the allocated memory block.

80 | P a g e

Here is an example code that demonstrates heap memory allocation in FreeRTOS:

/* Allocate 10 bytes of memory using heap memory

allocation */

void task_function(void *pvParameters)

{

 char *heap_buffer;

 heap_buffer = pvPortMalloc(10);

 if (heap_buffer != NULL)

 {

 /* Use the allocated memory block */

 strcpy(heap_buffer, "Hello");

 }

 /* Free the allocated memory block */

 vPortFree(heap_buffer);

}

Stack Memory Allocation:

Stack memory is a static memory allocation technique where memory is allocated at compile time

from a fixed-size pool of memory. Stack memory is allocated when a task is created and a portion

of the memory pool is reserved for the task. This type of memory allocation is useful when the

size of the required memory block is known at compile time. In FreeRTOS, stack memory

allocation can be achieved using the xTaskCreate() function. The xTaskCreate() function takes the

task function, task name, stack size, task parameters, and task priority as its parameters.

Here is an example code that demonstrates stack memory allocation in FreeRTOS:

/* Create a task with a stack size of 128 bytes */

void task_function(void *pvParameters)

{

 /* Use the allocated stack memory */

 char buffer[100];

81 | P a g e

}

void main(void)

{

 xTaskCreate(task_function, "Task1", 128, NULL, 1,

NULL);

 /* Start the scheduler */

 vTaskStartScheduler();

}

Heap and stack memory allocation are two common techniques used in embedded systems design,

and they can be used in a FreeRTOS project. Heap memory allocation is useful when the size of

the required memory block is not known at compile time, while stack memory allocation is useful

when the size of the required memory block is known at compile time. By using these memory

allocation techniques, developers can create efficient and effective FreeRTOS projects.

Memory allocation schemes and strategies

Memory allocation is an essential aspect of software development, and it becomes even more

critical in embedded systems programming. In an embedded system, the available memory is often

limited, and it must be used efficiently to ensure the system's proper functioning. Therefore,

choosing the right memory allocation scheme and strategy is crucial in embedded systems

development.

Heap and stack are two primary memory allocation areas in a system, including embedded

systems. Heap memory is used for dynamic memory allocation, and it is not pre-allocated. Stack

memory is a reserved area of memory used for static memory allocation. In embedded systems,

stack memory is used primarily to store function call data, local variables, and function return

addresses.

There are different memory allocation schemes and strategies, such as:

Static Allocation: In static allocation, memory is allocated at the compilation time, and it remains

fixed during the program's execution. It is useful for global variables or constants that are required

throughout the program's execution.

Example code for static allocation:

#include <stdio.h>

82 | P a g e

int global_var = 10;

int main(void) {

 static int static_var = 20;

 printf("Global variable value: %d\n", global_var);

 printf("Static variable value: %d\n", static_var);

 return 0;

}

Dynamic Allocation: In dynamic allocation, memory is allocated during the program's execution

time using functions like malloc(), calloc(), realloc(), and free(). It is useful when the memory

requirement of a program is not known during the compilation time.

Example code for dynamic allocation:

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 int* dynamic_var = (int*)malloc(sizeof(int));

 *dynamic_var = 30;

 printf("Dynamic variable value: %d\n",

*dynamic_var);

 free(dynamic_var);

 return 0;

}

First-fit Allocation: In the first-fit allocation strategy, the first free memory block that can

accommodate the requested memory size is allocated to the process. It is fast but can result in

memory fragmentation.

Best-fit Allocation: In the best-fit allocation strategy, the smallest free memory block that can

accommodate the requested memory size is allocated to the process. It results in less memory

fragmentation, but it can be slower than the first-fit strategy.

Worst-fit Allocation: In the worst-fit allocation strategy, the largest free memory block that can

accommodate the requested memory size is allocated to the process. It results in significant

memory fragmentation and is generally not preferred.

83 | P a g e

Choosing the right memory allocation scheme and strategy is crucial in embedded systems

development. The selection depends on the program's requirements, available memory, and

performance considerations.

Memory protection and safety mechanisms

Memory protection and safety mechanisms are critical components of any operating system,

including real-time operating systems (RTOS) like FreeRTOS. In an RTOS, memory protection

and safety mechanisms help ensure that the system operates as intended, preventing bugs and

vulnerabilities that could cause unexpected behavior or even system failure. This is especially

important in embedded systems where reliability and safety are critical.

There are several memory protection and safety mechanisms that can be used in an RTOS. Some

of the most common ones are:

Memory Management Units (MMUs): MMUs are hardware components that manage virtual

memory. They translate virtual addresses used by the software into physical addresses used by the

hardware. MMUs can be used to implement memory protection by assigning different memory

regions to different processes or tasks. If a task tries to access memory outside of its assigned

region, the MMU will generate a memory access violation exception.

Memory Protection Units (MPUs): MPUs are similar to MMUs, but they operate at a lower level

of abstraction. They can be used to partition the memory space into multiple regions and restrict

access to those regions by setting up appropriate access permissions. This is done by configuring

the MPU registers with information about memory regions and access permissions.

Stack Overflow Protection: Stack overflow can occur when a task tries to write to memory beyond

the end of its stack. This can cause memory corruption and potentially crash the system. To prevent

this, an RTOS can implement stack overflow protection mechanisms, such as stack overflow

detection and automatic stack growth.

Heap Management: Heap management is the process of allocating and deallocating memory

dynamically at runtime. In an RTOS, heap management can be a potential source of bugs and

vulnerabilities if not implemented correctly. For example, if a task allocates memory and does not

deallocate it properly, it can cause memory leaks and eventually run out of memory. To prevent

this, an RTOS can implement memory safety mechanisms, such as heap overflow protection and

memory allocation tracking.

In FreeRTOS, memory protection and safety mechanisms are implemented through various kernel

features and APIs. For example, MMUs and MPUs can be configured using the

vPortDefineMMURegions() and vPortDefineMPURegions() functions. Stack overflow protection

can be enabled using the configCHECK_FOR_STACK_OVERFLOW configuration option. Heap

management can be customized using the pvPortMalloc() and vPortFree() functions, which are

used for dynamic memory allocation.

84 | P a g e

Overall, memory protection and safety mechanisms are essential for ensuring reliable and safe

operation of RTOS-based embedded systems. By implementing these mechanisms correctly, an

RTOS can help prevent bugs and vulnerabilities, improve system reliability, and reduce the risk of

system failure.

Interrupt handling

Interrupt service routine (ISR) and its structure

An Interrupt Service Routine (ISR), also known as an Interrupt Handler, is a piece of code that is

executed in response to an interrupt request generated by a hardware device or software. Interrupts

are a fundamental part of real-time systems and embedded systems, as they allow the system to

respond quickly to external events without the need for the processor to constantly poll for events.

The structure of an ISR varies depending on the architecture and platform being used, but generally

follows a few basic principles. First, the ISR must be able to quickly save the context of the

interrupted code, including registers and other state information. Second, the ISR must perform

the necessary actions to handle the interrupt request, such as reading data from a sensor or

responding to a button press. Finally, the ISR must restore the original context of the interrupted

code and return control to the main program.

Here is an example of an ISR in C language for the STM32 microcontroller platform using the

FreeRTOS kernel:

#include "stm32f4xx.h"

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

// Interrupt Service Routine for TIM2

void TIM2_IRQHandler(void)

{

 // Save the context of the interrupted code

 portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

 portSAVE_CONTEXT();

 // Handle the interrupt request

85 | P a g e

 // ...

 // Restore the original context

portRESTORE_CONTEXT_FROM_ISR(xHigherPriorityTaskWoken);

}

In this example, the ISR is defined as TIM2_IRQHandler and is called when an interrupt is

generated by the TIM2 hardware timer. The portBASE_TYPE and portSAVE_CONTEXT macros

are used to save the context of the interrupted code, while the

portRESTORE_CONTEXT_FROM_ISR macro is used to restore the original context. The

pdFALSE parameter indicates that the interrupt did not result in a higher priority task being woken,

which is used by the FreeRTOS kernel to determine whether a context switch is required.

ISRs are an essential component of real-time operating systems and are used extensively in

embedded systems to handle hardware events and tasks. It is important to ensure that ISRs are

written efficiently and are non-blocking, as they can interrupt the normal flow of program

execution and cause unpredictable behavior if not handled properly.

Interrupt nesting and priority levels

Interrupt nesting and priority levels are important concepts in embedded systems, especially when

using an RTOS. Interrupt nesting refers to the ability to handle an interrupt while another interrupt

is being processed. Priority levels refer to the level of importance assigned to each interrupt, and

they determine the order in which the interrupts are handled.

In an RTOS, interrupt nesting is usually supported to allow for higher-priority interrupts to

interrupt lower-priority interrupts. This can be useful for handling critical events, such as safety-

critical events or time-critical events. Interrupt nesting can also help reduce interrupt latency,

which is the time between when an interrupt occurs and when it is processed.

Priority levels are assigned to each interrupt to determine the order in which they are handled. In

an RTOS, priority levels are usually assigned by the kernel, and they can be changed dynamically

based on the system's needs. Interrupts with higher priority levels are handled first, while interrupts

with lower priority levels are handled later.

Here is an example code snippet for configuring interrupt priorities on an STM32 microcontroller:

// Enable interrupt for USART1

NVIC_EnableIRQ(USART1_IRQn);

// Set interrupt priority to 2

86 | P a g e

NVIC_SetPriority(USART1_IRQn, 2);

In this example, we are enabling the interrupt for USART1 and setting its priority level to 2. The

NVIC_EnableIRQ function is used to enable the interrupt, and the NVIC_SetPriority function is

used to set its priority level.

It is important to note that priority levels can vary depending on the microcontroller architecture

and the specific RTOS being used. It is also important to carefully consider the priority levels

assigned to each interrupt to ensure that critical events are handled in a timely and efficient manner.

Interrupt-safe FreeRTOS API calls

In an RTOS environment, interrupts play a vital role in ensuring real-time responsiveness to the

system. However, these interrupts can also cause problems if not handled properly. One common

issue that arises is interrupt nesting, where an interrupt occurs while another is being serviced,

resulting in a priority inversion problem. Another issue is the possibility of an interrupt occurring

during a critical section of code, causing data corruption or other problems.

To address these issues, FreeRTOS provides a mechanism for interrupt-safe API calls. These calls

can be made from within an interrupt service routine (ISR) without causing problems such as data

corruption or priority inversion.

To make a FreeRTOS API call interrupt-safe, the API function must be enclosed within a

taskENTER_CRITICAL() and taskEXIT_CRITICAL() pair. These functions disable and enable

interrupts respectively, ensuring that the critical section of code is executed without interruption.

Here's an example of using interrupt-safe API calls in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

QueueHandle_t xQueue;

void vProducerTask(void *pvParameters)

{

 int count = 0;

 while (1) {

 // Wait for 1 second

87 | P a g e

 vTaskDelay(pdMS_TO_TICKS(1000));

 // Send a message to the queue

 taskENTER_CRITICAL();

 xQueueSend(xQueue, &count, portMAX_DELAY);

 taskEXIT_CRITICAL();

 count++;

 }

}

void vConsumerTask(void *pvParameters)

{

 int count;

 while (1) {

 // Wait for a message to arrive in the queue

 xQueueReceive(xQueue, &count, portMAX_DELAY);

 // Print the count value

 printf("Received count: %d\n", count);

 }

}

void vApplicationIdleHook(void)

{

 // This hook is called when the system is idle

 // It is used to put the processor to sleep to

conserve power

 // We won't do anything here for this example

}

88 | P a g e

int main(void)

{

 // Create the queue

 xQueue = xQueueCreate(10, sizeof(int));

 // Create the producer and consumer tasks

 xTaskCreate(vProducerTask, "Producer",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 xTaskCreate(vConsumerTask, "Consumer",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 // Start the scheduler

 vTaskStartScheduler();

 // We should never get here

 return 0;

}

In this example, we have two tasks: a producer task and a consumer task. The producer task sends

a message to the queue every second, while the consumer task waits for a message to arrive in the

queue and prints the count value.

To ensure that the xQueueSend() function call is interrupt-safe, we have enclosed it within a

taskENTER_CRITICAL() and taskEXIT_CRITICAL() pair. This ensures that no interrupt will

occur while the message is being sent to the queue, preventing any data corruption or other

problems.

Overall, interrupt-safe API calls are an essential feature of FreeRTOS that allows developers to

write safe and reliable code in an RTOS environment.

89 | P a g e

Timer management

Types of timers and their applications

In FreeRTOS, timers are used for a variety of tasks, such as generating periodic events, measuring

time intervals, and scheduling tasks. There are two types of timers in FreeRTOS: software timers

and hardware timers.

Software timers are implemented purely in software and use the FreeRTOS tick interrupt to

generate timing events. They are flexible, as they can be started, stopped, and reset dynamically

during the runtime of the system. In addition, they can be created with a callback function that will

be executed when the timer expires.

Here's an example of how to create a software timer in FreeRTOS:

// Define the callback function

void vTimerCallback(TimerHandle_t xTimer)

{

 // Do something when the timer expires

}

// Create a timer that will expire after 1000 ticks

TimerHandle_t xTimer = xTimerCreate("Timer",

pdMS_TO_TICKS(1000), pdTRUE, 0, vTimerCallback);

// Start the timer

xTimerStart(xTimer, 0);

In this example, vTimerCallback() is the function that will be executed when the timer expires.

xTimerCreate() is used to create the timer, and xTimerStart() is used to start it.

Hardware timers, on the other hand, are implemented using the hardware timers available on the

MCU. They are generally more accurate and have higher resolution than software timers.

Hardware timers are usually used for time-critical applications, such as generating PWM signals

or measuring the duration of an external event.

Here's an example of how to create a hardware timer in FreeRTOS using the STM32CubeMX tool:

• Open STM32CubeMX and select the MCU you are using.

90 | P a g e

• Click on the "Timers" tab and configure the timer you want to use.

• Click on the "Project Manager" tab and generate the code.

• In your code, include the necessary header files and initialize the timer using the generated

code.

Here's an example of how to configure and use a hardware timer on an STM32 MCU:

// Initialize the timer

TIM_HandleTypeDef htim;

TIM_MasterConfigTypeDef sMasterConfig;

htim.Instance = TIM2;

htim.Init.Prescaler = 0;

htim.Init.CounterMode = TIM_COUNTERMODE_UP;

htim.Init.Period = 10000;

htim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

HAL_TIM_Base_Init(&htim);

// Start the timer

HAL_TIM_Base_Start(&htim);

In this example, we are using Timer 2 on an STM32 MCU. The timer is initialized with a period

of 10,000 clock cycles and started using HAL_TIM_Base_Start(). Once the timer is running, you

can use it to generate interrupts or perform other time-critical tasks.

Configuring and using timers in FreeRTOS

FreeRTOS is a real-time operating system that provides various mechanisms for time management,

including timers. Timers are essential for performing tasks at periodic intervals, measuring time

durations, and triggering events at specific times. In this subtopic, we will discuss the types of

timers in FreeRTOS and how to configure and use them in a task.

Types of Timers in FreeRTOS:

FreeRTOS provides two types of timers: Software timers and hardware timers.

91 | P a g e

Software Timers:

Software timers are implemented in software and are independent of hardware timers. They are

used for generating events periodically or after a specific duration. These timers can be created

and managed by tasks and can be used to perform periodic tasks or generate interrupts at specific

intervals. The advantage of using software timers is that they are portable across different

microcontrollers and operating systems.

Hardware Timers:

Hardware timers are implemented in hardware and can be used for generating interrupts or

triggering events at specific intervals. They are useful for time-critical applications that require

precise timing, such as controlling motor speed or synchronizing audio and video. The hardware

timers can be configured to trigger interrupts at specific intervals and execute the corresponding

interrupt service routine (ISR) for processing.

Configuring and Using Timers in FreeRTOS:

To configure and use timers in FreeRTOS, the following steps can be followed:

Step 1: Include the header file "timers.h" in your application.

Step 2: Create a timer handle using the "xTimerCreate()" function. This function takes the

following arguments:

• Timer name

• Timer period

• Auto-reload flag (if the timer should automatically restart after expiring)

• Timer ID (an optional parameter used to identify the timer)

Example code for creating a software timer:

// Create a software timer with a 1 second period and

auto-reload

TimerHandle_t myTimer = xTimerCreate("My Timer",

pdMS_TO_TICKS(1000), pdTRUE, NULL);

Example code for creating a hardware timer:

// Create a hardware timer with a 1 second period and

auto-reload

92 | P a g e

TimerHandle_t myTimer = xTimerCreate("My Timer",

pdMS_TO_TICKS(1000), pdTRUE, (void*) TIMER1);

In the hardware timer example, we pass a timer ID to the timer handle so that it can use the specific

hardware timer.

Step 3: Start the timer using the "xTimerStart()" function. This function takes the timer handle and

the number of ticks to wait before the timer first expires.

Example code for starting a timer:

// Start the timer to expire after 100 ticks

xTimerStart(myTimer, 100);

Step 4: Implement the timer callback function to handle the timer expiry event. This function will

be executed when the timer expires and can perform any required actions.

Example code for a timer callback function:

void vTimerCallback(TimerHandle_t xTimer)

{

 // Perform some action

}

Step 5: Delete the timer using the "xTimerDelete()" function when it is no longer needed.

Example code for deleting a timer:

// Delete the timer

xTimerDelete(myTimer, 0);

FreeRTOS provides two types of timers, software timers and hardware timers, for time

management in tasks. Software timers are implemented in software and are portable across

different microcontrollers and operating systems, while hardware timers are implemented in

hardware and provide precise timing for time-critical applications. Timers can be created and

managed by tasks and can be used for periodic tasks, measuring time durations, or triggering events

at specific intervals. By following the above steps, timers can be configured and used in a task in

FreeRTOS.

93 | P a g e

Timer synchronization and accuracy

In FreeRTOS, timers are used to perform periodic tasks or to schedule tasks at specific time

intervals. Timers are software components that generate interrupts at specified intervals.

FreeRTOS supports two types of timers: software timers and hardware timers.

Software timers are implemented entirely in software and do not require any hardware support.

They are less accurate than hardware timers but are more flexible and can be configured to run at

any time interval. Software timers can be created using the xTimerCreate() function, which takes

as input the timer period, a callback function that will be executed when the timer expires, and a

timer ID that can be used to reference the timer later.

Here is an example of how to create a software timer in FreeRTOS:

/* Define the callback function that will be executed

when the timer expires */

void vTimerCallback(TimerHandle_t xTimer)

{

 /* Do something when the timer expires */

}

/* Create the software timer with a period of 1000 ms

*/

TimerHandle_t xTimer = xTimerCreate("Timer",

pdMS_TO_TICKS(1000), pdTRUE, 0, vTimerCallback);

/* Start the timer */

xTimerStart(xTimer, 0);

In this example, the timer period is set to 1000

milliseconds, and the callback function vTimerCallback

will be executed when the timer expires. The timer is

started using the xTimerStart function.

Hardware timers, on the other hand, are implemented using hardware resources such as a system

clock or a dedicated timer peripheral. They provide more accurate timing than software timers but

are less flexible and can only be configured to run at specific intervals supported by the hardware.

Hardware timers can be configured using the STM32CubeMX tool or by directly accessing the

timer registers in code.

94 | P a g e

Here is an example of how to configure a hardware timer in FreeRTOS using STM32CubeMX:

• Open STM32CubeMX and select the MCU and the timer you want to use.

• Configure the timer's clock source and prescaler value to set the timer's frequency.

• Configure the timer's period value to set the interval at which the timer will generate

interrupts.

• Enable the timer's interrupt in the NVIC.

• Generate code for the project and include the necessary FreeRTOS header files.

• Once the hardware timer is configured, you can create a FreeRTOS timer that uses the

hardware timer as its time source. This is done using the xTimerCreateTimerTask function,

which creates a timer task that is responsible for handling the hardware timer interrupts.

Here is an example of how to create a hardware timer in FreeRTOS:

/* Create a hardware timer that uses TIM3 as its time

source */

TimerHandle_t xTimer = xTimerCreateTimerTask("Timer",

pdMS_TO_TICKS(1000), pdTRUE, (void *) 0, NULL, 3);

In this example, the timer period is set to 1000 milliseconds, and the timer task is configured to

use TIM3 as its time source (specified by the 3 argument). The timer is started using the

xTimerStart function, as in the software timer example.

Timer accuracy and synchronization can be improved by using a timer synchronization protocol

such as the Network Time Protocol (NTP) or the Precision Time Protocol (PTP). These protocols

allow multiple devices to synchronize their clocks to a common time reference, improving the

accuracy and reliability of timers across the system.

FreeRTOS configuration options

Overview of FreeRTOS configuration options

FreeRTOS provides a number of configuration options that allow developers to customize its

behavior according to the specific needs of their project. These configuration options are defined

in the file FreeRTOSConfig.h, which is located in the project's source code.

Here are some of the key configuration options that are available in FreeRTOS:

configTICK_RATE_HZ: This option sets the frequency of the tick interrupt, which is the interrupt

that updates the FreeRTOS internal clock. The default value is 1000 Hz, which means that the tick

interrupt occurs every 1 millisecond.

95 | P a g e

configUSE_PREEMPTION: This option enables or disables the preemption feature of FreeRTOS.

If preemption is enabled, tasks with higher priority will preempt tasks with lower priority. If

preemption is disabled, tasks will run until they yield or block, regardless of their priority.

configUSE_IDLE_HOOK: This option enables or disables the idle hook function, which is called

when the CPU is idle. This can be useful for performing background tasks or entering low-power

modes when the system is idle.

configUSE_TICK_HOOK: This option enables or disables the tick hook function, which is called

on every tick interrupt. This can be useful for performing periodic tasks that need to run at a fixed

frequency.

configMAX_PRIORITIES: This option sets the maximum number of task priorities that can be

used in the system. The default value is 5, which means that tasks can have priorities ranging from

0 to 4.

configMINIMAL_STACK_SIZE: This option sets the minimum stack size that can be used for

tasks. The default value is 128 bytes, which is usually sufficient for most tasks.

configTOTAL_HEAP_SIZE: This option sets the total size of the heap memory that is available

for dynamic memory allocation. This value should be set according to the memory requirements

of the application.

configCHECK_FOR_STACK_OVERFLOW: This option enables or disables the stack overflow

checking feature. If enabled, FreeRTOS will check for stack overflow errors and generate an

exception if one is detected.

configUSE_MUTEXES: This option enables or disables the use of mutexes for synchronization

between tasks. If enabled, FreeRTOS provides a set of functions for creating and manipulating

mutexes.

configUSE_QUEUE_SETS: This option enables or disables the use of queue sets, which are used

to synchronize multiple queues or semaphores.

configUSE_TIMERS: This option enables or disables the use of software timers in the system. If

enabled, FreeRTOS provides a set of functions for creating and manipulating timers.

These are just a few of the many configuration options that are available in FreeRTOS. By

customizing these options, developers can optimize the behavior of the system to meet the specific

needs of their application.

Tuning the configuration for your project needs

FreeRTOS provides a wide range of configuration options that allow users to fine-tune the

operating system to meet their project needs. These configuration options can be adjusted in the

FreeRTOSConfig.h file, which is included in the project source code. In this file, the user can

enable or disable various features, configure memory allocation schemes, and adjust other settings.

96 | P a g e

Here are some of the important configuration options in FreeRTOSConfig.h:

Kernel Configuration Options: These options are used to enable or disable specific features of the

FreeRTOS kernel. For example, the user can enable or disable support for software timers, task

notifications, and task prioritization.

Memory Management Options: These options are used to configure the memory allocation scheme

used by FreeRTOS. The user can choose between heap-based and stack-based allocation schemes,

and adjust the heap size as needed.

Task Configuration Options: These options are used to configure the behavior of individual tasks

in the system. For example, the user can adjust the stack size and priority of each task, and enable

or disable task preemption.

Queue Configuration Options: These options are used to configure the behavior of message queues

in the system. The user can adjust the maximum queue size, and enable or disable blocking

behavior for queue operations.

Tick Configuration Options: These options are used to configure the system tick rate and interrupt

priority. The user can adjust the tick rate to meet the needs of the application, and adjust the tick

interrupt priority to avoid conflicts with other interrupts.

To tune the FreeRTOS configuration for your project needs, it is important to carefully consider

the requirements of your application and adjust the configuration options accordingly. For

example, if your application requires frequent message passing between tasks, you may want to

increase the queue size or adjust the blocking behavior of queue operations. Similarly, if your

application requires high-precision timing, you may want to adjust the tick rate and interrupt

priority to ensure accurate timing.

Here is an example of how to configure the memory allocation scheme in FreeRTOSConfig.h:

/* Use heap-based memory allocation */

#define configSUPPORT_DYNAMIC_ALLOCATION 1

#define configTOTAL_HEAP_SIZE ((size_t) (15 * 1024

))

#define configAPPLICATION_ALLOCATED_HEAP 0

In this example, the heap-based memory allocation scheme is enabled by setting

configSUPPORT_DYNAMIC_ALLOCATION to 1. The total heap size is set to 15KB using the

configTOTAL_HEAP_SIZE option. Finally, the configAPPLICATION_ALLOCATED_HEAP

option is set to 0, indicating that FreeRTOS should manage the heap memory itself.

Overall, tuning the FreeRTOS configuration for your project needs is an important step in ensuring

optimal performance and reliability. By carefully considering the requirements of your application

97 | P a g e

and adjusting the configuration options accordingly, you can create a system that meets the needs

of your project.

Best practices for FreeRTOS configuration

FreeRTOS is a powerful and flexible real-time operating system that can be configured in many

different ways to suit the needs of different embedded systems. However, configuring FreeRTOS

can be a complex process, and there are several best practices that can help ensure that your

configuration is robust and effective. In this note, we will discuss some of these best practices,

along with suitable codes.

Start with a small and simple configuration: When starting a new FreeRTOS project, it is best to

begin with a minimal configuration that includes only the components and features that are

essential for your system. This will help you to avoid unnecessary complexity and ensure that your

system is as efficient and reliable as possible. As your project progresses, you can gradually add

more features and components as needed.

Use the latest version of FreeRTOS: FreeRTOS is constantly evolving, with new features and

improvements being added all the time. It is therefore important to use the latest version of

FreeRTOS in your project, as this will give you access to the latest features and bug fixes.

Use the FreeRTOS Configuration Wizard: The FreeRTOS Configuration Wizard is a tool that can

help you to generate a custom configuration for your FreeRTOS project. This tool allows you to

select the components and features that you need, and generates a configuration file that can be

used with your project. Using the Configuration Wizard can save you a lot of time and effort, and

help you to avoid common configuration errors.

Optimize your configuration for your hardware: FreeRTOS can be configured to work with a wide

range of hardware platforms, but it is important to optimize your configuration for your specific

hardware. This may involve tweaking the settings of the scheduler, memory manager, and other

components to achieve the best performance and efficiency.

Use the FreeRTOS support forum: The FreeRTOS community is very active, and there are many

experienced users who can provide help and advice on configuring and using FreeRTOS. If you

have questions or problems with your configuration, the FreeRTOS support forum is a great place

to get help.

Test your configuration thoroughly: Once you have configured FreeRTOS for your project, it is

important to test your configuration thoroughly to ensure that it is working as expected. This may

involve testing individual components, as well as the system as a whole, to identify any issues or

performance bottlenecks.

Example code:

Here is an example of using the FreeRTOS Configuration Wizard to generate a custom

configuration file for your project:

98 | P a g e

• Download and install the FreeRTOS Configuration Wizard from the FreeRTOS website.

• Launch the Configuration Wizard and select your target hardware platform.

• Choose the components and features that you need for your project, such as the scheduler,

memory manager, and communication mechanisms.

• Generate a custom configuration file for your project.

• Use the generated configuration file in your project.

Here is an example of optimizing the FreeRTOS configuration for your hardware:

• Determine the characteristics of your hardware platform, such as the available memory,

clock speed, and processing power.

• Choose appropriate settings for the FreeRTOS scheduler, memory manager, and other

components based on your hardware characteristics.

• Test your configuration thoroughly to ensure that it is working as expected and that it is

optimized for your hardware.

Configuring FreeRTOS for your project requires careful consideration of the components and

features that you need, along with optimization for your specific hardware platform. By

following these best practices and testing your configuration thoroughly, you can ensure that

your FreeRTOS system is robust, efficient, and reliable.

Debugging FreeRTOS applications with

SEGGER tools

Debugging techniques and tools for FreeRTOS

Debugging is a crucial aspect of any software development project, and FreeRTOS is no exception.

Since FreeRTOS involves a kernel and multiple tasks, debugging can be a challenging task.

Fortunately, FreeRTOS provides several built-in features that simplify debugging and

troubleshooting. Additionally, various debugging tools and techniques are available to help

developers identify and fix issues quickly.

Here are some common debugging techniques and tools for FreeRTOS:

Debugging with Print Statements: One of the simplest ways to debug a FreeRTOS application is

by using print statements. Developers can insert print statements into the code to print out specific

variables or states during the execution of the program. This method can help identify issues related

to task synchronization, communication, or memory allocation.

void vTaskFunction(void *pvParameters)

99 | P a g e

{

 int i = 0;

 while(1)

 {

 printf("Task function: %d\n", i++);

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

}

Debugging with LEDs: Many development boards come equipped with LEDs that can be used to

indicate various states or signals during program execution. Developers can use LEDs to indicate

when a task is running or when a specific condition is met. This method is useful when debugging

real-time systems where print statements might not be feasible.

void vTaskFunction(void *pvParameters)

{

 int i = 0;

 while(1)

 {

 // Toggle LED

 HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

}

Debugging with Tracealyzer: Tracealyzer is a powerful debugging tool designed explicitly for

FreeRTOS. It allows developers to visualize and analyze the behavior of the system during

runtime. Developers can use Tracealyzer to identify issues related to task synchronization,

communication, and memory allocation. The tool provides various visualizations such as timeline

views, state views, and sequence charts.

void vTaskFunction(void *pvParameters)

{

 int i = 0;

 while(1)

100 | P a g e

 {

 // Trace the event

 vTracePrintF(TracealyzerCategory, "Task

function: %d", i++);

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

}

Debugging with Breakpoints: Developers can also use breakpoints to debug a FreeRTOS

application. Breakpoints allow developers to stop the execution of the program at a specific point

and examine the state of the system. This method is useful for identifying issues related to task

synchronization or memory allocation.

void vTaskFunction(void *pvParameters)

{

 int i = 0;

 while(1)

 {

 // Set breakpoint here

 vTaskDelay(pdMS_TO_TICKS(1000));

 i++;

 }

}

Debugging with Memory Checkers: Memory checkers are useful tools for identifying memory-

related issues such as memory leaks or buffer overflows. These tools can help identify issues

related to task synchronization, communication, or memory allocation.

void vTaskFunction(void *pvParameters)

{

 int *pArray = (int *)pvPortMalloc(sizeof(int) *

10);

 if(pArray == NULL)

 {

101 | P a g e

 printf("Memory allocation error\n");

 vTaskDelete(NULL);

 }

 // Use memory

 // ...

 vPortFree(pArray);

}

Debugging is a crucial aspect of FreeRTOS development, and developers can use various

techniques and tools to identify and fix issues quickly. By using a combination of print statements,

LEDs, Tracealyzer, breakpoints, and memory checkers, developers can debug their FreeRTOS

applications effectively.

Using SEGGER tools for real-time debugging and analysis

SEGGER provides a suite of powerful and efficient tools for real-time debugging and analysis of

FreeRTOS-based projects. In this subtopic, we will discuss how to use SEGGER tools for real-

time debugging and analysis in FreeRTOS-based projects.

One of the main advantages of using SEGGER tools is their seamless integration with the

FreeRTOS kernel. The SEGGER tools provide a real-time view of the FreeRTOS kernel, including

tasks, queues, semaphores, and other kernel objects. This makes it easy to debug and analyze the

behavior of your FreeRTOS-based application.

To use SEGGER tools with FreeRTOS, you need to have the following tools installed on your

system:

SEGGER J-Link debugger:

SEGGER SystemView tool:

Once you have installed the tools, you can connect your target board to your computer using the

J-Link debugger. You can then launch the SystemView tool and connect it to your target board.

The SystemView tool will automatically detect the FreeRTOS kernel and display the kernel objects

in real-time.

One of the main features of the SystemView tool is its ability to display real-time traces of the

FreeRTOS kernel. The tool captures events such as task switches, semaphore waits and releases,

and queue operations. You can use this information to analyze the behavior of your FreeRTOS-

based application and identify performance bottlenecks and other issues.

Another useful feature of the SystemView tool is its ability to display statistics about the

FreeRTOS kernel. You can view information such as CPU utilization, task execution times, and

queue lengths. This information can help you optimize your FreeRTOS-based application for

better performance and efficiency.

102 | P a g e

To use the SystemView tool, you need to include the SEGGER SystemView API in your

FreeRTOS-based application. You can do this by downloading the SystemView API from the

SEGGER website and adding it to your project.

Here is an example code snippet that shows how to use the SystemView API in a FreeRTOS-based

application:

#include "FreeRTOS.h"

#include "task.h"

#include "SEGGER_SYSVIEW.h"

void vTaskFunction(void *pvParameters)

{

 // Task code goes here

}

int main(void)

{

 SEGGER_SYSVIEW_Conf();

 xTaskCreate(vTaskFunction, "Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

 vTaskStartScheduler();

 while (1)

 {

 // Main loop code goes here

 }

}

In this example, we include the SEGGER_SYSVIEW.h header file and call the

SEGGER_SYSVIEW_Conf() function to initialize the SystemView tool. We then create a task

103 | P a g e

using the xTaskCreate() function and start the FreeRTOS scheduler using the

vTaskStartScheduler() function.

Overall, using SEGGER tools for real-time debugging and analysis in FreeRTOS-based projects

can help you identify and fix issues more efficiently, leading to a more robust and reliable

application.

Troubleshooting common FreeRTOS issues

FreeRTOS is a popular real-time operating system that provides developers with a range of

powerful features to create complex applications. Despite its many advantages, however,

developers may encounter issues during their development process that can be frustrating to

diagnose and resolve. In this article, we will discuss some common FreeRTOS issues and

troubleshooting techniques to help you get back on track quickly.

Memory allocation failures: One of the most common issues with FreeRTOS is memory allocation

failures. This can happen if you have not allocated enough memory for your tasks or if there is a

memory leak in your code. To diagnose this issue, you can use the FreeRTOS heap_4.c module,

which provides detailed information about heap usage and memory allocation errors.

Task starvation: Task starvation is a situation where one or more tasks in the system are not able

to execute due to the lack of available resources. This can happen if a high-priority task is hogging

the CPU or if there is a deadlock in the system. To diagnose this issue, you can use the FreeRTOS

trace tool to visualize the task execution order and identify potential bottlenecks.

Interrupt-related issues: Interrupts are an essential part of any real-time system, but they can also

cause issues if not handled properly. Some common interrupt-related issues include interrupt

latency, interrupt priority mismatches, and interrupt nesting problems. To diagnose these issues,

you can use the FreeRTOS trace tool and the SEGGER SystemView tool to analyze the interrupt

behavior and identify potential sources of problems.

Stack overflow: Stack overflow is a common issue in embedded systems that can cause system

crashes and instability. This can happen if a task is using more stack space than is available or if

there is a bug in the code that is causing excessive stack usage. To diagnose this issue, you can use

the FreeRTOS stack overflow checking feature, which can detect and report stack overflow errors

at runtime.

Deadlock: Deadlock is a situation where two or more tasks are blocked waiting for each other to

release a resource, resulting in a deadlock. This can happen if tasks are not properly synchronized

or if there is a bug in the code that is causing unexpected behavior. To diagnose this issue, you can

use the FreeRTOS trace tool and the SEGGER SystemView tool to analyze the task execution

order and identify potential sources of deadlock.

Overall, these are just a few common FreeRTOS issues that developers may encounter during their

development process. By using the right tools and techniques, however, you can quickly diagnose

and resolve these issues, ensuring that your application runs smoothly and reliably.

104 | P a g e

Chapter 3:

Getting Started with STM32 MCUs and FreeRTOS

105 | P a g e

Embedded systems are increasingly becoming ubiquitous in our daily lives. They are used in

everything from smartphones to cars and home appliances. As a result, there is a growing demand

for developers who can design, program, and deploy embedded systems. One of the most popular

embedded systems platforms in use today is the STM32 microcontroller series from

STMicroelectronics. These powerful and versatile MCUs are designed for a range of applications,

including industrial control systems, IoT devices, and consumer electronics.

However, designing and programming embedded systems can be a complex and challenging task.

It requires an understanding of both hardware and software design principles, as well as experience

with the tools and technologies commonly used in the industry. One technology that is becoming

increasingly popular for designing embedded systems is FreeRTOS.

FreeRTOS is a real-time operating system that is designed for use in embedded systems. It provides

a kernel that is designed to be small, efficient, and highly portable. This makes it an ideal choice

for embedded systems where resources are limited and performance is critical. FreeRTOS provides

a range of features, including task scheduling, inter-task communication, and memory

management, which can help to simplify the design and development of embedded systems.

In this chapter, we will explore the basics of designing embedded systems using STM32 MCUs

and FreeRTOS. We will begin by discussing the basic architecture of STM32 MCUs and the key

features that make them an ideal choice for embedded systems design. We will then introduce the

basics of FreeRTOS, including its architecture, task scheduling, and inter-task communication.

We will also provide a step-by-step guide to setting up a development environment for STM32

MCUs and FreeRTOS. This will include installing the necessary tools and software, configuring

the hardware, and writing and testing basic programs using FreeRTOS. We will also provide a

range of practical examples and exercises to help you develop your skills in designing and

programming embedded systems.

Throughout the chapter, we will emphasize the importance of good design principles and best

practices. We will provide guidance on how to write efficient and effective code, how to debug

and test your programs, and how to optimize your system for performance and reliability.

By the end of this chapter, you will have a solid understanding of the basics of designing embedded

systems using STM32 MCUs and FreeRTOS. You will have the skills and knowledge necessary

to begin developing your own embedded systems applications, and the confidence to tackle more

complex projects in the future. Whether you are a student, hobbyist, or professional developer, this

chapter will provide a solid foundation for your journey into the exciting and challenging world of

embedded systems design.

106 | P a g e

Introduction to STM32 MCUs

Overview of STM32 MCUs and their features

The STM32 microcontroller (MCU) family is a range of 32-bit ARM Cortex-based

microcontrollers that are developed by STMicroelectronics. The STM32 MCUs are popular for

their robustness, flexibility, and low power consumption. They are used in a wide range of

applications including industrial automation, consumer electronics, automotive, medical

equipment, and many more.

Some of the key features of STM32 MCUs include:

High-performance Cortex cores:

STM32 MCUs are based on ARM Cortex cores which provide high-performance processing

capabilities. The Cortex-M0, Cortex-M3, Cortex-M4, and Cortex-M7 are some of the popular

cores used in STM32 MCUs.

Memory:

The STM32 MCUs offer a wide range of memory options including Flash memory for program

storage, SRAM for data storage, and EEPROM for non-volatile data storage.

Peripherals:

STM32 MCUs come with a wide range of peripherals including timers, ADCs, DACs, USARTs,

I2C, SPI, CAN, USB, and Ethernet. These peripherals enable the MCU to interface with a wide

range of external devices.

Low-power modes:

STM32 MCUs come with low-power modes that help to reduce power consumption. Some of the

low-power modes include sleep, standby, and stop modes.

Security features:

STM32 MCUs come with security features such as hardware encryption, secure boot, and memory

protection. These features help to protect the system from unauthorized access and ensure data

integrity.

Development tools:

STM32 MCUs are supported by a wide range of development tools including IDEs, debuggers,

and compilers. These tools help developers to develop, debug, and deploy applications on STM32

MCUs.

107 | P a g e

Here's a sample code for configuring an STM32 MCU GPIO pin:

#include "stm32f4xx.h"

int main(void)

{

 // Enable GPIO clock

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,

ENABLE);

 // Configure GPIO pin as output

 GPIO_InitTypeDef GPIO_InitStruct;

 GPIO_InitStruct.GPIO_Pin = GPIO_Pin_0;

 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;

 GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;

 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;

 GPIO_Init(GPIOA, &GPIO_InitStruct);

 while(1)

 {

 // Toggle GPIO pin

 GPIO_ToggleBits(GPIOA, GPIO_Pin_0);

 // Delay

 for(uint32_t i = 0; i < 1000000; i++);

 }

}

In the above code, we first enable the clock for GPIOA, which is the port we are using. We then

configure pin 0 of GPIOA as an output pin using the GPIO_InitStruct. Finally, we toggle the pin

state in an infinite loop and add a delay to make the LED blink. This is a simple example of how

to configure an STM32 MCU GPIO pin.

108 | P a g e

STM32 MCU families and their characteristics

The STM32 microcontroller (MCU) family is a range of 32-bit ARM Cortex-based

microcontrollers that are developed by STMicroelectronics. The STM32 MCU family consists of

several series that offer different features and capabilities. Let's take a closer look at some of the

STM32 MCU families and their characteristics:

STM32F0 series:

The STM32F0 series is the entry-level MCU family in the STM32 product line. It features a

Cortex-M0 core, up to 256 KB of Flash memory, up to 32 KB of SRAM, and a wide range of

peripherals including ADCs, DACs, timers, and communication interfaces. The STM32F0 series

is ideal for applications that require low-power operation and low-cost designs.

STM32F1 series:

The STM32F1 series is a popular MCU family that features a Cortex-M3 core, up to 512 KB of

Flash memory, up to 128 KB of SRAM, and a wide range of peripherals including ADCs, DACs,

timers, and communication interfaces. The STM32F1 series is ideal for applications that require

high-performance, low-power operation, and high reliability.

STM32F2 series:

The STM32F2 series is a high-performance MCU family that features a Cortex-M3 core, up to 1

MB of Flash memory, up to 128 KB of SRAM, and a wide range of peripherals including ADCs,

DACs, timers, and communication interfaces. The STM32F2 series is ideal for applications that

require high-performance processing capabilities, such as audio and video processing.

STM32F3 series:

The STM32F3 series is a versatile MCU family that features a Cortex-M4 core with a floating-

point unit, up to 512 KB of Flash memory, up to 80 KB of SRAM, and a wide range of peripherals

including ADCs, DACs, timers, and communication interfaces. The STM32F3 series is ideal for

applications that require high-performance processing capabilities and high-precision control, such

as motor control and power conversion.

STM32F4 series:

The STM32F4 series is a high-performance MCU family that features a Cortex-M4 core with a

floating-point unit, up to 2 MB of Flash memory, up to 192 KB of SRAM, and a wide range of

peripherals including ADCs, DACs, timers, and communication interfaces. The STM32F4 series

is ideal for applications that require high-performance processing capabilities, such as graphics

processing and signal processing.

STM32F7 series:

109 | P a g e

The STM32F7 series is a high-performance MCU family that features a Cortex-M7 core with a

floating-point unit, up to 2 MB of Flash memory, up to 512 KB of SRAM, and a wide range of

peripherals including ADCs, DACs, timers, and communication interfaces. The STM32F7 series

is ideal for applications that require high-performance processing capabilities and low power

consumption, such as industrial automation and smart home devices.

Comparison with other MCU families

When it comes to microcontrollers, there are several families to choose from, including AVR, PIC,

and MSP430. Each family has its own set of features and capabilities. Let's compare the STM32

MCU family with some of the other popular MCU families.

AVR:

AVR is a popular MCU family developed by Atmel. The AVR family features a range of 8-bit and

32-bit MCUs with up to 256 KB of Flash memory and up to 32 KB of SRAM. While the AVR

family is well-suited for low-power and low-cost designs, it lacks some of the advanced features

and capabilities of the STM32 MCU family.

PIC:

PIC is a popular MCU family developed by Microchip. The PIC family features a range of 8-bit

and 32-bit MCUs with up to 1 MB of Flash memory and up to 128 KB of SRAM. While the PIC

family is well-suited for low-power and low-cost designs, it lacks some of the advanced features

and capabilities of the STM32 MCU family.

MSP430:

MSP430 is a popular MCU family developed by Texas Instruments. The MSP430 family features

a range of 16-bit and 32-bit MCUs with up to 256 KB of Flash memory and up to 64 KB of SRAM.

While the MSP430 family is well-suited for low-power and low-cost designs, it lacks some of the

advanced features and capabilities of the STM32 MCU family.

Compared to these MCU families, the STM32 MCU family offers several advantages, including:

High-performance processing capabilities, thanks to its advanced Cortex-M core.

A wide range of peripherals, including ADCs, DACs, timers, and communication interfaces.

High levels of integration, with on-chip Flash memory, SRAM, and other components.

Low-power operation, thanks to advanced power management features.

A large community of developers and a wide range of development tools and resources.

Here's a sample code for configuring an AVR MCU GPIO pin:

110 | P a g e

#include <avr/io.h>

int main(void)

{

 // Set GPIO pin as output

 DDRB |= (1 << PB0);

 // Set GPIO pin high

 PORTB |= (1 << PB0);

 while (1)

 {

 // Toggle GPIO pin

 PORTB ^= (1 << PB0);

 // Delay for 500ms

 _delay_ms(500);

 }

 return 0;

}

As you can see, the code for configuring an AVR MCU GPIO pin is quite different from the code

for an STM32 MCU GPIO pin. This is due to the differences in the architecture and peripherals of

the two MCU families. While both families are capable of performing basic tasks like GPIO

control, the STM32 MCU family offers more advanced features and capabilities that make it

better-suited for complex applications.

111 | P a g e

Setting up the development environment for

STM32 MCUs

Installing the required software and drivers

To start developing with STM32 microcontrollers, you will need to install the necessary software

and drivers on your computer. Here's a step-by-step guide on how to install the required software

and drivers:

Install a code editor or an Integrated Development Environment (IDE):

You can use any code editor or IDE that supports C programming to develop for STM32

microcontrollers. Some popular options include Visual Studio Code, Eclipse, and Keil uVision.

Download and install your preferred code editor or IDE.

Install the STM32CubeMX software:

STM32CubeMX is a graphical tool for configuring STM32 microcontrollers. It generates

initialization code for various peripherals and can help you set up your project quickly. Download

the latest version of STM32CubeMX from the STMicroelectronics website and install it.

Install the ST-LINK USB driver:

The ST-LINK USB driver is used to connect your computer to the STM32 microcontroller using

a USB cable. Download the latest version of the driver from the STMicroelectronics website and

install it.

Install the STM32CubeIDE software:

STM32CubeIDE is an integrated development environment for STM32 microcontrollers. It

includes a code editor, a debugger, and other useful tools for developing STM32 applications.

Download the latest version of STM32CubeIDE from the STMicroelectronics website and install

it.

Install the STM32Cube HAL library:

The STM32Cube HAL (Hardware Abstraction Layer) is a set of drivers and middleware that

provides a standardized API for STM32 peripherals. Download the latest version of the

STM32Cube HAL library from the STMicroelectronics website and install it.

Once you have installed all the necessary software and drivers, you can start developing for STM32

microcontrollers. Here's an example code for blinking an LED on an STM32 MCU using the

STM32Cube HAL library:

112 | P a g e

#include "stm32f4xx_hal.h"

int main(void)

{

 // Initialize HAL

 HAL_Init();

 // Enable GPIO clock

 __HAL_RCC_GPIOA_CLK_ENABLE();

 // Configure GPIO pin as output

 GPIO_InitTypeDef GPIO_InitStruct;

 GPIO_InitStruct.Pin = GPIO_PIN_5;

 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

 while (1)

 {

 // Toggle LED

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);

 // Delay for 500ms

 HAL_Delay(500);

 }

 return 0;

}

In this code, we use the STM32Cube HAL library to initialize the microcontroller, configure a

GPIO pin as an output, and toggle an LED connected to that pin. The HAL_Delay() function is

used to create a delay of 500ms between toggles.

113 | P a g e

With these tools and code examples, you can start developing your own applications for STM32

microcontrollers.

Configuring the development environment for STM32 MCUs

Configuring the development environment for STM32 MCUs involves setting up the necessary

tools and configurations for development, including configuring the IDE and the microcontroller.

Here's a step-by-step guide on how to configure the development environment for STM32 MCUs:

Create a new project in STM32CubeIDE:

STM32CubeIDE is an integrated development environment for STM32 MCUs. To create a new

project, select "File" > "New" > "STM32 Project" and follow the prompts to configure the project

settings.

Select the STM32 MCU:

In the "Target Selection" screen, select the STM32 MCU that you want to use. You can choose

from a list of supported STM32 MCUs or import a custom MCU definition.

Configure the clock settings:

In the "Clock Configuration" screen, configure the clock settings for the MCU. This includes

selecting the clock source, setting the system clock frequency, and configuring the clock output.

Configure the peripherals:

In the "Pinout & Configuration" screen, configure the peripherals that you want to use. This

includes selecting the GPIO pins and configuring the peripheral settings.

Generate the code:

Once you have configured the project settings, click on "Generate Code" to generate the

initialization code for the project. This code will be automatically generated based on the settings

you have chosen.

Write your application code:

After generating the initialization code, you can start writing your application code. This code will

typically include configuring the peripherals, setting up interrupts, and implementing your

application logic.

Here's an example code for configuring the GPIO pins on an STM32 MCU using STM32CubeIDE:

#include "stm32f4xx_hal.h"

114 | P a g e

void GPIO_Init(void)

{

 // Enable the GPIOA clock

 __HAL_RCC_GPIOA_CLK_ENABLE();

 // Initialize the GPIOA pins

 GPIO_InitTypeDef GPIO_InitStruct;

 GPIO_InitStruct.Pin = GPIO_PIN_5;

 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

int main(void)

{

 // Initialize HAL

 HAL_Init();

 // Initialize GPIO pins

 GPIO_Init();

 while (1)

 {

 // Toggle LED on GPIOA Pin 5

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);

 // Delay for 500ms

 HAL_Delay(500);

 }

115 | P a g e

 return 0;

}

In this code, we use the STM32Cube HAL library to initialize the GPIO pins on the STM32 MCU.

We then use the HAL_GPIO_TogglePin() function to toggle the state of the LED connected to the

GPIO pin. The HAL_Delay() function is used to create a delay of 500ms between toggles.

With these tools and code examples, you can configure the development environment for STM32

MCUs and start developing your own applications.

Testing the setup with a simple application

After configuring the development environment for STM32 MCUs, it's important to test the setup

with a simple application to ensure that everything is working correctly. Here's an example code

for a simple application that blinks an LED on an STM32 MCU:

#include "stm32f4xx_hal.h"

void GPIO_Init(void)

{

 // Enable the GPIOA clock

 __HAL_RCC_GPIOA_CLK_ENABLE();

 // Initialize the GPIOA pins

 GPIO_InitTypeDef GPIO_InitStruct;

 GPIO_InitStruct.Pin = GPIO_PIN_5;

 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

int main(void)

{

 // Initialize HAL

116 | P a g e

 HAL_Init();

 // Initialize GPIO pins

 GPIO_Init();

 while (1)

 {

 // Toggle LED on GPIOA Pin 5

 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);

 // Delay for 500ms

 HAL_Delay(500);

 }

 return 0;

}

This code uses the GPIO_Init() function to initialize the GPIO pin for the LED. The main function

then toggles the LED on and off with a delay of 500ms using the HAL_GPIO_TogglePin() and

HAL_Delay() functions.

To test this application, connect an LED to pin PA5 of the STM32 MCU and upload the compiled

binary to the microcontroller using a programmer. When the microcontroller is powered on, the

LED should blink on and off with a delay of 500ms.

Testing the setup with a simple application is an important step to ensure that the development

environment is working correctly and that the microcontroller is properly configured. Once you

have verified that the simple application is working correctly, you can start developing more

complex applications and functionalities on your STM32 MCU.

117 | P a g e

Introduction to the STM32CubeMX software

Overview of STM32CubeMX and its features

STM32CubeMX is a graphical tool that allows developers to configure and generate code for

STM32 microcontrollers. It provides a user-friendly interface for configuring peripherals,

generating initialization code, and integrating third-party software libraries. Here's an overview of

some of its features:

Peripheral Configuration: STM32CubeMX allows developers to easily configure the different

peripherals of an STM32 microcontroller, such as GPIOs, timers, USARTs, I2Cs, and SPIs. It

provides a graphical interface that allows users to configure the peripheral parameters such as pins,

baud rate, clock source, interrupt priority, and more.

Pin Configuration: STM32CubeMX provides a pinout diagram that allows users to easily visualize

the pin assignments of the microcontroller. It also allows users to quickly configure the pin

assignments for the different peripherals.

Code Generation: After configuring the peripherals and pin assignments, STM32CubeMX can

generate initialization code for the microcontroller. The generated code can be exported in

different formats, including C code, Keil MDK-ARM project, and IAR EWARM project.

Third-Party Libraries: STM32CubeMX supports the integration of third-party software libraries,

such as FreeRTOS, LwIP, and FatFS. It provides a user-friendly interface that allows users to

easily add and configure these libraries to their projects.

Board Support: STM32CubeMX supports a wide range of STM32 microcontrollers and

development boards. It provides pre-configured templates for popular development boards such as

STM32 Nucleo and Discovery boards.

Here's an example code generated by STM32CubeMX for configuring the GPIO peripheral:

/* GPIO Initialization Function */

void MX_GPIO_Init(void)

{

 GPIO_InitTypeDef GPIO_InitStruct = {0};

 /* GPIO Ports Clock Enable */

 __HAL_RCC_GPIOC_CLK_ENABLE();

 __HAL_RCC_GPIOH_CLK_ENABLE();

118 | P a g e

 /*Configure GPIO pin Output Level */

 HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13,

GPIO_PIN_RESET);

 /*Configure GPIO pin : PC13 */

 GPIO_InitStruct.Pin = GPIO_PIN_13;

 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

}

In this code, the GPIOC and GPIOH peripheral clocks are enabled and pin PC13 is configured as

an output pin with a low speed. The pin is initially set to GPIO_PIN_RESET.

STM32CubeMX is a powerful tool that can help simplify the development process for STM32

microcontrollers. Its user-friendly interface and code generation capabilities make it a valuable

tool for both novice and experienced developers.

Creating a new project with STM32CubeMX

Creating a new project with STM32CubeMX is a straightforward process. Here are the steps:

Open STM32CubeMX: Open the STM32CubeMX software and select "New Project" from the

"File" menu.

Select MCU: In the "New Project" window, select the STM32 MCU you want to use for your

project. You can either select the MCU manually or search for it using the search box.

Select Board: After selecting the MCU, you need to select the board or evaluation kit you will be

using. You can either select the board manually or search for it using the search box. If your board

is not listed, you can create a custom board configuration.

Configure Peripherals: Once you have selected the board, you can start configuring the different

peripherals of the STM32 MCU. This can be done using the graphical interface of

STM32CubeMX. You can configure the pins, clocks, interrupts, and other parameters of the

different peripherals.

Generate Code: After configuring the peripherals, you can generate the initialization code for your

project. You can select the toolchain and IDE you will be using for your project, and the code will

be generated accordingly.

119 | P a g e

Open IDE: Finally, you can open your IDE and import the generated code into your project. You

can then start programming your STM32 MCU using the initialization code generated by

STM32CubeMX.

Here's an example of how to configure the GPIO peripheral for an STM32 MCU using

STM32CubeMX:

Open STM32CubeMX and select the STM32 MCU you will be using.

Select the board or evaluation kit you will be using.

Click on the "Pinout & Configuration" tab and select the GPIO peripheral you want to configure.

Configure the GPIO pins by selecting the pins you want to use and assigning them to the GPIO

peripheral.

Configure the GPIO peripheral parameters, such as the pin mode, pull-up/pull-down resistors, and

interrupt settings.

Click on the "Project Manager" tab and select your toolchain and IDE.

Click on the "Generate Code" button to generate the initialization code for your project.

Open your IDE and import the generated code into your project.

Start programming your STM32 MCU using the initialization code generated by STM32CubeMX.

Overall, creating a new project with STM32CubeMX is a straightforward process that can save

time and effort in configuring the different peripherals of an STM32 MCU. Its user-friendly

interface and code generation capabilities make it a valuable tool for both novice and experienced

developers.

Configuring the STM32 peripherals and features

Configuring the peripherals and features of an STM32 microcontroller is an essential part of

developing embedded systems. The STM32 series of microcontrollers offer a wide range of

peripherals and features, including timers, ADCs, UARTs, and SPIs, among others. In this note,

we will discuss the process of configuring STM32 peripherals and features using suitable code

examples.

Configuring GPIO Pins:

The GPIO pins on an STM32 microcontroller can be configured as either input or output pins. To

configure a GPIO pin as an output pin, we can use the following code:

120 | P a g e

// Enable GPIOB peripheral clock

RCC->AHB2ENR |= RCC_AHB2ENR_GPIOBEN;

// Configure GPIOB Pin 5 as output

GPIOB->MODER &= ~GPIO_MODER_MODE5_Msk;

GPIOB->MODER |= GPIO_MODER_MODE5_0;

GPIOB->OTYPER &= ~GPIO_OTYPER_OT5_Msk;

GPIOB->OSPEEDR &= ~GPIO_OSPEEDR_OSPEED5_Msk;

GPIOB->OSPEEDR |= GPIO_OSPEEDR_OSPEED5_0;

GPIOB->PUPDR &= ~GPIO_PUPDR_PUPD5_Msk;

In the above code, we first enable the GPIOB peripheral clock using the

RCC_AHB2ENR_GPIOBEN register. We then configure Pin 5 of GPIOB as an output pin using

the GPIO_MODER_MODE5_Msk register. We also set the output type of the pin to push-pull and

configure the pin's output speed.

Configuring Timers:

Timers are used in STM32 microcontrollers to generate time delays, measure time intervals, or

generate PWM signals. To configure a timer, we can use the following code:

// Enable TIM2 peripheral clock

RCC->APB1ENR1 |= RCC_APB1ENR1_TIM2EN;

// Set the prescaler value

TIM2->PSC = 7999;

// Set the auto-reload value

TIM2->ARR = 999;

// Configure the timer mode

TIM2->CR1 |= TIM_CR1_ARPE;

TIM2->CR1 &= ~TIM_CR1_DIR_Msk;

TIM2->CR1 &= ~TIM_CR1_CMS_Msk;

121 | P a g e

TIM2->CR1 |= TIM_CR1_CEN;

In the above code, we first enable the TIM2 peripheral clock using the

RCC_APB1ENR1_TIM2EN register. We then set the prescaler and auto-reload values of the

timer. We also configure the timer mode and enable the timer.

Configuring ADC:

ADCs are used to convert analog signals to digital signals. To configure an ADC in an STM32

microcontroller, we can use the following code:

// Enable ADC peripheral clock

RCC->AHB2ENR |= RCC_AHB2ENR_ADCEN;

// Configure ADC1

ADC1->CR &= ~ADC_CR_DEEPPWD_Msk;

ADC1->CR |= ADC_CR_ADVREGEN_0;

ADC1->CR &= ~ADC_CR_ADEN_Msk;

ADC1->CR |= ADC_CR_ADCAL_Msk;

while((ADC1->CR & ADC_CR_ADCAL_Msk) != 0);

// Configure the ADC channel

ADC1->SQR1 &= ~ADC_SQR1_L_Msk;

ADC1->SQR1 |= ADC_SQR1_SQ1_0 | ADC_SQR1_SQ1_1;

// Configure the sampling time

ADC1->SMPR1 &= ~ADC_SMPR1_SMP1_Msk;

ADC1->SMPR1 |= ADC_SMPR1_SMP1_0;

122 | P a g e

Creating a FreeRTOS project with

STM32CubeMX

Creating a FreeRTOS task in STM32CubeMX

FreeRTOS is an open-source real-time operating system that provides a simple, portable, and

scalable way to manage tasks, threads, and memory in embedded systems. STM32CubeMX

provides a user-friendly interface for configuring and generating the code for FreeRTOS-based

projects. In this section, we will look at how to create a FreeRTOS task in STM32CubeMX.

Open STM32CubeMX: Open the STM32CubeMX software and create a new project for your

STM32 MCU.

Configure FreeRTOS: In the "Pinout & Configuration" tab, select the "FreeRTOS" option in the

"Middleware" section. This will enable FreeRTOS and add it to your project.

Add a task: To add a new task, go to the "Project Manager" tab and click on the "FreeRTOS" drop-

down menu. Select "Add task" from the menu.

Configure task parameters: In the "Add New Task" window, enter a name for your task and select

its priority and stack size. You can also set the task's entry point and its parameters.

Generate Code: After configuring the task parameters, click on the "Generate Code" button to

generate the initialization code for your project.

Implement the task function: In your IDE, open the "main.c" file and find the generated task

function. This function will be named based on the task name you entered in STM32CubeMX.

Implement the task function by adding the desired code inside the function body.

Here is an example of how to create a FreeRTOS task in STM32CubeMX:

Open STM32CubeMX and create a new project for your STM32 MCU.

In the "Pinout & Configuration" tab, select the "FreeRTOS" option in the "Middleware" section.

In the "Project Manager" tab, click on the "FreeRTOS" drop-down menu and select "Add task".

In the "Add New Task" window, enter a name for your task, such as "Task1". Set its priority to 2

and its stack size to 128 bytes.

Click on the "Generate Code" button to generate the initialization code for your project.

In your IDE, open the "main.c" file and find the generated task function. It should be named

"vTaskTask1". Implement the task function by adding the desired code inside the function body.

123 | P a g e

/* USER CODE BEGIN Header_Task1 */

/**

 * @brief Function implementing the Task1 thread.

 * @param argument: Not used

 * @retval None

 */

/* USER CODE END Header_Task1 */

void vTaskTask1(void *argument)

{

 /* USER CODE BEGIN vTaskTask1 */

 /* Infinite loop */

 for(;;)

 {

 // Add code to execute in the task

 }

 /* USER CODE END vTaskTask1 */

}

This task function will be executed repeatedly in an infinite loop. You can add any desired code

inside the loop to execute in the task.

Creating a FreeRTOS task in STM32CubeMX is a simple and effective way to manage the

execution of different functions and routines in your STM32-based project. FreeRTOS provides a

powerful set of features for real-time operating systems, and STM32CubeMX simplifies the task

of configuring and integrating FreeRTOS into your project.

Configuring the FreeRTOS kernel options

FreeRTOS is a versatile and feature-rich real-time operating system that provides a flexible set of

kernel options that can be customized to meet specific project requirements. In this section, we

will look at how to configure the FreeRTOS kernel options in STM32CubeMX.

Open STM32CubeMX: Open the STM32CubeMX software and create a new project for your

STM32 MCU.

Configure FreeRTOS: In the "Pinout & Configuration" tab, select the "FreeRTOS" option in the

"Middleware" section. This will enable FreeRTOS and add it to your project.

124 | P a g e

Configure kernel options: In the "Project Manager" tab, click on the "FreeRTOS" drop-down menu

and select "Configure kernel".

Configure the kernel parameters: In the "Kernel Parameters" window, you can configure the

following options:

Tick Frequency: The number of times the FreeRTOS tick interrupt occurs per second. The default

value is 1000 Hz.

Maximum Priority: The highest priority that can be assigned to a task. The default value is 5.

Idle Task Hook: A function that is called when the system is idle. This can be used for low-power

modes or other background tasks.

Timer Task Priority: The priority of the timer task that is responsible for managing the system tick

and scheduling tasks.

Heap Size: The amount of memory allocated for the FreeRTOS heap.

Generate Code: After configuring the kernel options, click on the "Generate Code" button to

generate the initialization code for your project.

Here is an example of how to configure the FreeRTOS kernel options in STM32CubeMX:

Open STM32CubeMX and create a new project for your STM32 MCU.

In the "Pinout & Configuration" tab, select the "FreeRTOS" option in the "Middleware" section.

In the "Project Manager" tab, click on the "FreeRTOS" drop-down menu and select "Configure

kernel".

In the "Kernel Parameters" window, set the tick frequency to 100 Hz, the maximum priority to 10,

and the timer task priority to 2. Set the heap size to 1024 bytes.

Click on the "Generate Code" button to generate the initialization code for your project.

/* Configure the system clock */

 SystemClock_Config();

 /* Initialize all configured peripherals */

 MX_GPIO_Init();

 MX_USART1_UART_Init();

125 | P a g e

 /* Initialize FreeRTOS */

 osKernelInitialize();

 /* Create the tasks */

 /* USER CODE BEGIN RTOS_THREADS */

 /* add threads, ... */

 /* USER CODE END RTOS_THREADS */

 /* Start scheduler */

 osKernelStart();

 /* We should never get here as control is now taken

by the scheduler */

 /* Infinite loop */

 while (1)

 {

 }

This code initializes the system clock and the peripherals, and then initializes FreeRTOS using the

osKernelInitialize() function. The tasks are then created, and the scheduler is started using the

osKernelStart() function. The infinite loop at the end of the code is never executed, as control is

taken over by the scheduler.

Configuring the FreeRTOS kernel options in STM32CubeMX provides a powerful way to

customize the behavior of the real-time operating system to meet specific project requirements.

With the ability to set the tick frequency, maximum priority, and other important parameters,

FreeRTOS provides a versatile and flexible operating system that can be customized to meet the

needs of any embedded project.

Generating the project code and configuration files

Once you have configured your project in STM32CubeMX and set up the necessary parameters,

the next step is to generate the project code and configuration files. This process will create the

necessary source code and header files, along with any makefiles or project files that are required

to build and run your application.

Here are the steps to generate the project code and configuration files in STM32CubeMX:

126 | P a g e

Configure your project: Open STM32CubeMX and configure your project by selecting the

appropriate peripherals, configuring pins, and setting up any middleware, such as FreeRTOS.

Generate the code: Once your project is configured, click on the "Generate Code" button in the top

right-hand corner of the screen. This will generate the necessary code files and build files for your

project.

Review the code and configuration files: Once the code generation is complete, review the

generated code and configuration files to ensure that everything is correct. You may need to modify

certain files or add additional files as needed.

Build and run your project: Finally, build and run your project using your preferred development

environment or IDE. This will compile your code, link it with any required libraries, and upload it

to your STM32 MCU.

Here is an example of how to generate project code and configuration files in STM32CubeMX:

Open STM32CubeMX and configure your project by selecting the appropriate peripherals,

configuring pins, and setting up any middleware, such as FreeRTOS.

Click on the "Generate Code" button in the top right-hand corner of the screen.

Review the generated files to ensure that everything is correct.

Build and run your project using your preferred development environment or IDE.

The generated code and configuration files will typically include a main.c file that contains the

main function, as well as any necessary header files and source files for the peripherals that you

have configured. The FreeRTOS configuration files will also be included if you have enabled

FreeRTOS in your project.

/* Includes ---

-----------------------*/

#include "main.h"

#include "stm32f4xx_hal.h"

#include "cmsis_os.h"

/* Private function prototypes ------------------------

-----------------------*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

127 | P a g e

static void MX_USART1_UART_Init(void);

void StartDefaultTask(void *argument);

/* Private variables ----------------------------------

-----------------------*/

UART_HandleTypeDef huart1;

/* Private function prototypes ------------------------

-----------------------*/

/**

 * @brief The application entry point.

 * @retval int

 */

int main(void)

{

 /* MCU Configuration---------------------------------

-----------------------*/

 /* Reset of all peripherals, Initializes the Flash

interface and the Systick. */

 HAL_Init();

 /* Configure the system clock */

 SystemClock_Config();

 /* Initialize all configured peripherals */

 MX_GPIO_Init();

 MX_USART1_UART_Init();

 /* Create the default task */

 osThreadAttr_t defaultTask_attributes = {

128 | P a g e

 .name = "DefaultTask",

 .priority = (osPriority_t) osPriorityNormal,

 .stack_size = 128 * 4

 };

 osThreadNew(StartDefaultTask, NULL,

&defaultTask_attributes);

 /* Start scheduler */

 osKernelStart();

 /* We should never get here as control is now taken

by the scheduler */

 while (1)

 {

 }

}

Understanding the generated code and

configuration files

Analysis of the generated code and configuration files

After generating the project code and configuration files in STM32CubeMX, it is important to

analyze the generated code and configuration files to ensure that everything is correct and to make

any necessary modifications.

Here are some key things to look for when analyzing the generated code and configuration files:

Peripherals: Check that the code for the peripherals you configured is correct and that the correct

pins and registers are being used.

FreeRTOS: If you enabled FreeRTOS in your project, check that the FreeRTOS configuration files

are correct and that the tasks and priorities have been set up correctly.

129 | P a g e

System clock: Check that the system clock is being configured correctly and that the desired

frequency has been set.

Interrupts: If you are using interrupts, check that the interrupt service routines (ISRs) are set up

correctly and that the interrupt priorities are configured appropriately.

Here is an example of how to analyze the generated code and configuration files:

Open the main.c file and review the code. Check that the system clock is being configured correctly

and that the desired frequency has been set. Look for the initialization code for the peripherals you

configured and check that the correct pins and registers are being used.

/* Includes ---

-----------------------*/

#include "main.h"

#include "stm32f4xx_hal.h"

#include "cmsis_os.h"

/* Private function prototypes ------------------------

-----------------------*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

static void MX_USART1_UART_Init(void);

void StartDefaultTask(void *argument);

/* Private variables ----------------------------------

-----------------------*/

UART_HandleTypeDef huart1;

/* Private function prototypes ------------------------

-----------------------*/

/**

 * @brief The application entry point.

 * @retval int

130 | P a g e

 */

int main(void)

{

 /* MCU Configuration---------------------------------

-----------------------*/

 /* Reset of all peripherals, Initializes the Flash

interface and the Systick. */

 HAL_Init();

 /* Configure the system clock */

 SystemClock_Config();

 /* Initialize all configured peripherals */

 MX_GPIO_Init();

 MX_USART1_UART_Init();

 /* Create the default task */

 osThreadAttr_t defaultTask_attributes = {

 .name = "DefaultTask",

 .priority = (osPriority_t) osPriorityNormal,

 .stack_size = 128 * 4

 };

 osThreadNew(StartDefaultTask, NULL,

&defaultTask_attributes);

 /* Start scheduler */

 osKernelStart();

 /* We should never get here as control is now taken

by the scheduler */

 while (1)

131 | P a g e

 {

 }

}

/**

 * @brief System Clock Configuration

 * @retval None

 */

void SystemClock_Config(void)

{

 RCC_OscInitTypeDef RCC_OscInitStruct = {0};

 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

 /** Initializes the RCC Oscillators according to the

specified parameters

 * in the RCC_OscInitTypeDef structure.

 */

 RCC_OscInitStruct.OscillatorType =

RCC_OSCILLATORTYPE_HSE;

 RCC_OscInitStruct.HSEState = RCC_HSE_ON;

 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

 RCC_OscInitStruct.PLL.PLLM = 8;

 RCC_OscInitStruct.PLL.PLLN = 336;

 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

 RCC_OscInitStruct.PLL.PLLQ = 7;

 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

 {

 Error_Handler();

 }

132 | P a g e

Overview of the project structure and files

When you generate a project using STM32CubeMX, it creates a directory with the same name as

your project, which contains all the files and directories required for your project. Let's take a

closer look at the project structure and files that are created by STM32CubeMX.

Core files: These files contain the core components of your project, including the main.c file, which

is the entry point of your project. Other core files include the startup file, which initializes the

microcontroller's hardware, and the system file, which contains the system clock configuration and

other important system-level configurations.

Drivers: This folder contains all the driver files required for your project. These include driver files

for various peripherals, such as the GPIO, UART, SPI, and I2C.

Middlewares: This folder contains middleware components, such as the FreeRTOS kernel and the

LwIP TCP/IP stack.

Inc folder: This folder contains all the header files used in the project. These include the header

files for the core components, drivers, and middleware.

Src folder: This folder contains all the source files used in the project. These include the source

files for the core components, drivers, and middleware.

.ioc file: This is the project configuration file, which contains all the settings that were configured

in STM32CubeMX.

When you open the project in your IDE, you will see a list of files and folders. The main.c file

contains the application code, and the other files are used to support it. The IDE also generates

additional files, such as the project settings file, which is used to specify the compiler options and

linker settings.

Here is an example of a simple project structure generated by STM32CubeMX:

Project_Name

├── Core

│ ├── Inc

│ │ ├── main.h

│ │ └── stm32f4xx_hal_conf.h

│ ├── Src

│ │ ├── main.c

│ │ └── stm32f4xx_hal_msp.c

│ ├── startup_stm32f407xx.s

133 | P a g e

│ └── system_stm32f4xx.c

├── Drivers

│ ├── STM32F4xx_HAL_Driver

│ └── BSP

├── Middlewares

│ ├── FreeRTOS

│ └── LwIP

├── .ioc file

└── README.md

Overall, the project structure and files generated by STM32CubeMX provide a solid foundation

for developing an embedded application. By organizing your code and dependencies into separate

folders and files, it is easier to manage and maintain your codebase.

Understanding the FreeRTOS kernel and task code

FreeRTOS is a real-time operating system kernel for microcontrollers that provides a wide range

of features to simplify the development of embedded applications. One of the key features of

FreeRTOS is the ability to create and manage multiple tasks that can execute concurrently. In this

section, we will take a closer look at how the FreeRTOS kernel and task code works.

FreeRTOS Kernel:

The FreeRTOS kernel is the core of the operating system that manages the tasks and resources of

the system. The kernel is responsible for scheduling tasks, managing memory, handling interrupts,

and synchronizing task execution. The kernel is designed to be lightweight and efficient, and it is

written in C for portability across different microcontrollers.

Task Creation:

In FreeRTOS, a task is a unit of work that can execute independently of other tasks. A task is

created by defining a task function and passing it as an argument to the xTaskCreate() function.

The xTaskCreate() function takes several parameters, including the task function, the task name,

the task stack size, and the task priority.

Here is an example of creating a new task in FreeRTOS:

void Task_Function(void *pvParameters)

{

 // Task code here

134 | P a g e

}

void main()

{

 // Create a new task with a priority of 1

 xTaskCreate(Task_Function, "Task",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 // Start the FreeRTOS scheduler

 vTaskStartScheduler();

}

Task Scheduling:

Once tasks have been created, the FreeRTOS scheduler is responsible for scheduling tasks and

determining which task should execute next. The scheduler uses a priority-based scheduling

algorithm, where tasks with higher priorities are executed first. If two tasks have the same priority,

the scheduler uses a round-robin scheduling algorithm to ensure that all tasks have an opportunity

to execute.

Task Execution:

When a task is scheduled to execute, the kernel switches the processor context to the task's stack

and starts executing the task's code. Each task has its own stack, which is used to store the task's

state and variables. The stack is automatically managed by the kernel, and it is protected from

other tasks to prevent corruption.

Here is an example of a simple task that toggles an LED on and off:

void LED_Task(void *pvParameters)

{

 for(;;)

 {

 // Toggle the LED

 HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);

 // Wait for 500ms

135 | P a g e

 vTaskDelay(pdMS_TO_TICKS(500));

 }

}

void main()

{

 // Create a new task to toggle the LED

 xTaskCreate(LED_Task, "LED_Task",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 // Start the FreeRTOS scheduler

 vTaskStartScheduler();

}

Overall, understanding the FreeRTOS kernel and task code is critical for developing embedded

applications using FreeRTOS. By creating and managing tasks effectively, it is possible to build

complex applications with multiple concurrent processes that can execute efficiently on a

microcontroller.

Analyzing the STM32 peripheral configuration code

STM32 microcontrollers have a wide range of peripherals that can be configured to interact with

the outside world. These peripherals include timers, UARTs, SPIs, I2Cs, ADCs, and more. In this

section, we will take a closer look at how the STM32 peripheral configuration code works.

Configuration Tools:

STM32 microcontrollers are typically configured using software tools such as STM32CubeMX or

STM32CubeIDE. These tools provide a graphical user interface for configuring the various

peripherals on the microcontroller. Once the configuration is complete, the tools generate code

that can be included in the project.

Peripheral Initialization:

The initialization code for STM32 peripherals typically consists of three main steps:

a. Enable the peripheral clock: Before a peripheral can be used, its clock must be enabled. The

clock can be enabled using the RCC peripheral, which is responsible for controlling the system

clock.

136 | P a g e

b. Configure the peripheral registers: Each peripheral has a set of registers that can be configured

to control its behavior. These registers can be accessed using the peripheral's memory-mapped I/O

(MMIO) interface.

c. Enable the peripheral: Once the clock and registers have been configured, the peripheral can be

enabled using its control register.

Example Code:

Here is an example of configuring an STM32 GPIO pin as an output:

// Enable GPIOA clock

RCC->AHB2ENR |= RCC_AHB2ENR_GPIOAEN;

// Configure GPIOA pin 5 as output

GPIOA->MODER &= ~GPIO_MODER_MODE5_Msk;

GPIOA->MODER |= GPIO_MODER_MODE5_0;

// Enable GPIOA pin 5

GPIOA->ODR |= GPIO_ODR_OD5;

In this code, the RCC peripheral is used to enable the clock for GPIOA. Then, the MODER register

of GPIOA is configured to set pin 5 as an output. Finally, the ODR register of GPIOA is set to

enable the output for pin 5.

Interrupts:

STM32 peripherals can also generate interrupts to notify the microcontroller of certain events,

such as a data transfer completion or a timer overflow. To handle interrupts, the NVIC peripheral

is used to configure the interrupt priority and enable/disable the interrupt.

Here is an example of configuring an STM32 timer interrupt:

// Enable TIM2 clock

RCC->APB1ENR1 |= RCC_APB1ENR1_TIM2EN;

// Configure TIM2 interrupt

NVIC_SetPriority(TIM2_IRQn, 1);

NVIC_EnableIRQ(TIM2_IRQn);

137 | P a g e

// Configure TIM2 as timer with interrupt

TIM2->CR1 |= TIM_CR1_ARPE | TIM_CR1_URS;

TIM2->DIER |= TIM_DIER_UIE;

TIM2->PSC = 39999;

TIM2->ARR = 999;

// Start TIM2

TIM2->CR1 |= TIM_CR1_CEN;

In this code, the TIM2 peripheral is enabled and configured as a timer with an interrupt. The NVIC

is used to set the interrupt priority and enable the TIM2 interrupt. Then, the timer registers are

configured to set the timer period and enable the interrupt. Finally, the timer is started by setting

the CEN bit in the CR1 register.

Overall, analyzing the STM32 peripheral configuration code is critical for understanding how the

microcontroller interacts with the outside world. By configuring the peripherals effectively, it is

possible to build complex embedded applications that can interact with a wide range of sensors,

actuators, and other devices.

Building and debugging the project with

SEGGER tools

Building the project with a cross-compiler

Building the project with a cross-compiler is an essential step in the development of embedded

systems using STM32 MCUs. A cross-compiler is a compiler that generates machine code for a

different platform than the one it is running on. In the case of STM32 MCUs, we need to use a

cross-compiler that can generate machine code for the ARM Cortex-M architecture.

To build the project with a cross-compiler, we need to follow these steps:

Install the cross-compiler toolchain: The toolchain consists of a set of tools required to build the

project, including the cross-compiler, linker, and assembler. The toolchain can be downloaded

from the official website of the manufacturer or can be installed using a package manager like apt-

get on Linux.

Configure the project build settings: We need to specify the build settings in the Makefile or project

settings to tell the compiler where to find the necessary header files and libraries.

138 | P a g e

Build the project: We can build the project using the Makefile or using the build option in the IDE.

Here's an example Makefile for building a project with a cross-compiler:

CC = arm-none-eabi-gcc

LD = arm-none-eabi-ld

AR = arm-none-eabi-ar

AS = arm-none-eabi-as

CFLAGS = -mcpu=cortex-m4 -mthumb -O2 -Wall

LDFLAGS = -T stm32.ld

LIBS = -lm

OBJS = main.o

all: program.elf

program.elf: $(OBJS)

 $(CC) $(LDFLAGS) $(OBJS) $(LIBS) -o $@

%.o: %.c

 $(CC) $(CFLAGS) -c $< -o $@

clean:

 rm -f $(OBJS) program.elf

In this Makefile, we define the cross-compiler tools and specify the flags for compiling and linking

the project. We also define the object files and the target executable. To build the project, we just

need to run the make command in the project directory.

It is important to note that the cross-compiler toolchain and the build settings should match the

target STM32 MCU's specifications. Additionally, the project's peripheral configuration code and

device-specific header files should be included in the project directory or specified in the build

settings.

139 | P a g e

Flashing the project code to the STM32 MCU

Flashing the project code to the STM32 MCU is the final step in the development of embedded

systems using STM32 MCUs. Flashing refers to the process of writing the compiled code to the

microcontroller's non-volatile memory, where it will remain even after power is removed.

To flash the project code to the STM32 MCU, we need to follow these steps:

Connect the STM32 MCU to the computer: The STM32 MCU can be connected to the computer

using a USB to UART converter or an ST-Link programmer. Make sure that the STM32 MCU is

properly connected and detected by the computer.

Configure the flash programming tool: We need to configure the flash programming tool to specify

the target device, the communication protocol, and the programming options. The flash

programming tool can be a dedicated flash programmer, an IDE with a built-in flash programming

tool, or a command-line tool.

Load the binary file: We need to load the compiled binary file into the flash programming tool.

The binary file can be generated by the cross-compiler or by the IDE.

Flash the binary file to the STM32 MCU: We need to initiate the flashing process and wait for the

tool to complete the programming process. After flashing, the STM32 MCU will reset and execute

the new code.

Here's an example of flashing the project code to the STM32 MCU using the ST-Link programmer

and the OpenOCD tool:

Connect the STM32 MCU to the computer using the ST-Link programmer.

Install OpenOCD tool and configure the ST-Link driver.

Load the binary file generated by the cross-compiler into OpenOCD tool:

openocd -f interface/stlink.cfg -f target/stm32f4x.cfg

-c "program project.elf verify reset exit"

In this command, we specify the interface and target configuration files for the ST-Link

programmer and the target STM32 MCU. We also specify the binary file to be flashed and the

verify and reset options.

Wait for the programming process to complete, and then reset the STM32 MCU. The new code

should now be executed.

It is important to note that the flashing process should be done carefully, and the flash

programming tool and options should match the target STM32 MCU's specifications. Incorrect

flashing can damage the STM32 MCU or render it unusable.

140 | P a g e

Debugging the project code with SEGGER tools

Debugging is an essential part of embedded system development, as it allows developers to

identify and fix software bugs and issues. SEGGER is a leading provider of embedded software

development tools, including debuggers, which can be used to debug STM32 MCU projects. In

this subtopic, we will discuss how to debug the project code with SEGGER tools.

The following steps outline the process of debugging an STM32 MCU project code using

SEGGER tools:

Install the SEGGER J-Link software and driver: The SEGGER J-Link software provides the

necessary drivers and tools for debugging STM32 MCU projects. Download and install the J-Link

software from the SEGGER website, and ensure that the driver is installed and configured

properly.

Connect the STM32 MCU to the computer: Connect the STM32 MCU to the computer using a

USB to UART converter or an ST-Link programmer. Make sure that the STM32 MCU is properly

connected and detected by the computer.

Configure the debugger: We need to configure the debugger to specify the target device, the

communication protocol, and the debugging options. The debugger can be a dedicated hardware

debugger, an IDE with a built-in debugger, or a command-line tool.

Launch the debugger: We need to launch the debugger and load the project code into the debugger.

The debugger will provide a graphical user interface to debug the code, including features like

breakpoints, watchpoints, and variable inspection.

Here's an example of debugging an STM32 MCU project code using the SEGGER J-Link

debugger and the Eclipse IDE:

Connect the STM32 MCU to the computer using the ST-Link programmer.

Install the SEGGER J-Link software and driver, and configure the Eclipse IDE with the SEGGER

J-Link GDB Server.

Create a new debug configuration in the Eclipse IDE and specify the target device, the

communication protocol, and the debugging options.

Launch the debugger and load the project code into the debugger. Set breakpoints, watchpoints, or

other debugging features as needed.

Debug the code using the debugger interface, inspecting variables and stepping through code

execution.

SEGGER tools provide a powerful and efficient way to debug STM32 MCU projects. By carefully

configuring and using the tools, developers can identify and fix issues in their code and improve

the overall quality and reliability of their embedded systems.

141 | P a g e

Analyzing the project performance and resource usage

Analyzing the performance and resource usage of an STM32 MCU project is an essential part of

embedded system development, as it allows developers to optimize the code and improve system

efficiency. In this subtopic, we will discuss how to analyze the project performance and resource

usage using suitable codes and tools.

The following steps outline the process of analyzing the project performance and resource usage:

Build the project: Build the project using a cross-compiler, as described in the previous subtopics.

Profile the project: Use a profiling tool to measure the performance and resource usage of the

project. There are several profiling tools available for STM32 MCUs, including the SEGGER

SystemView and the FreeRTOS+Trace tool.

Analyze the profiling data: After profiling the project, we need to analyze the collected data to

identify performance bottlenecks and resource usage issues. This can involve examining the CPU

usage, memory usage, task scheduling, and other factors.

Optimize the project: Based on the profiling data, we can make changes to the project code to

optimize performance and resource usage. This may involve refactoring the code, optimizing

algorithms, or adjusting system parameters.

Here's an example of analyzing the project performance and resource usage using the SEGGER

SystemView tool:

Build the project using a cross-compiler, as described in the previous subtopics.

Install the SEGGER SystemView software and driver, and configure it to communicate with the

STM32 MCU.

Add the SystemView instrumentation code to the project code, to enable profiling.

Run the project code on the STM32 MCU and collect the profiling data using SystemView.

Analyze the collected data using the SystemView interface, examining factors such as CPU usage,

memory usage, and task scheduling.

Identify performance bottlenecks and resource usage issues, and make changes to the project code

to optimize performance and resource usage.

By carefully analyzing the performance and resource usage of an STM32 MCU project, developers

can identify and fix issues that could impact system efficiency and reliability. This can lead to

faster and more efficient embedded systems that are better suited to their intended use cases.

142 | P a g e

Chapter 4:

Task Management with FreeRTOS

143 | P a g e

Real-time operating systems (RTOS) are critical components of embedded systems, which are

ubiquitous in our modern world. These systems have a wide range of applications, including

automotive, aerospace, and medical devices. FreeRTOS is one of the most popular and widely

used RTOS for embedded systems due to its open-source nature, portability, and ease of use. It is

a real-time kernel that supports a range of microcontrollers and architectures.

Task management is a fundamental aspect of any RTOS, and FreeRTOS provides a robust set of

APIs to facilitate task management. A task is a basic unit of work that runs on a processor and

executes a specific function. The FreeRTOS kernel manages the execution of tasks in a

deterministic and efficient manner. The kernel scheduler determines which task to run next based

on task priorities, and preemption occurs when a higher-priority task becomes ready to run. This

preemptive multitasking allows the system to respond quickly and predictably to external events,

making it ideal for real-time applications.

The goal of this chapter is to provide an overview of task management with FreeRTOS. We will

cover the basic concepts of tasks, scheduling, and synchronization, as well as more advanced topics

such as task notifications and event groups. We will also discuss some best practices for task

management with FreeRTOS.

The chapter will start with an introduction to FreeRTOS and its features, including its architecture

and key components. We will then cover the basics of task creation and deletion, as well as task

priorities and scheduling. Next, we will explore synchronization mechanisms such as semaphores,

mutexes, and queues, which are used to manage access to shared resources between tasks. We will

also discuss the use of software timers and how they can be used to implement periodic tasks.

Moving on, we will delve into more advanced topics such as task notifications and event groups.

These mechanisms provide efficient inter-task communication and synchronization, enabling tasks

to communicate with each other without blocking. We will explain how these mechanisms work

and provide examples of their use in real-world applications.

Finally, we will cover some best practices for task management with FreeRTOS, including tips for

optimizing task performance, minimizing memory usage, and debugging common issues. We will

also discuss some common pitfalls to avoid when working with FreeRTOS.

This chapter provides an in-depth look at task management with FreeRTOS. By the end of this

chapter, you should have a good understanding of how tasks are managed in FreeRTOS, how to

use synchronization mechanisms to manage shared resources, and how to implement more

advanced features such as task notifications and event groups. Whether you are new to FreeRTOS

or an experienced embedded developer, this chapter will provide valuable insights into how to

design and implement real-time systems with FreeRTOS.

144 | P a g e

Creating and deleting tasks

Task creation and deletion methods

In FreeRTOS, tasks are the basic building blocks of an application. A task is a function that

performs a specific job, such as reading a sensor, processing data, or driving an output. Tasks are

scheduled by the FreeRTOS kernel, which allocates CPU time to each task based on its priority

and readiness. In this subtopic, we will discuss the task creation and deletion methods in

FreeRTOS, with suitable codes.

Task Creation:

There are several methods for creating tasks in FreeRTOS. The most common method is to use

the xTaskCreate() function, which takes several parameters, including a pointer to the task

function, a name for the task, a stack size, a priority level, and a handle for the task. Here's an

example of creating a task using the xTaskCreate() function:

void vTaskFunction(void *pvParameters)

{

 // Task code here

}

TaskHandle_t xTaskHandle;

int main(void)

{

 // Initialize system here

 // Create task with priority 1, stack size 100, and

task handle xTaskHandle

 xTaskCreate(vTaskFunction, "Task", 100, NULL, 1,

&xTaskHandle);

 // Start the FreeRTOS scheduler

 vTaskStartScheduler();

145 | P a g e

 // Should never get here

 return 0;

}

In this example, the xTaskCreate() function creates a new task with the function vTaskFunction(),

a name of "Task", a stack size of 100, a priority level of 1, and a handle of xTaskHandle. The task

handle is used to reference the task in other FreeRTOS API calls.

Task Deletion:

There are two methods for deleting tasks in FreeRTOS. The first method is to call the

vTaskDelete() function from within the task function. This will cause the task to terminate and be

removed from the scheduler. Here's an example:

void vTaskFunction(void *pvParameters)

{

 // Task code here

 // Delete this task when done

 vTaskDelete(NULL);

}

int main(void)

{

 // Initialize system here

 // Create task here

 // Start the FreeRTOS scheduler

 vTaskStartScheduler();

 // Should never get here

 return 0;

}

146 | P a g e

In this example, the vTaskFunction() task code includes a call to vTaskDelete() to delete the task

when it is finished.

The second method for deleting tasks is to use the vTaskDelete() function with the task handle as

a parameter from another task. This will cause the specified task to terminate and be removed from

the scheduler. Here's an example:

TaskHandle_t xTaskHandle;

void vTaskFunction(void *pvParameters)

{

 // Task code here

}

void vOtherTaskFunction(void *pvParameters)

{

 // Delete task with handle xTaskHandle

 vTaskDelete(xTaskHandle);

}

int main(void)

{

 // Initialize system here

 // Create task here

 xTaskCreate(vTaskFunction, "Task", 100, NULL, 1,

&xTaskHandle);

 // Create other task here

 xTaskCreate(vOtherTaskFunction, "Other Task", 100,

NULL, 2, NULL);

 // Start the FreeRTOS scheduler

147 | P a g e

 vTaskStartScheduler();

 // Should never get here

 return 0;

}

In this example, the vOtherTaskFunction() task code includes a call to vTaskDelete() with the task

handle xTaskHandle as a parameter to delete the specified task.

Task priority and stack size configuration

Task priority and stack size configuration are two important parameters to consider when

designing an embedded system that involves multitasking. In this note, we will discuss these

parameters in detail and provide sample code to illustrate how they can be configured in an RTOS

environment.

Task Priority:

Task priority is a critical parameter that determines the order in which tasks are executed. The

priority of a task is typically represented as an integer value, with higher values indicating higher

priority. In an RTOS environment, the scheduler determines which task to execute based on their

priorities. The task with the highest priority is executed first, and if two or more tasks have the

same priority, they are executed in a round-robin fashion.

Here is an example of how to create and set the priority of a task in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

void vTaskFunction(void *pvParameters)

{

 /* Task code goes here. */

}

void main()

{

 xTaskCreate(vTaskFunction, "Task Name",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

148 | P a g e

 vTaskStartScheduler();

}

In this example, we create a task named "Task Name" with a priority of 2 (the fourth parameter in

xTaskCreate). The available priorities typically depend on the RTOS being used, but most systems

provide a range of values from 0 (lowest priority) to the maximum priority supported by the

system.

Stack Size:

Stack size is another important parameter that determines the amount of memory allocated to a

task. Each task in an RTOS environment requires a stack to store its local variables and function

calls. The stack size is typically set when the task is created and depends on the complexity of the

task and the amount of memory available.

Here is an example of how to set the stack size of a task in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#define TASK_STACK_SIZE 128 /* Stack size in words. */

void vTaskFunction(void *pvParameters)

{

 /* Task code goes here. */

}

void main()

{

 xTaskCreate(vTaskFunction, "Task Name",

TASK_STACK_SIZE, NULL, 2, NULL);

 vTaskStartScheduler();

}

In this example, we set the stack size to 128 words (or 512 bytes, assuming a 32-bit word size).

The actual stack size required by a task depends on the complexity of the task and the amount of

149 | P a g e

memory required by its local variables and function calls. It's important to ensure that the stack

size is sufficient to avoid stack overflows, which can cause unpredictable behavior or crashes.

Task priority and stack size configuration are two important parameters to consider when

designing an embedded system that involves multitasking. Careful consideration of these

parameters can ensure that the system runs smoothly and predictably.

Task parameter and argument passing

Task parameter and argument passing is an essential feature of an RTOS that enables

communication and coordination between tasks. In this note, we will discuss task parameter and

argument passing and provide sample code to illustrate how they can be implemented in an RTOS

environment.

Task Parameter Passing:

Task parameter passing allows the passing of parameters to a task during its creation. These

parameters can be used by the task to initialize its internal state, configure its behavior, or

communicate with other tasks. In an RTOS environment, task parameters are typically passed as

a void pointer, and the task can cast this pointer to the appropriate data type to access the

parameters.

Here is an example of how to pass parameters to a task in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

void vTaskFunction(void *pvParameters)

{

 int parameter = *((int*)pvParameters);

 /* Task code that uses parameter goes here. */

}

void main()

{

 int taskParameter = 42;

 xTaskCreate(vTaskFunction, "Task Name",

configMINIMAL_STACK_SIZE, &taskParameter, 2, NULL);

 vTaskStartScheduler();

150 | P a g e

}

In this example, we create a task named "Task Name" and pass an integer parameter with a value

of 42. In the task function, we cast the void pointer pvParameters to an integer pointer and then

dereference it to obtain the parameter value. The task function can then use the parameter value as

needed.

Task Argument Passing:

Task argument passing allows the passing of arguments between tasks during runtime. This

enables tasks to communicate with each other and share data. In an RTOS environment, task

arguments are typically passed using message queues or shared memory.

Here is an example of how to use a message queue to pass arguments between tasks in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

QueueHandle_t xQueue;

void vSenderTaskFunction(void *pvParameters)

{

 int argument = 42;

 xQueueSend(xQueue, &argument, 0);

}

void vReceiverTaskFunction(void *pvParameters)

{

 int argument;

 xQueueReceive(xQueue, &argument, portMAX_DELAY);

 /* Task code that uses argument goes here. */

}

void main()

151 | P a g e

{

 xQueue = xQueueCreate(10, sizeof(int));

 xTaskCreate(vSenderTaskFunction, "Sender Task",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 xTaskCreate(vReceiverTaskFunction, "Receiver Task",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 vTaskStartScheduler();

}

In this example, we create a message queue xQueue with a maximum length of 10 and a message

size of an integer. We then create two tasks: a sender task that sends an integer argument with a

value of 42 to the queue and a receiver task that receives the argument from the queue. The receiver

task can then use the argument as needed.

Task parameter and argument passing are critical features of an RTOS that enable communication

and coordination between tasks. Careful consideration of these features can ensure that the system

runs smoothly and predictably.

Task states and priorities

Task states and transitions

Task states and transitions are fundamental concepts in an RTOS that determine the behavior of

tasks and the overall system. In this note, we will discuss task states and transitions and provide

sample code to illustrate how they can be implemented in an RTOS environment.

Task States:

In an RTOS, each task can be in one of four states: ready, running, blocked, or suspended. These

states describe the current state of the task and its ability to execute.

Ready: A task is in the ready state when it is created or unblocked and waiting to execute but has

not been scheduled to run by the scheduler yet.

Running: A task is in the running state when it is currently executing on the CPU.

Blocked: A task is in the blocked state when it is waiting for an event or resource to become

available.

Suspended: A task is in the suspended state when it is suspended by the application or debugger

and cannot execute until it is resumed.

152 | P a g e

Task Transitions:

Task transitions are the movements of a task between different states. Transitions can occur in

response to internal or external events, such as timer events, semaphore signals, or messages

received from other tasks.

Here is an example of how to implement task states and transitions in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "semphr.h"

SemaphoreHandle_t xSemaphore;

void vTaskFunction(void *pvParameters)

{

 while(1)

 {

 if(xSemaphoreTake(xSemaphore, portMAX_DELAY) ==

pdTRUE)

 {

 /* Task code that uses a shared resource

goes here. */

 xSemaphoreGive(xSemaphore);

 }

 }

}

void main()

{

 xSemaphore = xSemaphoreCreateMutex();

 xTaskCreate(vTaskFunction, "Task Name",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 vTaskStartScheduler();

153 | P a g e

}

In this example, we create a mutex semaphore xSemaphore to protect a shared resource. We then

create a task named "Task Name" and define its task function vTaskFunction. In the task function,

we use the xSemaphoreTake function to acquire the semaphore and enter the blocked state if it is

not available. If the semaphore is available, we execute the task code that uses the shared resource

and then release the semaphore using the xSemaphoreGive function.

The task will transition between the ready and blocked states depending on the availability of the

semaphore. When the semaphore is not available, the task will enter the blocked state and wait for

it to become available. When the semaphore is available, the task will transition back to the ready

state and execute.

Task states and transitions are essential concepts in an RTOS that determine the behavior of tasks

and the overall system. Proper understanding and implementation of these concepts can ensure

that the system runs smoothly and predictably.

Task priorities and preemption

Task priorities and preemption are important concepts in an RTOS that help ensure that critical

tasks receive the resources they need to complete their work. In this note, we will discuss task

priorities and preemption and provide sample code to illustrate how they can be implemented in

an RTOS environment.

Task Priorities:

In an RTOS, each task is assigned a priority level that determines its relative importance to the

system. Tasks with higher priorities will be executed before tasks with lower priorities, and if two

tasks have the same priority, the RTOS will use a scheduling algorithm to determine which task to

execute first.

Task priorities are typically defined as integer values, with higher values indicating higher

priorities. The priority values are usually set during task creation and can be adjusted dynamically

if necessary.

Task Preemption:

Task preemption is the ability of an RTOS to interrupt a lower-priority task that is currently

executing to allow a higher-priority task to run. Preemption is essential to ensure that critical tasks

are executed promptly and that the system responds quickly to external events.

Here is an example of how to implement task priorities and preemption in FreeRTOS:

#include "FreeRTOS.h"

154 | P a g e

#include "task.h"

void vHighPriorityTask(void *pvParameters)

{

 while(1)

 {

 /* High-priority task code goes here. */

 vTaskDelay(100);

 }

}

void vLowPriorityTask(void *pvParameters)

{

 while(1)

 {

 /* Low-priority task code goes here. */

 vTaskDelay(500);

 }

}

void main()

{

 xTaskCreate(vHighPriorityTask, "High Priority

Task", configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 xTaskCreate(vLowPriorityTask, "Low Priority Task",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 vTaskStartScheduler();

}

In this example, we create two tasks, vHighPriorityTask and vLowPriorityTask, with priorities 2

and 1, respectively. The high-priority task executes every 100 milliseconds, and the low-priority

task executes every 500 milliseconds.

155 | P a g e

Since the high-priority task has a higher priority than the low-priority task, it will preempt the low-

priority task every time it becomes ready to run. As a result, the high-priority task will execute

more frequently than the low-priority task.

Task priorities and preemption are important concepts in an RTOS that help ensure that critical

tasks receive the resources they need to complete their work. Proper understanding and

implementation of these concepts can help improve system responsiveness and reduce latency.

Task delay and suspension

In an RTOS environment, task delay and suspension are important features that allow tasks to

manage their execution timing and resource utilization. In this note, we will discuss task delay and

suspension and provide sample code to illustrate how they can be implemented in an RTOS

environment.

Task Delay:

Task delay is a feature that allows a task to pause its execution for a specified amount of time. This

feature is useful when a task needs to wait for a specific event to occur or to prevent it from

monopolizing the CPU.

In FreeRTOS, the vTaskDelay() function is used to implement task delay. The function takes a

single argument, which specifies the number of RTOS ticks to delay the task. For example, if the

RTOS tick rate is 1 kHz, calling vTaskDelay(100) would delay the task for 100 milliseconds.

Here is an example of how to use vTaskDelay() in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

void vTask1(void *pvParameters)

{

 while (1)

 {

 /* Task 1 code goes here. */

 vTaskDelay(500);

 }

}

void vTask2(void *pvParameters)

156 | P a g e

{

 while (1)

 {

 /* Task 2 code goes here. */

 vTaskDelay(1000);

 }

}

void main()

{

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 vTaskStartScheduler();

}

In this example, we create two tasks, vTask1 and vTask2. Task 1 delays for 500 milliseconds, and

Task 2 delays for 1000 milliseconds. This means that Task 2 will execute less frequently than Task

1.

Task Suspension:

Task suspension is a feature that allows a task to be temporarily removed from the execution queue.

Suspended tasks are not scheduled for execution and do not consume any CPU cycles, freeing up

resources for other tasks.

In FreeRTOS, the vTaskSuspend() function is used to suspend a task, and vTaskResume() is used

to resume it. For example:

#include "FreeRTOS.h"

#include "task.h"

TaskHandle_t xTaskHandle;

void vTask1(void *pvParameters)

{

157 | P a g e

 while (1)

 {

 /* Task 1 code goes here. */

 vTaskDelay(500);

 }

}

void vTask2(void *pvParameters)

{

 while (1)

 {

 /* Task 2 code goes here. */

 vTaskSuspend(xTaskHandle);

 vTaskDelay(1000);

 vTaskResume(xTaskHandle);

 }

}

void main()

{

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 1, &xTaskHandle);

 vTaskStartScheduler();

}

In this example, we create two tasks, vTask1 and vTask2. Task 2 suspends Task 1 using

vTaskSuspend() and resumes it using vTaskResume(). While Task 1 is suspended, it is not

scheduled for execution, allowing Task 2 to execute more frequently.

Task delay and suspension are important features in an RTOS environment that help tasks manage

their execution timing and resource utilization. Proper understanding and implementation of these

features can help improve system responsiveness and reduce latency.

158 | P a g e

Task synchronization using semaphores and

mutexes

Overview of task synchronization

In an RTOS environment, task synchronization is a critical feature that allows tasks to coordinate

their execution and share resources. In this note, we will provide an overview of task

synchronization and provide sample code to illustrate how it can be implemented in an RTOS

environment.

Task synchronization refers to the process of ensuring that multiple tasks execute in a specific

order or at the same time. This process is essential in systems where tasks need to share resources,

such as memory, I/O devices, or communication channels.

There are several mechanisms for task synchronization, including semaphores, mutexes, and event

flags.

Semaphore:

A semaphore is a synchronization mechanism that allows tasks to coordinate their execution and

share resources. A semaphore is typically implemented as a variable that can be accessed and

modified by tasks. When a task acquires a semaphore, it decrements its value. When the

semaphore's value is zero, the task is blocked, and its execution is suspended until the semaphore's

value becomes nonzero.

In FreeRTOS, semaphores are implemented using the xSemaphoreCreateBinary() function, which

creates a binary semaphore that can be used to synchronize tasks. For example:

#include "FreeRTOS.h"

#include "task.h"

#include "semphr.h"

SemaphoreHandle_t xSemaphore;

void vTask1(void *pvParameters)

{

 while (1)

 {

159 | P a g e

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 /* Task 1 code goes here. */

 xSemaphoreGive(xSemaphore);

 }

}

void vTask2(void *pvParameters)

{

 while (1)

 {

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 /* Task 2 code goes here. */

 xSemaphoreGive(xSemaphore);

 }

}

void main()

{

 xSemaphore = xSemaphoreCreateBinary();

 xSemaphoreGive(xSemaphore);

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 vTaskStartScheduler();

}

In this example, we create two tasks, vTask1 and vTask2, and a binary semaphore xSemaphore

using xSemaphoreCreateBinary(). Task 1 and Task 2 both take the semaphore using

xSemaphoreTake(), which decrements its value. When the semaphore's value is zero, the tasks are

blocked, and their execution is suspended. When a task finishes using the semaphore, it gives it

back using xSemaphoreGive(), which increments its value and unblocks the waiting tasks.

Mutex:

160 | P a g e

A mutex is a synchronization mechanism that allows tasks to coordinate their execution and share

resources, such as memory or I/O devices. A mutex is typically implemented as a variable that can

be accessed and modified by tasks. When a task acquires a mutex, it gains exclusive access to the

resource it protects. Other tasks are blocked and cannot access the resource until the task releases

the mutex.

In FreeRTOS, mutexes are implemented using the xSemaphoreCreateMutex() function, which

creates a mutex that can be used to synchronize tasks. For example:

#include "FreeRTOS.h"

#include "task.h"

#include "semphr.h"

SemaphoreHandle_t xMutex;

void vTask1(void *pvParameters)

{

 while (1)

 {

 xSemaphoreTake(xMutex, portMAX_DELAY);

 /* Task 1 code goes here. */

 xSemaphoreGive(xMutex);

 }

}

void vTask2(void *pvParameters)

{

 while (1)

 {

 xSemaphoreTake(xMutex, portMAX_DELAY);

 /* Task 2 code goes here. */

 xSemaphoreGive(xMutex);

 }

}

161 | P a g e

Semaphore and mutex implementation in FreeRTOS

In FreeRTOS, semaphore and mutex are two important synchronization mechanisms that allow

tasks to coordinate their execution and share resources. In this note, we will discuss the

implementation of semaphore and mutex in FreeRTOS and provide sample code to illustrate how

they can be used in an RTOS environment.

Semaphore Implementation in FreeRTOS:

FreeRTOS provides two types of semaphores, binary semaphore and counting semaphore. A

binary semaphore can only take two values, 0 and 1, while a counting semaphore can take any

positive integer value.

To create a binary semaphore in FreeRTOS, we use the xSemaphoreCreateBinary() function,

which returns a handle to the created semaphore. The binary semaphore can be used to synchronize

access to a shared resource, where a task can wait for the resource to be available and then access

it.

Here is an example code of creating and using a binary semaphore in FreeRTOS:

#include "FreeRTOS.h"

#include "semphr.h"

SemaphoreHandle_t xBinarySemaphore;

void vTask1(void *pvParameters)

{

 while(1)

 {

 xSemaphoreTake(xBinarySemaphore,

portMAX_DELAY);

 // Task 1 code here

 xSemaphoreGive(xBinarySemaphore);

 }

}

void vTask2(void *pvParameters)

162 | P a g e

{

 while(1)

 {

 xSemaphoreTake(xBinarySemaphore,

portMAX_DELAY);

 // Task 2 code here

 xSemaphoreGive(xBinarySemaphore);

 }

}

int main(void)

{

 xBinarySemaphore = xSemaphoreCreateBinary();

 xSemaphoreGive(xBinarySemaphore);

 xTaskCreate(vTask1, "Task 1", 1000, NULL, 1, NULL

);

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL

);

 vTaskStartScheduler();

 return 0;

}

In this example code, we first create a binary semaphore using xSemaphoreCreateBinary(), which

is assigned to the variable xBinarySemaphore. We then give the semaphore to indicate that the

resource is available.

In Task 1 and Task 2, we use xSemaphoreTake() to acquire the semaphore before accessing the

shared resource, and xSemaphoreGive() to release the semaphore after finishing the access.

Mutex Implementation in FreeRTOS:

A mutex is another synchronization mechanism in FreeRTOS, which provides exclusive access to

a shared resource. When a task acquires a mutex, it gains exclusive access to the resource it

protects. Other tasks are blocked and cannot access the resource until the task releases the mutex.

163 | P a g e

To create a mutex in FreeRTOS, we use the xSemaphoreCreateMutex() function, which returns a

handle to the created mutex. The mutex can be used to protect a shared resource, where only one

task at a time can access the resource.

Here is an example code of creating and using a mutex in FreeRTOS:

#include "FreeRTOS.h"

#include "semphr.h"

SemaphoreHandle_t xMutex;

void vTask1(void *pvParameters)

{

 while(1)

 {

 xSemaphoreTake(xMutex, portMAX_DELAY);

 // Task 1 code here

 xSemaphoreGive(xMutex);

 }

}

void vTask2(void *pvParameters)

{

 while(1)

 {

 xSemaphoreTake(xMutex, portMAX_DELAY);

 // Task 2 code here

 xSemaphoreGive(xMutex);

 }

}

164 | P a g e

Synchronization examples and use cases

In an RTOS environment, synchronization is essential for ensuring that multiple tasks can access

shared resources safely and efficiently. In this note, we will discuss some synchronization

examples and use cases in FreeRTOS, along with sample code to illustrate their implementation.

Producer-Consumer Synchronization:

In a producer-consumer scenario, one or more producer tasks generate data that is consumed by

one or more consumer tasks. To synchronize the producer and consumer tasks, we can use a

counting semaphore that represents the number of available data items.

Here is an example code of producer-consumer synchronization using a counting semaphore in

FreeRTOS:

#include "FreeRTOS.h"

#include "semphr.h"

SemaphoreHandle_t xSemaphore;

QueueHandle_t xQueue;

void vProducer(void *pvParameters)

{

 int data = 0;

 while(1)

 {

 // Produce new data

 data++;

 // Add data to queue

 xQueueSend(xQueue, &data, portMAX_DELAY);

 // Increment semaphore count

 xSemaphoreGive(xSemaphore);

 }

}

165 | P a g e

void vConsumer(void *pvParameters)

{

 int data;

 while(1)

 {

 // Wait for data to become available

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 // Retrieve data from queue

 xQueueReceive(xQueue, &data, portMAX_DELAY);

 // Consume data

 // ...

 }

}

int main(void)

{

 xSemaphore = xSemaphoreCreateCounting(10, 0);

 xQueue = xQueueCreate(10, sizeof(int));

 xTaskCreate(vProducer, "Producer", 1000, NULL, 1,

NULL);

 xTaskCreate(vConsumer, "Consumer", 1000, NULL, 1,

NULL);

 vTaskStartScheduler();

 return 0;

}

166 | P a g e

In this example code, we first create a counting semaphore with a maximum count of 10 and an

initial count of 0 using xSemaphoreCreateCounting(). We also create a queue to hold the produced

data using xQueueCreate().

In the producer task, we generate new data and add it to the queue using xQueueSend(), and then

increment the semaphore count using xSemaphoreGive() to signal the availability of new data.

In the consumer task, we wait for the semaphore to become available using xSemaphoreTake(),

and then retrieve the data from the queue using xQueueReceive(). We can then consume the data

as needed.

Task Synchronization with Mutex:

In a scenario where multiple tasks need to access a shared resource exclusively, we can use a mutex

to synchronize their access. The mutex ensures that only one task at a time can access the resource.

Here is an example code of task synchronization using a mutex in FreeRTOS:

#include "FreeRTOS.h"

#include "semphr.h"

SemaphoreHandle_t xMutex;

int sharedResource = 0;

void vTask1(void *pvParameters)

{

 while(1)

 {

 xSemaphoreTake(xMutex, portMAX_DELAY);

 // Access shared resource

 sharedResource++;

 // ...

 xSemaphoreGive(xMutex);

 }

}

167 | P a g e

void vTask2(void *pvParameters)

{

 while(1)

 {

 xSemaphoreTake(xMutex, portMAX_DELAY);

 // Access shared resource

 sharedResource--;

 // ...

 xSemaphoreGive(xMutex);

 }

}

Inter-task communication using queues and

pipes

Overview of inter-task communication

In an RTOS environment, inter-task communication (ITC) refers to the exchange of data between

different tasks in a coordinated and synchronized manner. In this note, we will provide an overview

of ITC in FreeRTOS, along with some examples and sample code to illustrate its implementation.

ITC Mechanisms in FreeRTOS:

FreeRTOS provides several mechanisms for inter-task communication, including:

Queues: Queues are a simple and efficient way to exchange data between tasks. They can be used

to implement producer-consumer patterns or to transfer data from one task to another.

Semaphores: Semaphores can be used to signal events or to synchronize access to shared resources

between tasks.

168 | P a g e

Mutexes: Mutexes provide mutual exclusion to shared resources and ensure that only one task at

a time can access them.

Event Groups: Event groups allow tasks to wait for a combination of events to occur before

resuming execution.

Example of Inter-Task Communication using Queues:

Queues are a commonly used mechanism for inter-task communication in FreeRTOS. Here is an

example code of a producer-consumer scenario using a queue:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

QueueHandle_t xQueue;

void vProducerTask(void *pvParameters)

{

 int data = 0;

 while (1)

 {

 // Produce new data

 data++;

 // Add data to queue

 xQueueSend(xQueue, &data, portMAX_DELAY);

 }

}

void vConsumerTask(void *pvParameters)

{

 int data;

 while (1)

169 | P a g e

 {

 // Retrieve data from queue

 xQueueReceive(xQueue, &data, portMAX_DELAY);

 // Consume data

 // ...

 }

}

int main()

{

 // Create queue

 xQueue = xQueueCreate(10, sizeof(int));

 // Create tasks

 xTaskCreate(vProducerTask, "Producer", 1000, NULL,

1, NULL);

 xTaskCreate(vConsumerTask, "Consumer", 1000, NULL,

1, NULL);

 // Start scheduler

 vTaskStartScheduler();

 return 0;

}

In this example, we create a queue using xQueueCreate(), with a maximum size of 10 and a data

size of int. We then create a producer task and a consumer task.

In the producer task, we generate new data and add it to the queue using xQueueSend(). The

function call blocks until there is space available in the queue to store the data.

In the consumer task, we wait for new data to become available in the queue using

xQueueReceive(). The function call blocks until new data is added to the queue.

Example of Inter-Task Communication using Semaphores:

170 | P a g e

Semaphores can be used to synchronize access to shared resources between tasks. Here is an

example code of a scenario where two tasks access a shared resource using a semaphore:

#include "FreeRTOS.h"

#include "task.h"

#include "semphr.h"

SemaphoreHandle_t xSemaphore;

int sharedResource = 0;

void vTask1(void *pvParameters)

{

 while (1)

 {

 // Wait for semaphore

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 // Access shared resource

 sharedResource++;

 // ...

 // Release semaphore

 xSemaphoreGive(xSemaphore);

 }

}

void vTask2(void *pvParameters)

{

 while (1)

 {

 // Wait for semaphore

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

171 | P a g e

 // Access shared resource

 sharedResource--;

 // ...

 // Release semaphore

 xSemaphoreGive(xSemaphore);

Queue and pipe implementation in FreeRTOS

In FreeRTOS, queues and pipes are used as mechanisms for inter-task communication, allowing

tasks to exchange data in a synchronized manner. In this note, we will provide an overview of the

implementation of queues and pipes in FreeRTOS, along with some examples and sample code to

illustrate their usage.

Queues in FreeRTOS:

A queue is a simple and efficient way to exchange data between tasks. FreeRTOS provides a set

of functions for creating and manipulating queues. Here is an example of creating and using a

queue in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

QueueHandle_t xQueue;

void vSenderTask(void *pvParameters)

{

 int data = 0;

 while (1)

 {

 // Produce new data

 data++;

172 | P a g e

 // Add data to queue

 xQueueSend(xQueue, &data, portMAX_DELAY);

 }

}

void vReceiverTask(void *pvParameters)

{

 int data;

 while (1)

 {

 // Retrieve data from queue

 xQueueReceive(xQueue, &data, portMAX_DELAY);

 // Consume data

 // ...

 }

}

int main()

{

 // Create queue

 xQueue = xQueueCreate(10, sizeof(int));

 // Create tasks

 xTaskCreate(vSenderTask, "Sender", 1000, NULL, 1,

NULL);

 xTaskCreate(vReceiverTask, "Receiver", 1000, NULL,

1, NULL);

 // Start scheduler

 vTaskStartScheduler();

173 | P a g e

 return 0;

}

In this example, we create a queue using xQueueCreate(), with a maximum size of 10 and a data

size of int. We then create a sender task and a receiver task.

In the sender task, we generate new data and add it to the queue using xQueueSend(). The function

call blocks until there is space available in the queue to store the data.

In the receiver task, we wait for new data to become available in the queue using xQueueReceive().

The function call blocks until new data is added to the queue.

Pipes in FreeRTOS:

A pipe is a type of queue that allows two tasks to communicate with each other using a single

queue. FreeRTOS provides a set of functions for creating and manipulating pipes. Here is an

example of creating and using a pipe in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

QueueHandle_t xPipe;

void vSenderTask(void *pvParameters)

{

 int data = 0;

 while (1)

 {

 // Produce new data

 data++;

 // Add data to pipe

 xQueueSend(xPipe, &data, portMAX_DELAY);

 }

}

174 | P a g e

void vReceiverTask(void *pvParameters)

{

 int data;

 while (1)

 {

 // Retrieve data from pipe

 xQueueReceive(xPipe, &data, portMAX_DELAY);

 // Consume data

 // ...

 }

}

int main()

{

 // Create pipe

 xPipe = xQueueCreate(10, sizeof(int));

 // Create tasks

 xTaskCreate(vSenderTask, "Sender", 1000, NULL, 1,

NULL);

 xTaskCreate(vReceiverTask, "Receiver", 1000, NULL,

1, NULL);

 // Start scheduler

 vTaskStartScheduler();

 return 0;

}

In this example, we create a pipe using xQueueCreate(), with a maximum size of 10 and a data

size of int. We then create a sender task and a receiver task.

175 | P a g e

Communication examples and use cases

In FreeRTOS, inter-task communication is critical for many applications. Here we will discuss

some examples and use cases of inter-task communication using queues and pipes.

Sensor Data Acquisition System:

In this use case, we assume that a sensor is generating data at a fixed interval, and this data needs

to be processed by multiple tasks. In this example, we will use a queue to share the sensor data

between the producer and consumer tasks.

#define QUEUE_LENGTH 10

QueueHandle_t xDataQueue;

void vSensorTask(void *pvParameters)

{

 int data = 0;

 while (1)

 {

 // Get sensor data

 data = readSensor();

 // Add data to the queue

 xQueueSend(xDataQueue, &data, portMAX_DELAY);

 // Wait for some time

 vTaskDelay(pdMS_TO_TICKS(100));

 }

}

void vConsumerTask(void *pvParameters)

{

 int data = 0;

 while (1)

176 | P a g e

 {

 // Get data from the queue

 xQueueReceive(xDataQueue, &data,

portMAX_DELAY);

 // Process data

 processSensorData(data);

 }

}

int main()

{

 // Create the queue

 xDataQueue = xQueueCreate(QUEUE_LENGTH,

sizeof(int));

 // Create the tasks

 xTaskCreate(vSensorTask, "Sensor", 1000, NULL, 1,

NULL);

 xTaskCreate(vConsumerTask, "Consumer", 1000, NULL,

1, NULL);

 // Start the scheduler

 vTaskStartScheduler();

 return 0;

}

In this example, we create a queue with a maximum length of 10, and a data size of int. The

producer task, vSensorTask(), reads sensor data and adds it to the queue using xQueueSend(). The

consumer task, vConsumerTask(), waits for data to become available on the queue using

xQueueReceive(), and processes the data when it is available.

177 | P a g e

Audio Playback System:

In this use case, we assume that an audio file is being played back, and the playback process needs

to be synchronized with other tasks. In this example, we will use a pipe to communicate between

the playback task and the synchronization task.

#define PIPE_LENGTH 10

QueueHandle_t xPipe;

void vPlaybackTask(void *pvParameters)

{

 // Open the audio file

 FILE *audioFile = fopen("audio.wav", "rb");

 // Read and play the audio file

 while (!feof(audioFile))

 {

 // Read a chunk of audio data

 uint8_t audioChunk[AUDIO_CHUNK_SIZE];

 fread(audioChunk, 1, AUDIO_CHUNK_SIZE,

audioFile);

 // Write the audio data to the pipe

 xQueueSend(xPipe, &audioChunk, portMAX_DELAY);

 }

 // Close the audio file

 fclose(audioFile);

}

void vSyncTask(void *pvParameters)

{

178 | P a g e

 int syncPoint = 0;

 while (1)

 {

 // Wait for the next sync point

 syncPoint++;

 // Wait for the playback task to reach the sync

point

 uint8_t audioChunk[AUDIO_CHUNK_SIZE];

 xQueueReceive(xPipe, &audioChunk,

portMAX_DELAY);

 // Synchronize with the playback task

 synchronizePlayback(syncPoint);

 }

}

Task notifications and events

Overview of task notifications and events

In FreeRTOS, task notifications and events are a powerful mechanism for inter-task

communication and synchronization. Here we will provide an overview of task notifications and

events, and provide some example use cases.

Task Notifications:

Task notifications allow tasks to notify each other of events using a 32-bit value. Each task has a

notification value associated with it, and other tasks can send notifications to it using the

xTaskNotify() API. A task can wait for a notification using the xTaskNotifyWait() API.

void vTask1(void *pvParameters)

{

 while(1)

179 | P a g e

 {

 // Wait for a notification

 uint32_t notificationValue;

 xTaskNotifyWait(0, UINT32_MAX,

¬ificationValue, portMAX_DELAY);

 // Handle the notification

 handleNotification(notificationValue);

 }

}

void vTask2(void *pvParameters)

{

 while(1)

 {

 // Send a notification to Task1

 uint32_t notificationValue = 123;

 xTaskNotify(xTask1, notificationValue,

eSetValueWithOverwrite);

 }

}

In this example, Task2 sends a notification to Task1 with a value of 123 using xTaskNotify().

Task1 waits for a notification using xTaskNotifyWait(), and handles the notification when it

arrives.

Task Events:

Task events are similar to task notifications, but they allow tasks to wait for specific bit patterns

within the notification value. A task can set a bit pattern using the xTaskNotifyAndQuery() API,

and other tasks can wait for the bit pattern using the xTaskNotifyWaitBits() API.

#define EVENT_BIT_1 (1 << 0)

#define EVENT_BIT_2 (1 << 1)

180 | P a g e

void vTask1(void *pvParameters)

{

 while(1)

 {

 // Wait for event bits 1 and 2

 uint32_t notificationValue;

 xTaskNotifyWaitBits(0, EVENT_BIT_1 |

EVENT_BIT_2, pdTRUE, pdFALSE, portMAX_DELAY,

¬ificationValue);

 // Handle the event bits

 handleEventBits(notificationValue);

 }

}

void vTask2(void *pvParameters)

{

 while(1)

 {

 // Set event bit 1

 xTaskNotifyAndQuery(xTask1, EVENT_BIT_1,

eSetBits, NULL);

 // Wait for a while

 // Set event bit 2

 xTaskNotifyAndQuery(xTask1, EVENT_BIT_2,

eSetBits, NULL);

 }

}

In this example, Task2 sets event bit 1 using xTaskNotifyAndQuery(), waits for a while, and then

sets event bit 2. Task1 waits for both event bits using xTaskNotifyWaitBits(), and handles them

when they arrive.

181 | P a g e

Task notifications and events are a powerful mechanism for inter-task communication and

synchronization in FreeRTOS. They can be used for a wide variety of use cases, including

synchronization, data transfer, and event handling.

Notification and event implementation in FreeRTOS

In FreeRTOS, task notifications and events are implemented using the xTaskNotify*() and

xTaskNotifyWait*() APIs. Here we will provide an overview of the implementation of task

notifications and events in FreeRTOS.

Task Notifications:

Task notifications are implemented using a task notification value associated with each task. The

notification value is a 32-bit value that can be read and written using the xTaskGet*() and

xTaskSet*() APIs. Notifications are sent to a task using the xTaskNotify() API, which sets the

notification value of the target task. The target task can wait for a notification using the

xTaskNotifyWait() API, which blocks the task until a notification is received.

void vTask1(void *pvParameters)

{

 while(1)

 {

 // Wait for a notification

 uint32_t notificationValue;

 xTaskNotifyWait(0, UINT32_MAX,

¬ificationValue, portMAX_DELAY);

 // Handle the notification

 handleNotification(notificationValue);

 }

}

void vTask2(void *pvParameters)

{

 while(1)

 {

182 | P a g e

 // Send a notification to Task1

 uint32_t notificationValue = 123;

 xTaskNotify(xTask1, notificationValue,

eSetValueWithOverwrite);

 }

}

In this example, Task2 sends a notification to Task1 using xTaskNotify(). Task1 waits for a

notification using xTaskNotifyWait(), and handles the notification when it arrives.

Task Events:

Task events are implemented using a task notification value and a mask value. The mask value is

used to select specific bits in the notification value, and is set using the xTaskNotifyAndQuery()

API. The target task can wait for specific bit patterns in the notification value using the

xTaskNotifyWaitBits() API, which blocks the task until the desired bit pattern is received.

#define EVENT_BIT_1 (1 << 0)

#define EVENT_BIT_2 (1 << 1)

void vTask1(void *pvParameters)

{

 while(1)

 {

 // Wait for event bits 1 and 2

 uint32_t notificationValue;

 xTaskNotifyWaitBits(0, EVENT_BIT_1 |

EVENT_BIT_2, pdTRUE, pdFALSE, portMAX_DELAY,

¬ificationValue);

 // Handle the event bits

 handleEventBits(notificationValue);

 }

}

void vTask2(void *pvParameters)

183 | P a g e

{

 while(1)

 {

 // Set event bit 1

 xTaskNotifyAndQuery(xTask1, EVENT_BIT_1,

eSetBits, NULL);

 // Wait for a while

 // Set event bit 2

 xTaskNotifyAndQuery(xTask1, EVENT_BIT_2,

eSetBits, NULL);

 }

}

In this example, Task2 sets event bit 1 and then event bit 2 using xTaskNotifyAndQuery(). Task1

waits for both event bits using xTaskNotifyWaitBits(), and handles them when they arrive.

Task notifications and events are a powerful mechanism for inter-task communication and

synchronization in FreeRTOS. They can be used for a wide variety of use cases, including

synchronization, data transfer, and event handling.

Use cases and examples of notifications and events

Task notifications and events are versatile mechanisms that can be used for a variety of use cases

in FreeRTOS. Here we will provide some examples of how task notifications and events can be

used.

Synchronization:

Task notifications and events can be used for synchronization between tasks. For example,

consider the following scenario where two tasks need to synchronize their operation:

void vTask1(void *pvParameters)

{

 // Wait for task 2 to be ready

 xTaskNotifyWait(0, UINT32_MAX, NULL,

portMAX_DELAY);

184 | P a g e

 // Perform operation

 performOperation();

}

void vTask2(void *pvParameters)

{

 // Perform initialization

 performInitialization();

 // Notify task 1 that initialization is done

 xTaskNotify(xTask1, 0, eNoAction);

 // Wait for task 1 to finish operation

 xTaskNotifyWait(0, UINT32_MAX, NULL,

portMAX_DELAY);

 // Perform cleanup

 performCleanup();

}

In this example, Task2 performs initialization and notifies Task1 that it is ready to synchronize.

Task1 waits for the notification from Task2, performs its operation, and then Task2 performs its

cleanup.

Data Transfer:

Task notifications and events can also be used for data transfer between tasks. For example,

consider the following scenario where one task generates data and another task consumes it:

void vTask1(void *pvParameters)

{

 while(1)

 {

 // Generate data

185 | P a g e

 uint32_t data = generateData();

 // Send data to task 2

 xTaskNotify(xTask2, data,

eSetValueWithOverwrite);

 // Wait for a while

 vTaskDelay(pdMS_TO_TICKS(100));

 }

}

void vTask2(void *pvParameters)

{

 while(1)

 {

 // Wait for data from task 1

 uint32_t data;

 xTaskNotifyWait(0, UINT32_MAX, &data,

portMAX_DELAY);

 // Consume data

 consumeData(data);

 }

}

In this example, Task1 generates data and sends it to Task2 using xTaskNotify(). Task2 waits for

the notification from Task1 and consumes the data using xTaskNotifyWait().

Event Handling:

Task notifications and events can also be used for event handling. For example, consider the

following scenario where one task generates events and another task handles them:

#define EVENT_BIT_1 (1 << 0)

#define EVENT_BIT_2 (1 << 1)

186 | P a g e

void vTask1(void *pvParameters)

{

 while(1)

 {

 // Generate events

 uint32_t events = generateEvents();

 // Set event bits

 xTaskNotifyAndQuery(xTask2, events, eSetBits,

NULL);

 // Wait for a while

 vTaskDelay(pdMS_TO_TICKS(100));

 }

}

void vTask2(void *pvParameters)

{

 while(1)

 {

 // Wait for event bits

 uint32_t events;

 xTaskNotifyWaitBits(0, EVENT_BIT_1 |

EVENT_BIT_2, pdTRUE, pdFALSE, portMAX_DELAY, &events);

 // Handle events

 handleEvents(events);

 }

}

187 | P a g e

In this example, Task1 generates events and sets event bits in Task2 using

xTaskNotifyAndQuery(). Task2 waits for the event bits using xTaskNotifyWaitBits() and handles

the events when they arrive.

Idle task and stack overflow management

Overview of the idle task and its function

In FreeRTOS, the idle task is a special task that is created during the system initialization and is

always present in the system. The idle task runs only when there are no other tasks to run, i.e., all

other tasks are blocked or suspended. The purpose of the idle task is to perform low priority

background processing while the system is not busy executing other tasks.

The idle task has the lowest priority in the system and is created with a small stack size. It uses

very little processing time, and its primary purpose is to prevent the system from hanging when

there are no other tasks to run. The idle task runs in an infinite loop and executes only when there

are no other tasks to run. The idle task is created automatically by the kernel and runs on the idle

task stack.

The idle task function in FreeRTOS is implemented as a loop that performs low-level background

processing. The loop executes until the system is shut down or reset. The code for the idle task

function is provided below:

void vApplicationIdleHook(void)

{

 /* Perform background processing here */

}

In addition to the default idle task, FreeRTOS also provides a mechanism to create an application-

defined idle task. This mechanism is useful when there is a need for custom background processing

that cannot be performed by the default idle task. To create an application-defined idle task, the

following steps should be followed:

Define a new task with the same priority as the default idle task.

Implement the task function to perform the required background processing.

Suspend the default idle task and resume it when the application-defined idle task is no longer

required.

The following code demonstrates the creation and suspension of the default idle task and the

creation of an application-defined idle task:

188 | P a g e

void vApplicationIdleHook(void)

{

 /* Suspend the default idle task */

 vTaskSuspend(xIdleTaskHandle);

 /* Create the application-defined idle task */

 xTaskCreate(vCustomIdleTask, "CustomIdle",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL

);

 /* Suspend the application-defined idle task */

 vTaskSuspend(xCustomIdleTaskHandle);

 /* Resume the default idle task */

 vTaskResume(xIdleTaskHandle);

}

void vCustomIdleTask(void *pvParameters)

{

 /* Perform custom background processing here */

 /* Suspend the application-defined idle task */

 vTaskSuspend(NULL);

 /* Resume the default idle task */

 vTaskResume(xIdleTaskHandle);

}

The idle task in FreeRTOS is a special task that runs when there are no other tasks to run. Its

primary purpose is to prevent the system from hanging when there are no other tasks to run.

FreeRTOS provides both a default idle task and a mechanism to create an application-defined idle

task for custom background processing.

189 | P a g e

Monitoring the idle task and resource usage

In FreeRTOS, stack overflow can occur when a task's stack space is exhausted, resulting in

unpredictable behavior, crashes, and system failure. Therefore, it is essential to detect and prevent

stack overflow to ensure system reliability and stability.

FreeRTOS provides several techniques to detect and prevent stack overflow. In this section, we

will discuss these techniques and show how to use them in code.

Configuring stack size:

The simplest way to prevent stack overflow is to ensure that the stack size allocated for each task

is sufficient. The FreeRTOSConfig.h header file can be used to configure the stack size for each

task, as shown below:

#define configMINIMAL_STACK_SIZE ((uint16_t)128)

Enabling stack overflow checking:

FreeRTOS also provides stack overflow checking, which is a mechanism that detects when a task's

stack has been exhausted. To enable stack overflow checking, the

configCHECK_FOR_STACK_OVERFLOW configuration parameter must be set to 1 in

FreeRTOSConfig.h.

When stack overflow checking is enabled, FreeRTOS adds a guard value to the end of each task's

stack. During task execution, FreeRTOS periodically checks the guard value to ensure that it has

not been overwritten. If the guard value has been modified, the system assumes that a stack

overflow has occurred and triggers an exception.

#define configCHECK_FOR_STACK_OVERFLOW 1

Using stack overflow hooks:

FreeRTOS provides two stack overflow hooks that can be used to detect and handle stack overflow

events:

vApplicationStackOverflowHook(): This hook is called when a stack overflow is detected. It can

be used to log an error message, reset the system, or take other corrective actions.

xTaskHandle pxTask: This is the task handle to the task that caused the stack overflow.

void vApplicationStackOverflowHook(xTaskHandle pxTask,

signed char *pcTaskName)

{

190 | P a g e

 printf("Stack overflow detected for task %s\r\n",

pcTaskName);

 // Handle stack overflow event

 // ...

}

Using task stack watermark:

FreeRTOS also provides a mechanism to calculate the remaining stack space of a task, called the

task stack watermark. The task stack watermark provides information about the amount of stack

space remaining for a task and can be used to detect potential stack overflow conditions.

void taskFunction(void *pvParameters)

{

 // Task code

}

int main(void)

{

 TaskHandle_t xTaskHandle;

 uint32_t ulStackSize, ulWatermark;

 // Create task with stack size

 ulStackSize = 128;

 xTaskCreate(taskFunction, "Task", ulStackSize,

NULL, tskIDLE_PRIORITY, &xTaskHandle);

 // Get task stack watermark

 ulWatermark =

uxTaskGetStackHighWaterMark(xTaskHandle);

 printf("Task stack size: %lu\r\n", ulStackSize);

 printf("Task stack watermark: %lu\r\n",

ulWatermark);

191 | P a g e

 // ...

}

Preventing and detecting stack overflow is crucial for ensuring system reliability and stability in

FreeRTOS. FreeRTOS provides several techniques for detecting and preventing stack overflow,

including configuring stack size, enabling stack overflow checking, using stack overflow hooks,

and using the task stack watermark. By using these techniques, developers can ensure that their

system is robust and reliable.

Stack overflow detection and prevention techniques

In FreeRTOS, stack overflow can occur when a task's stack space is exhausted, resulting in

unpredictable behavior, crashes, and system failure. Therefore, it is essential to detect and prevent

stack overflow to ensure system reliability and stability.

FreeRTOS provides several techniques to detect and prevent stack overflow. In this section, we

will discuss these techniques and show how to use them in code.

Configuring stack size:

The simplest way to prevent stack overflow is to ensure that the stack size allocated for each task

is sufficient. The FreeRTOSConfig.h header file can be used to configure the stack size for each

task, as shown below:

#define configMINIMAL_STACK_SIZE ((uint16_t)128)

Enabling stack overflow checking:

FreeRTOS also provides stack overflow checking, which is a mechanism that detects when a task's

stack has been exhausted. To enable stack overflow checking, the

configCHECK_FOR_STACK_OVERFLOW configuration parameter must be set to 1 in

FreeRTOSConfig.h.

When stack overflow checking is enabled, FreeRTOS adds a guard value to the end of each task's

stack. During task execution, FreeRTOS periodically checks the guard value to ensure that it has

not been overwritten. If the guard value has been modified, the system assumes that a stack

overflow has occurred and triggers an exception.

#define configCHECK_FOR_STACK_OVERFLOW 1

192 | P a g e

Using stack overflow hooks:

FreeRTOS provides two stack overflow hooks that can be used to detect and handle stack overflow

events:

vApplicationStackOverflowHook(): This hook is called when a stack overflow is detected. It can

be used to log an error message, reset the system, or take other corrective actions.

xTaskHandle pxTask: This is the task handle to the task that caused the stack overflow.

void vApplicationStackOverflowHook(xTaskHandle pxTask,

signed char *pcTaskName)

{

 printf("Stack overflow detected for task %s\r\n",

pcTaskName);

 // Handle stack overflow event

 // ...

}

Using task stack watermark:

FreeRTOS also provides a mechanism to calculate the remaining stack space of a task, called the

task stack watermark. The task stack watermark provides information about the amount of stack

space remaining for a task and can be used to detect potential stack overflow conditions.

void taskFunction(void *pvParameters)

{

 // Task code

}

int main(void)

{

 TaskHandle_t xTaskHandle;

 uint32_t ulStackSize, ulWatermark;

 // Create task with stack size

 ulStackSize = 128;

193 | P a g e

 xTaskCreate(taskFunction, "Task", ulStackSize,

NULL, tskIDLE_PRIORITY, &xTaskHandle);

 // Get task stack watermark

 ulWatermark =

uxTaskGetStackHighWaterMark(xTaskHandle);

 printf("Task stack size: %lu\r\n", ulStackSize);

 printf("Task stack watermark: %lu\r\n",

ulWatermark);

 // ...

}

Preventing and detecting stack overflow is crucial for ensuring system reliability and stability in

FreeRTOS. FreeRTOS provides several techniques for detecting and preventing stack overflow,

including configuring stack size, enabling stack overflow checking, using stack overflow hooks,

and using the task stack watermark. By using these techniques, developers can ensure that their

system is robust and reliable.

194 | P a g e

Chapter 5:

Interrupt Management with FreeRTOS

195 | P a g e

In embedded systems, interrupts are essential mechanisms for handling external events and real-

time tasks. Interrupts enable a processor to stop the current task and execute a high-priority task

immediately, which is crucial for real-time systems that require quick response times. FreeRTOS

is a popular real-time operating system (RTOS) that provides a robust set of APIs to manage

interrupts efficiently.

This chapter will provide an in-depth overview of interrupt management with FreeRTOS. We will

start by introducing the concept of interrupts and how they are handled in embedded systems. We

will then dive into the details of interrupt management with FreeRTOS, including how to configure

and manage interrupts, and how to use interrupt service routines (ISRs) to handle external events.

FreeRTOS provides a flexible and efficient mechanism for managing interrupts through its

Interrupt Service Routine (ISR) wrapper functions. These functions enable ISRs to be written as

normal C functions, making it easy to integrate interrupt handling into your application.

Additionally, FreeRTOS provides APIs to manage interrupt priorities, enabling the system to

handle interrupts in a deterministic and predictable manner.

The chapter will cover the different types of interrupts that can be handled with FreeRTOS,

including software and hardware interrupts. We will explain how to configure and manage

interrupts, including setting priorities and enabling and disabling interrupts. We will also cover

how to use FreeRTOS's interrupt-safe API functions, which are designed to be used from both

tasks and ISRs to manage shared resources.

In addition to interrupt handling, we will discuss interrupt nesting and how to manage interrupt

priorities in FreeRTOS. Interrupt nesting occurs when an interrupt is triggered while another

interrupt is already executing. FreeRTOS provides a mechanism for managing interrupt priorities,

ensuring that higher-priority interrupts are handled first.

Introduction to interrupts

Overview of interrupts and their function

An interrupt is a signal sent to the CPU by a hardware device or software process that temporarily

halts the normal execution of the CPU, allowing the CPU to handle the interrupt event. Interrupts

play a crucial role in computer systems, as they allow for efficient and timely handling of events

and processes.

There are several types of interrupts in computer systems, including hardware interrupts, software

interrupts, and exceptions. Hardware interrupts are generated by external devices, such as

keyboards, mice, and network adapters, while software interrupts are generated by the operating

system or application software. Exceptions are generated by the CPU itself in response to errors

or unusual conditions.

196 | P a g e

When an interrupt occurs, the CPU saves its current state, including the program counter and other

registers, onto the stack, and then jumps to a predefined interrupt service routine (ISR) that handles

the interrupt event. The ISR typically reads data from the device that generated the interrupt,

performs any necessary processing, and then returns control to the main program by restoring the

saved state from the stack.

Here is an example code in C that demonstrates the use of interrupts:

#include <avr/io.h>

#include <avr/interrupt.h>

volatile int count = 0;

ISR(TIMER1_COMPA_vect) {

 count++;

}

int main() {

 // Set up Timer 1 to generate an interrupt every

1ms

 TCCR1B |= (1 << WGM12); // CTC mode

 OCR1A = 15999; // 1ms @ 16MHz

 TIMSK1 |= (1 << OCIE1A); // Enable interrupt

 sei(); // Enable global interrupts

 while(1) {

 // Main program loop

 }

}

In this code, we are using the Timer 1 hardware device on an AVR microcontroller to generate an

interrupt every 1ms. We set the Timer 1 control registers to enable the CTC (Clear Timer on

Compare) mode and set the OCR1A register to a value that corresponds to a 1ms time interval.

We then enable the Timer 1 interrupt by setting the OCIE1A bit in the TIMSK1 register and enable

global interrupts with the sei() function.

197 | P a g e

We also define an interrupt service routine (ISR) for the TIMER1_COMPA_vect interrupt vector,

which simply increments a volatile integer variable called count. The volatile keyword is used to

indicate to the compiler that this variable may be modified by an interrupt service routine and

should not be optimized away.

In the main program loop, we do not do anything, as the interrupt service routine will be executed

every 1ms, incrementing the count variable. We could use this variable to perform some action

every N number of milliseconds, or we could use it to measure the time elapsed since the program

started running.

Interrupts are a fundamental concept in computer systems that allow for efficient handling of

events and processes. By using interrupts, we can avoid wasting CPU cycles by polling for events

and can respond quickly and efficiently to external stimuli.

Types of interrupts and their sources

Interrupts are a crucial mechanism in computer systems that allow the CPU to handle events and

processes efficiently. There are several types of interrupts that can be categorized based on their

sources and the way they are generated. In this note, we will discuss the different types of interrupts

and their sources.

Hardware Interrupts:

Hardware interrupts are generated by external devices, such as keyboards, mice, network adapters,

and other hardware peripherals, to request the CPU's attention. When a hardware device needs to

communicate with the CPU, it sends a signal to the Interrupt Controller, which in turn interrupts

the CPU and invokes the appropriate interrupt handler to handle the event. Hardware interrupts are

further divided into two categories:

a. Maskable Interrupts:

Maskable interrupts are the interrupts that can be delayed or masked by the CPU. The CPU may

ignore maskable interrupts when it is busy processing other interrupts or running a critical section

of code. Examples of maskable interrupts include keyboard interrupts and mouse interrupts.

b. Non-Maskable Interrupts:

Non-maskable interrupts are the interrupts that cannot be delayed or ignored by the CPU. They are

used for critical events that require the CPU's immediate attention, such as power failures or

hardware faults.

Software Interrupts:

Software interrupts are generated by software programs to request the CPU's attention. These

interrupts are often used by operating systems and application programs to communicate with the

CPU. Software interrupts are further divided into two categories:

a. System Calls:

198 | P a g e

A system call is a software interrupt that is generated by an application program to request a service

from the operating system. System calls are used to perform various tasks, such as opening a file,

reading from or writing to a file, and creating new processes.

b. Exceptions:

Exceptions are the interrupts that are generated by the CPU itself in response to unusual conditions

or errors. Examples of exceptions include page faults, division by zero errors, and invalid opcode

errors.

Here is an example code in C that demonstrates the use of hardware interrupts:

#include <avr/io.h>

#include <avr/interrupt.h>

volatile int count = 0;

ISR(INT0_vect) {

 count++;

}

int main() {

 // Set up external interrupt 0 to trigger on a

rising edge

 EICRA |= (1 << ISC01) | (1 << ISC00); // Trigger on

rising edge

 EIMSK |= (1 << INT0); // Enable external interrupt

0

 sei(); // Enable global interrupts

 while(1) {

 // Main program loop

 }

}

In this code, we are using an external interrupt on an AVR microcontroller to generate an interrupt

when a signal changes from low to high on a specific pin. We set the External Interrupt Control

199 | P a g e

Register (EICRA) to trigger on a rising edge and enable External Interrupt Mask (EIMSK) for

external interrupt 0. We also define an interrupt service routine (ISR) for the INT0_vect interrupt

vector, which simply increments a volatile integer variable called count.

In the main program loop, we do not do anything, as the interrupt service routine will be executed

when the signal on the pin changes from low to high, incrementing the count variable.

Interrupts play a crucial role in computer systems by allowing the CPU to handle events and

processes efficiently. There are several types of interrupts, including hardware interrupts and

software interrupts, which can be further divided into subcategories based on their sources and the

way they are generated. By understanding the different types of interrupts and their sources,

developers can design more efficient and reliable systems.

Interrupt handling mechanisms and priorities

Interrupt handling mechanisms and priorities are important aspects of the interrupt handling

process in a computer system. The handling mechanism determines how the CPU responds to an

interrupt request, while the priority system determines the order in which interrupts are serviced.

In this note, we will discuss the different mechanisms used for interrupt handling and how priorities

are assigned to them.

Interrupt Handling Mechanisms:

There are two primary mechanisms used for interrupt handling:

Polling:

In this mechanism, the CPU continually checks the status of the device that generates the interrupt.

When the device needs attention, it signals the CPU to handle the interrupt. The CPU then stops

its current task, saves the state, and handles the interrupt. After the interrupt is handled, the CPU

resumes its previous task.

Interrupt-driven:

In this mechanism, the device generates an interrupt request that signals the CPU to handle the

interrupt. The CPU then stops its current task, saves the state, and handles the interrupt. After the

interrupt is handled, the CPU resumes its previous task.

The interrupt-driven mechanism is generally more efficient than the polling mechanism, as it

allows the CPU to handle other tasks while waiting for interrupts. However, the interrupt-driven

mechanism also requires more complex hardware and software to handle the interrupts.

Interrupt Priorities:

Interrupt priorities determine the order in which interrupts are serviced. A higher priority interrupt

will be serviced before a lower priority interrupt. Interrupt priorities can be implemented in several

ways:

200 | P a g e

Fixed Priority:

In this scheme, each interrupt source is assigned a fixed priority. The CPU services interrupts in

order of their priority. For example, a critical hardware interrupt, such as a power failure, might

have the highest priority, while a low-priority software interrupt might have the lowest priority.

Round Robin:

In this scheme, the CPU cycles through the pending interrupts and services each one in turn. This

method is used when all the interrupts have the same priority.

Dynamic Priority:

In this scheme, the priority of each interrupt is assigned dynamically based on its urgency or

importance. The CPU continually re-evaluates the priorities of the interrupts and services them

accordingly.

Here is an example code in C that demonstrates the use of interrupt priorities:

#include <avr/io.h>

#include <avr/interrupt.h>

volatile int count1 = 0;

volatile int count2 = 0;

ISR(INT0_vect) {

 count1++;

}

ISR(INT1_vect) {

 count2++;

}

int main() {

 // Set up external interrupt 0 to trigger on a

rising edge

 EICRA |= (1 << ISC01) | (1 << ISC00); // Trigger on

rising edge

201 | P a g e

 EIMSK |= (1 << INT0); // Enable external interrupt

0

 sei(); // Enable global interrupts

 while(1) {

 // Main program loop

 }

}

In this code, we are using two external interrupts on an AVR microcontroller to generate interrupts

when a signal changes from low to high on two different pins. We set the External Interrupt Control

Register (EICRA) to trigger on a rising edge and enable External Interrupt Mask (EIMSK) for

external interrupt 0 and 1. We also define two interrupt service routines (ISR) for the INT0_vect

and INT1_vect interrupt vectors, which increment volatile integer variables called count1 and

count2, respectively.

In this example, we have not implemented any interrupt priority system, and the interrupts will be

serviced in the order in which they are received.

Interrupt handling mechanisms and priorities are critical components of the interrupt handling

process in a computer system. The handling mechanism determines how the CPU responds to an

interrupt request, while the priority system determines the order in which interrupts are serviced.

Configuring and handling interrupts in

FreeRTOS

Configuring interrupts in FreeRTOS projects

FreeRTOS is an open-source real-time operating system that provides kernel services for task

scheduling, inter-task communication, and synchronization. One of the key features of FreeRTOS

is its ability to handle interrupts. In this note, we will discuss how to configure interrupts in

FreeRTOS projects and provide suitable codes for illustration.

Configuring Interrupts in FreeRTOS Projects:

FreeRTOS provides a portable interface for configuring interrupts that is independent of the

underlying hardware. This interface allows the user to install and remove interrupt service routines

202 | P a g e

(ISRs) dynamically and also provides mechanisms for task synchronization and communication.

The following steps are involved in configuring interrupts in a FreeRTOS project:

Define the ISR:

The first step is to define the ISR that will handle the interrupt. This ISR should follow the standard

syntax for an ISR in the target system. In addition, it should call the xSemaphoreGiveFromISR()

function to signal a semaphore that is used for synchronization.

Create a Semaphore:

Next, create a binary semaphore that will be used to synchronize the ISR with a task. This

semaphore should be created using the xSemaphoreCreateBinary() function.

Install the ISR:

The ISR should be installed using the xInterruptHandlerInstall() function. This function takes two

parameters: the interrupt number and a pointer to the ISR function.

Enable Interrupts:

Finally, the interrupts should be enabled using the xInterruptEnable() function.

Here is an example code in C that demonstrates the use of interrupts in a FreeRTOS project:

#include <stdlib.h>

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "semphr.h"

// Define the ISR

void vExampleISR(void) {

 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 // Signal the semaphore

 xSemaphoreGiveFromISR(xSemaphore,

&xHigherPriorityTaskWoken);

 // Clear the interrupt flag

 clear_interrupt_flag();

203 | P a g e

 // Switch to a higher priority task if necessary

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

// Define the task

void vExampleTask(void *pvParameters) {

 while(1) {

 // Wait for the semaphore

 if(xSemaphoreTake(xSemaphore, portMAX_DELAY) ==

pdTRUE) {

 // Perform the task

 perform_task();

 }

 }

}

int main() {

 // Create the semaphore

 xSemaphore = xSemaphoreCreateBinary();

 // Install the ISR

 xInterruptHandlerInstall(INTERRUPT_NUMBER,

vExampleISR);

 // Enable interrupts

 xInterruptEnable();

 // Create the task

 xTaskCreate(vExampleTask, "ExampleTask",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

204 | P a g e

 // Start the scheduler

 vTaskStartScheduler();

 return 0;

}

In this example, we are defining an ISR called vExampleISR() that signals a binary semaphore

called xSemaphore using the xSemaphoreGiveFromISR() function. The task function

vExampleTask() waits for the semaphore using the xSemaphoreTake() function and performs the

task when the semaphore is available.

We create the semaphore using the xSemaphoreCreateBinary() function, install the ISR using the

xInterruptHandlerInstall() function, and enable interrupts using the xInterruptEnable() function.

Finally, we create the task using the xTaskCreate() function and start the scheduler using the

vTaskStartScheduler() function.

FreeRTOS provides a portable interface for configuring interrupts that allows the user to install

and remove ISRs dynamically and also provides mechanisms for task synchronization and

communication.

Writing interrupt service routines (ISRs) in FreeRTOS

Interrupt service routines (ISRs) are functions that are called in response to an interrupt signal. In

FreeRTOS, ISRs are used to handle hardware events such as button presses, timer overflows, or

data reception. In this note, we will discuss how to write ISRs in FreeRTOS and provide suitable

codes for illustration.

Writing Interrupt Service Routines (ISRs) in FreeRTOS:

FreeRTOS provides a portable interface for writing ISRs that is independent of the underlying

hardware. This interface allows the user to write ISRs that follow the standard syntax for an ISR

in the target system and also provides mechanisms for task synchronization and communication.

The following steps are involved in writing ISRs in FreeRTOS:

Define the ISR:

The first step is to define the ISR that will handle the interrupt. This ISR should follow the standard

syntax for an ISR in the target system. In addition, it should call the xSemaphoreGiveFromISR()

function to signal a semaphore that is used for synchronization.

Create a Semaphore:

Next, create a binary semaphore that will be used to synchronize the ISR with a task. This

semaphore should be created using the xSemaphoreCreateBinary() function.

205 | P a g e

Synchronize with a Task:

The ISR should synchronize with a task using the xSemaphoreGiveFromISR() function. This

function signals a semaphore that is used to wake up a task that is waiting for the ISR to complete.

Clear the Interrupt Flag:

Finally, the ISR should clear the interrupt flag to prevent it from being triggered again

immediately.

Here is an example code in C that demonstrates how to write an ISR in a FreeRTOS project:

#include <stdlib.h>

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "semphr.h"

// Define the ISR

void vExampleISR(void) {

 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 // Signal the semaphore

 xSemaphoreGiveFromISR(xSemaphore,

&xHigherPriorityTaskWoken);

 // Clear the interrupt flag

 clear_interrupt_flag();

 // Switch to a higher priority task if necessary

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

int main() {

 // Create the semaphore

 xSemaphore = xSemaphoreCreateBinary();

 // Install the ISR

206 | P a g e

 install_isr(INTERRUPT_NUMBER, vExampleISR);

 // Enable interrupts

 enable_interrupts();

 // Wait for the semaphore

 if(xSemaphoreTake(xSemaphore, portMAX_DELAY) ==

pdTRUE) {

 // Perform the task

 perform_task();

 }

 return 0;

}

In this example, we are defining an ISR called vExampleISR() that signals a binary semaphore

called xSemaphore using the xSemaphoreGiveFromISR() function. We create the semaphore

using the xSemaphoreCreateBinary() function, install the ISR using the install_isr() function, and

enable interrupts using the enable_interrupts() function.

Finally, we wait for the semaphore using the xSemaphoreTake() function and perform the task

when the semaphore is available.

FreeRTOS provides a portable interface for writing ISRs that allows the user to write ISRs that

follow the standard syntax for an ISR in the target system and also provides mechanisms for task

synchronization and communication. By understanding the steps involved in writing ISRs in

FreeRTOS and the suitable codes, developers can effectively use interrupts in their projects.

Interrupt-safe FreeRTOS API calls and usage

Interrupts are often used to handle time-critical events and can interrupt normal program execution.

In a multi-tasking environment like FreeRTOS, it is important to ensure that API calls made by

tasks are not interrupted by an ISR. Interrupt-safe FreeRTOS API calls and usage help to prevent

race conditions and maintain data integrity. In this note, we will discuss interrupt-safe FreeRTOS

API calls and usage, and provide suitable codes for illustration.

207 | P a g e

Interrupt-safe FreeRTOS API Calls:

FreeRTOS provides a set of interrupt-safe API calls that can be safely used within an ISR without

causing race conditions or data corruption. These functions are prefixed with the x or ul keyword

to indicate their interrupt-safe nature. For example, the xSemaphoreGiveFromISR() function is an

interrupt-safe version of the xSemaphoreGive() function.

Interrupt-safe API calls ensure that tasks are not blocked indefinitely or starved of processing time

by an ISR. These calls are used to signal tasks and pass data between tasks and ISRs.

The following is a list of some interrupt-safe API calls in FreeRTOS:

• xSemaphoreGiveFromISR()

• xSemaphoreTakeFromISR()

• xQueueSendFromISR()

• xQueueReceiveFromISR()

• xTaskResumeFromISR()

• xTaskNotifyFromISR()

Interrupt-safe FreeRTOS Usage:

To ensure that FreeRTOS API calls are interrupt-safe, it is important to follow certain guidelines

while programming. The following are some general guidelines for using FreeRTOS in an

interrupt-safe manner:

Avoid Blocking API Calls:

Blocking API calls should be avoided within an ISR since they can lead to deadlocks and race

conditions. Functions that block, such as xQueueReceive() or xSemaphoreTake(), should be

replaced with their interrupt-safe counterparts, such as xQueueReceiveFromISR() or

xSemaphoreTakeFromISR(), respectively.

Use Mutexes and Semaphores:

Mutexes and semaphores should be used to protect shared resources from concurrent access by

tasks and ISRs. When a resource is accessed within an ISR, the mutex or semaphore should be

obtained using the appropriate interrupt-safe API call.

Use Queues:

Queues are a powerful tool for passing data between tasks and ISRs. They provide a FIFO buffer

that can be accessed by both tasks and ISRs, and can be used to transfer data of any type or size.

Queues can be created using the xQueueCreate() function and accessed using the interrupt-safe

API calls xQueueSendFromISR() and xQueueReceiveFromISR().

208 | P a g e

Here is an example code in C that demonstrates how to use interrupt-safe FreeRTOS API calls:

#include <stdlib.h>

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "semphr.h"

// Define the ISR

void vExampleISR(void) {

 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 // Signal the semaphore

 xSemaphoreGiveFromISR(xSemaphore,

&xHigherPriorityTaskWoken);

 // Clear the interrupt flag

 clear_interrupt_flag();

 // Switch to a higher priority task if necessary

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

int main() {

 // Create the semaphore

 xSemaphore = xSemaphoreCreateBinary();

 // Install the ISR

 install_isr(INTERRUPT_NUMBER, vExampleISR);

 // Enable interrupts

 enable_interrupts();

 // Wait for the semaphore

209 | P a g e

 if(xSemaphoreTakeFromISR(xSemaphore, NULL) ==

pdTRUE) {

 // Perform the task

 perform_task();

 }

 return 0;

}

Interrupt priorities and preemption

Understanding interrupt priorities and their effects

Interrupt priorities play a critical role in real-time systems, where multiple interrupt requests can

occur simultaneously. In such cases, the priority of each interrupt can determine which interrupt

gets processed first. In FreeRTOS, interrupts are handled using the Nested Vector Interrupt

Controller (NVIC) provided by the ARM Cortex-M architecture. In this note, we will discuss

interrupt priorities and their effects in FreeRTOS, and provide suitable codes for illustration.

Understanding Interrupt Priorities:

Interrupt priorities in FreeRTOS are represented as numerical values ranging from 0 to 255. The

lower the number, the higher the priority. Interrupts with the same priority are processed in the

order in which they occurred. Interrupt priorities are set using the NVIC_SetPriority() function

provided by the Cortex-M architecture.

FreeRTOS uses a priority-based pre-emptive scheduling algorithm to manage tasks and interrupts.

When an interrupt request occurs, the NVIC checks the priority of the interrupt against the current

priority of the CPU. If the interrupt has a higher priority than the CPU, the CPU is interrupted and

the interrupt service routine (ISR) is executed. If the interrupt has a lower priority than the CPU,

the interrupt request is deferred until the CPU is available.

Effects of Interrupt Priorities in FreeRTOS:

Interrupt priorities can affect the overall behavior of a system. When multiple interrupts occur

simultaneously, the priority of each interrupt determines the order in which they are processed.

This can impact the execution time of tasks and the overall responsiveness of the system.

210 | P a g e

In FreeRTOS, tasks and interrupts are assigned priorities according to a predetermined scheme.

The highest priority task is always given CPU time first, followed by lower priority tasks. If an

interrupt with a higher priority than the currently running task occurs, the running task is pre-

empted and the interrupt is executed. Once the interrupt is complete, the scheduler checks to see

if a higher priority task is available. If so, the higher priority task is executed. If not, the interrupted

task resumes execution.

In FreeRTOS, it is important to carefully consider the priority assignments of tasks and interrupts.

Assigning too many interrupts with high priorities can result in long interrupt service times, which

can starve lower priority tasks of CPU time. It is important to balance the number of interrupts and

their priorities to ensure that the system remains responsive and efficient.

Here is an example code in C that demonstrates how to set interrupt priorities in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "semphr.h"

#include "stm32f4xx.h"

int main() {

 // Set the interrupt priority

 NVIC_SetPriority(USART1_IRQn, 3);

 // Enable the USART1 interrupt

 NVIC_EnableIRQ(USART1_IRQn);

 // Main program loop

 while(1) {

 // Perform main program tasks

 perform_main_tasks();

 }

}

// Interrupt service routine for USART1

211 | P a g e

void USART1_IRQHandler() {

 // Perform USART1 interrupt tasks

 perform_usart1_interrupt_tasks();

}

In this example, we are setting the priority of the USART1 interrupt to 3 using the

NVIC_SetPriority() function. The priority value of 3 is lower than the default priority of 0, which

means that the USART1 interrupt will be processed after interrupts with higher priorities. The

interrupt service routine for USART1 is defined as USART1_IRQHandler(), and performs the

necessary tasks for the interrupt.

Preemption and context switching during interrupts

Preemption and context switching are essential features in FreeRTOS that allow for efficient

multitasking and interrupt handling. Preemption is the process of stopping a running task to allow

another task or interrupt to execute. Context switching involves saving the state of a task or

interrupt, so it can be resumed at a later time. In this note, we will discuss preemption and context

switching during interrupts in FreeRTOS and provide suitable codes for illustration.

Preemption during Interrupts:

In FreeRTOS, interrupts can preempt running tasks, meaning that the execution of the current task

can be halted to allow an interrupt to be serviced. The ISR executes at the interrupt's priority level,

and can interact with the kernel and other tasks using the FreeRTOS API. Once the ISR completes,

control is returned to the interrupted task at the point it was preempted.

Preemption during interrupts can have a significant impact on the system's behavior. If the ISR

takes too long to complete, it can delay other interrupts and tasks, resulting in reduced system

responsiveness. As such, it is important to write efficient ISR code that can complete as quickly

as possible.

Context Switching during Interrupts:

When an interrupt occurs during the execution of a task, FreeRTOS must save the current task's

context so it can be resumed later. Context switching involves saving the task's state, such as the

contents of registers and the program counter, onto the stack, and then restoring the state of the

interrupted task once the ISR completes.

FreeRTOS provides a set of functions for managing context switching during interrupts, including

portSAVE_CONTEXT() and portRESTORE_CONTEXT(). These functions are used by the

kernel to save and restore the context of tasks during interrupt processing.

Here is an example code in C that demonstrates preemption and context switching during interrupts

in FreeRTOS:

212 | P a g e

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "semphr.h"

#include "stm32f4xx.h"

// Define two tasks

void task1(void* pvParameters) {

 while(1) {

 // Perform task 1 operations

 }

}

void task2(void* pvParameters) {

 while(1) {

 // Perform task 2 operations

 }

}

int main() {

 // Create the two tasks

 xTaskCreate(task1, "Task1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(task2, "Task2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 // Enable interrupts

 __enable_irq();

 // Main program loop

 while(1) {

213 | P a g e

 // Perform main program tasks

 perform_main_tasks();

 }

}

// Interrupt service routine for USART1

void USART1_IRQHandler() {

 // Save the current task context

 portSAVE_CONTEXT();

 // Perform USART1 interrupt tasks

 perform_usart1_interrupt_tasks();

 // Restore the task context

 portRESTORE_CONTEXT();

}

In this example, we have two tasks, task1 and task2, running concurrently in the system. The tasks

are created using the xTaskCreate() function provided by FreeRTOS. Task1 has a lower priority

than task2, so it will only execute when task2 is blocked or delayed.

The main program loop performs regular program tasks and enables interrupts using the

__enable_irq() function. When an interrupt occurs, the USART1_IRQHandler() function is called.

The portSAVE_CONTEXT() function is used to save the context of the interrupted task, and the

perform_usart1_interrupt_tasks() function is called to perform the interrupt processing.

Best practices for interrupt priority configuration

FreeRTOS provides a flexible and powerful interrupt handling mechanism that allows for efficient

multitasking and interrupt processing. However, incorrect or suboptimal interrupt priority

configuration can have significant implications on system performance, reliability, and stability.

In this note, we will discuss some best practices for interrupt priority configuration in FreeRTOS

and provide suitable codes for illustration.

Avoid Blocking Interrupts

The highest interrupt priority level should be reserved for the kernel interrupt, which handles

context switching and scheduling. Lower priority levels should be assigned to device-specific

214 | P a g e

interrupts. It is crucial to avoid blocking interrupts, which can cause deadlocks and system

instability.

Use Preemption and Context Switching Wisely

Preemption and context switching are essential features in FreeRTOS, but excessive use can have

significant performance implications. Carefully consider the requirements of your system and

avoid unnecessary preemption and context switching.

Avoid Nesting Interrupts

Nested interrupts can cause unpredictable system behavior and affect the stability and reliability

of the system. Avoid nesting interrupts whenever possible, and ensure that interrupt processing is

as efficient as possible to minimize the risk of nested interrupts.

Consider Using Mutexes and Semaphores

Mutexes and semaphores can be used to control access to shared resources and prevent data

corruption or race conditions. Use them wisely in your system to avoid conflicts and ensure proper

synchronization.

Assign Priority Levels According to the Criticality of the Task

Assign priority levels to tasks and interrupts based on their criticality to the system. Critical tasks

or interrupts should have higher priority levels, while less critical tasks or interrupts should have

lower priority levels.

Here is an example code in C that illustrates best practices for interrupt priority configuration in

FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "semphr.h"

#include "stm32f4xx.h"

#define KERNEL_IRQ_PRIORITY 0x0F

#define USART1_IRQ_PRIORITY 0x01

#define TIMER2_IRQ_PRIORITY 0x02

// Define two tasks

void task1(void* pvParameters) {

215 | P a g e

 while(1) {

 // Perform task 1 operations

 }

}

void task2(void* pvParameters) {

 while(1) {

 // Perform task 2 operations

 }

}

int main() {

 // Create the two tasks

 xTaskCreate(task1, "Task1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(task2, "Task2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 // Set the priority of the kernel interrupt

 NVIC_SetPriority(SysTick_IRQn,

KERNEL_IRQ_PRIORITY);

 // Set the priority of the USART1 interrupt

 NVIC_SetPriority(USART1_IRQn, USART1_IRQ_PRIORITY);

 // Set the priority of the TIMER2 interrupt

 NVIC_SetPriority(TIM2_IRQn, TIMER2_IRQ_PRIORITY);

 // Enable interrupts

 __enable_irq();

 // Main program loop

216 | P a g e

 while(1) {

 // Perform main program tasks

 perform_main_tasks();

 }

}

// Interrupt service routine for USART1

void USART1_IRQHandler() {

 // Perform USART1 interrupt tasks

 perform_usart1_interrupt_tasks();

}

// Interrupt service routine for TIMER2

void TIM2_IRQHandler() {

 // Perform TIMER2 interrupt tasks

 perform_timer2_interrupt_tasks();

}

In this example, we have two tasks, task1 and task2, running concurrently in the system. The tasks

are created using the xTaskCreate() function provided by FreeRTOS. Task1 has a lower priority

than task2, so it will only execute when task2 is blocked or delayed.

Using interrupt timers with FreeRTOS

Overview of interrupt timers and their usage

Interrupt timers are an essential feature in FreeRTOS that allow tasks to be executed at precise

intervals or delays. In this note, we will provide an overview of interrupt timers and their usage in

FreeRTOS, along with suitable codes for illustration.

Overview of Interrupt Timers:

An interrupt timer is a hardware timer that generates interrupts at precise intervals or delays. In

FreeRTOS, interrupt timers are typically used to execute tasks periodically or after a specified

217 | P a g e

delay. Interrupt timers can also be used to generate real-time clock signals or provide accurate

timing information for other system components.

Interrupt timers are typically implemented using a hardware timer, such as the SysTick timer,

which is a system timer that generates a periodic interrupt every millisecond. Other timers can be

used to generate interrupts at different intervals, depending on the requirements of the system.

Usage of Interrupt Timers in FreeRTOS:

FreeRTOS provides several mechanisms for creating and managing interrupt timers. The

xTimerCreate() function is used to create a new timer, which can be configured with a specified

period or delay. The timer is then started using the xTimerStart() function, which starts the timer

and begins generating interrupts at the specified interval or delay.

When the interrupt timer generates an interrupt, the timer service routine (TSR) is called, which

executes a callback function associated with the timer. The callback function can perform any

necessary tasks, such as updating system variables or performing other periodic tasks.

Here is an example code in C that illustrates the usage of interrupt timers in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "timers.h"

// Define the timer period

#define TIMER_PERIOD pdMS_TO_TICKS(1000)

// Declare the timer handle

TimerHandle_t timerHandle;

// Timer callback function

void timerCallback(TimerHandle_t xTimer) {

 // Perform timer callback tasks

 perform_timer_callback_tasks();

}

// Define the task

218 | P a g e

void task(void* pvParameters) {

 while(1) {

 // Perform task operations

 perform_task_operations();

 }

}

int main() {

 // Create the timer

 timerHandle = xTimerCreate("Timer", TIMER_PERIOD,

pdTRUE, (void*)0, timerCallback);

 // Create the task

 xTaskCreate(task, "Task", configMINIMAL_STACK_SIZE,

NULL, 1, NULL);

 // Start the timer

 xTimerStart(timerHandle, 0);

 // Start the scheduler

 vTaskStartScheduler();

 // Should never reach here

 return 0;

}

In this example, we create a timer using the xTimerCreate() function, with a period of 1000

milliseconds. We also create a task using the xTaskCreate() function. The timer is started using

the xTimerStart() function, and the task is started using the vTaskStartScheduler() function.

When the timer generates an interrupt, the timerCallback() function is called, which performs any

necessary tasks. The task() function runs concurrently with the interrupt timer and performs its

own operations.

219 | P a g e

Interrupt timers are an essential feature in FreeRTOS that allow tasks to be executed at precise

intervals or delays. They can be used to perform periodic tasks or generate accurate timing signals

for other system components. FreeRTOS provides several mechanisms for creating and managing

interrupt timers, which can be configured with specific periods or delays and executed

concurrently with other tasks.

Configuring and using interrupt timers in FreeRTOS

Interrupt timers are a key feature in FreeRTOS that allow tasks to be executed at precise intervals

or delays. In this note, we will discuss the steps to configure and use interrupt timers in FreeRTOS,

along with suitable codes for illustration.

Configuring Interrupt Timers in FreeRTOS

The first step to using interrupt timers in FreeRTOS is to configure a hardware timer to generate

interrupts at the desired interval or delay. The SysTick timer is a commonly used hardware timer

that generates a periodic interrupt every millisecond.

Once the hardware timer is configured, we can use the FreeRTOS software timers API to create

and manage interrupt timers. The xTimerCreate() function is used to create a new timer, which can

be configured with a specified period or delay. The timer is then started using the xTimerStart()

function, which starts the timer and begins generating interrupts at the specified interval or delay.

Using Interrupt Timers in FreeRTOS

When an interrupt timer generates an interrupt, the timer service routine (TSR) is called, which

executes a callback function associated with the timer. The callback function can perform any

necessary tasks, such as updating system variables or performing other periodic tasks.

Here is an example code in C that illustrates the configuration and usage of interrupt timers in

FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "timers.h"

// Define the timer period

#define TIMER_PERIOD pdMS_TO_TICKS(1000)

// Declare the timer handle

TimerHandle_t timerHandle;

// Timer callback function

220 | P a g e

void timerCallback(TimerHandle_t xTimer) {

 // Perform timer callback tasks

 perform_timer_callback_tasks();

}

// Define the task

void task(void* pvParameters) {

 while(1) {

 // Perform task operations

 perform_task_operations();

 }

}

int main() {

 // Configure the SysTick timer to generate

interrupts every millisecond

 SysTick_Config(SystemCoreClock / 1000);

 // Create the timer

 timerHandle = xTimerCreate("Timer", TIMER_PERIOD,

pdTRUE, (void*)0, timerCallback);s

 // Create the task

 xTaskCreate(task, "Task", configMINIMAL_STACK_SIZE,

NULL, 1, NULL);

 // Start the timer

 xTimerStart(timerHandle, 0);

 // Start the scheduler

 vTaskStartScheduler();

 // Should never reach here

221 | P a g e

 return 0;

}

In this example, we configure the SysTick timer to generate interrupts every millisecond. We then

create a timer using the xTimerCreate() function, with a period of 1000 milliseconds. We also

create a task using the xTaskCreate() function. The timer is started using the xTimerStart()

function, and the task is started using the vTaskStartScheduler() function.

When the timer generates an interrupt, the timerCallback() function is called, which performs any

necessary tasks. The task() function runs concurrently with the interrupt timer and performs its

own operations.

Interrupt timers are an important feature in FreeRTOS that allow tasks to be executed at precise

intervals or delays. They can be used to perform periodic tasks or generate accurate timing signals

for other system components. FreeRTOS provides several mechanisms for creating and managing

interrupt timers, which can be configured with specific periods or delays and executed

concurrently with other tasks. By configuring and using interrupt timers in FreeRTOS, we can

ensure that our system operates reliably and efficiently.

Synchronization and accuracy of interrupt timers

Synchronization and accuracy of interrupt timers are critical aspects of designing interrupt-driven

applications in FreeRTOS. Interrupt timers are often used to perform periodic tasks, such as

sampling sensor data, measuring time intervals, or updating display information. In this context,

synchronization refers to the ability of interrupt timers to trigger at the desired time intervals, while

accuracy refers to the precision with which these time intervals are measured. Here are some best

practices for achieving synchronization and accuracy in interrupt timers:

Use a Real-Time Clock: A real-time clock (RTC) can be used to provide an accurate reference

time for your system. By synchronizing your interrupt timers with the RTC, you can ensure that

they trigger at the desired time intervals. Many microcontrollers have built-in RTCs, and

FreeRTOS provides a software-based RTC as well.

Use Tickless Idle Mode: Tickless idle mode is a feature in FreeRTOS that allows the system to

enter a low-power mode when no tasks are running. In this mode, interrupt timers can be used to

wake up the system at specific time intervals. By using tickless idle mode, you can reduce power

consumption and achieve precise timing intervals.

Use Interrupt-Driven Timers: Interrupt-driven timers can be used to ensure accurate and

synchronized timing intervals. These timers use hardware interrupts to trigger at precise time

intervals, and can be programmed to trigger at different frequencies. For example, the FreeRTOS

timer service provides a convenient API for configuring and using interrupt-driven timers.

Use Semaphores and Mutexes: Semaphores and mutexes can be used to synchronize access to

shared resources in your interrupt timer handlers. By using these synchronization primitives, you

222 | P a g e

can prevent race conditions and other synchronization issues that can occur when multiple interrupt

timers access shared resources simultaneously.

Here is an example of using a software-based RTC and an interrupt-driven timer in FreeRTOS:

// Configure the RTC to generate an interrupt every

second

void RTC_Config(void)

{

 // Set the prescaler to generate 1 second

interrupts

 RTC_SetPrescaler(32767); // Assumes 32kHz clock

 // Enable the RTC interrupt

 RTC_ITConfig(RTC_IT_SEC, ENABLE);

 // Enable the RTC

 RTC_Cmd(ENABLE);

}

// Handle the RTC interrupt

void RTC_IRQHandler(void)

{

 // Clear the RTC interrupt flag

 RTC_ClearITPendingBit(RTC_IT_SEC);

 // Signal a semaphore to wake up a task

 xSemaphoreGiveFromISR(xSemaphore, NULL);

}

// Configure an interrupt-driven timer to trigger every

100 ms

void Timer_Config(void)

{

 // Configure the timer to trigger every 100 ms

 TIM_TimeBaseInitTypeDef TIM_InitStruct;

223 | P a g e

 TIM_InitStruct.TIM_Prescaler = 7199; // Assumes

72MHz clock

 TIM_InitStruct.TIM_Period = 999;

 TIM_TimeBaseInit(TIM2, &TIM_InitStruct);

 // Enable the timer interrupt

 NVIC_EnableIRQ(TIM2_IRQn);

 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);

 // Enable the timer

 TIM_Cmd(TIM2, ENABLE);

}

// Handle the timer interrupt

void TIM2_IRQHandler(void)

{

 // Clear the timer interrupt flag

 TIM_ClearITPendingBit(TIM2, TIM_IT_Update);

 // Acquire a mutex to protect shared resources

 xSemaphoreTake(xMutex, portMAX_DELAY);

 // Update shared variables or perform other tasks

 // Release the mutex

 xSemaphoreGive(xMutex);

}

In this example, the RTC is configured to generate an interrupt every second, and the interrupt

handler signals a semaphore to wake up a task.

224 | P a g e

Debugging interrupt-driven applications

with SEGGER tools

Debugging techniques for interrupt-driven applications

Debugging interrupt-driven applications in FreeRTOS can be challenging due to the asynchronous

and non-deterministic nature of interrupts. However, there are several techniques that can be used

to identify and fix issues in such applications.

Using Debuggers: Debuggers such as GDB and JTAG can be used to halt the program's execution

and inspect the state of the system. This can help identify the source of the issue, whether it's a

misconfigured interrupt priority, a race condition, or some other problem.

Logging and Tracing: Logging and tracing can be used to track the flow of the program and

identify which functions or tasks are being executed. This can help identify issues such as

deadlocks, infinite loops, and incorrect task scheduling.

Breakpoints and Watchpoints: Breakpoints and watchpoints can be used to halt the program's

execution when a specific condition is met. This can help identify the source of the issue and can

be especially useful when debugging interrupt handlers.

Using Assertions: Assertions can be used to check assumptions about the state of the system at

specific points in the code. This can help identify issues early in development and can be especially

useful when debugging interrupt handlers.

Here is an example of using logging and tracing to debug an interrupt-driven application in

FreeRTOS:

void vTask1(void *pvParameters)

{

 while(1)

 {

 vTaskDelay(100);

 printf("Task1 running...\n");

 }

}

void vTask2(void *pvParameters)

225 | P a g e

{

 while(1)

 {

 vTaskDelay(200);

 printf("Task2 running...\n");

 }

}

void vApplicationTickHook(void)

{

 printf("Tick interrupt occurred\n");

}

int main()

{

 xTaskCreate(vTask1, "Task 1", 1000, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL);

 vTaskStartScheduler();

 return 0;

}

In this example, the vApplicationTickHook function is an interrupt handler that is called by the

system tick timer every time it interrupts the program's execution. This function simply prints a

message to the console.

By observing the console output, we can see the sequence of events that occur in the program. We

can also use a debugger to halt the program's execution and inspect the state of the system at any

point in time. For example, we can set a breakpoint in one of the tasks and inspect the task's state

when it is halted.

By using these techniques, we can identify and fix issues in interrupt-driven applications in

FreeRTOS.

226 | P a g e

Using SEGGER tools for analyzing interrupt behavior

SEGGER is a company that provides a range of tools for debugging and profiling embedded

systems, including tools for analyzing interrupt behavior in FreeRTOS. In this note, we will discuss

how to use SEGGER tools to analyze interrupt behavior in FreeRTOS.

SEGGER SystemView: SEGGER SystemView is a tool that can be used to visualize and analyze

the behavior of a system in real-time. It provides a graphical representation of the system's tasks,

interrupts, and events. SystemView can also be used to track the execution time of tasks and

interrupts, as well as the timing of events and interactions between tasks and interrupts.

To use SystemView with FreeRTOS, you need to include the SystemView header file and initialize

the trace buffer in your application. Here's an example:

#include "SEGGER_SYSVIEW.h"

int main()

{

 SEGGER_SYSVIEW_Conf();

 SEGGER_SYSVIEW_Start();

 // Your application code here

 SEGGER_SYSVIEW_Stop();

 return 0;

}

Once you have initialized the trace buffer and started SystemView, you can connect to the target

device using the SystemView application and start capturing data. You can then analyze the

captured data to identify any issues with interrupt behavior in your FreeRTOS application.

SEGGER J-Link: SEGGER J-Link is a hardware debugging tool that can be used to debug and

trace applications running on an embedded system. J-Link supports a range of debugging

interfaces, including JTAG, SWD, and SWO.

To use J-Link with FreeRTOS, you need to connect the J-Link debugger to the target device and

start a debugging session using a compatible IDE or command-line interface. Once you have

started the debugging session, you can set breakpoints in your application code, step through the

code, and inspect the state of the system.

227 | P a g e

J-Link also provides support for tracing interrupts and tasks in FreeRTOS using the SEGGER

Real-Time Transfer (RTT) protocol. This allows you to capture and analyze data from the system

in real-time without affecting the system's performance.

Here's an example of how to use J-Link with FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "SEGGER_RTT.h"

void vTask1(void *pvParameters)

{

 while(1)

 {

 vTaskDelay(100);

 SEGGER_RTT_printf(0, "Task1 running...\n");

 }

}

void vTask2(void *pvParameters)

{

 while(1)

 {

 vTaskDelay(200);

 SEGGER_RTT_printf(0, "Task2 running...\n");

 }

}

int main()

{

 SEGGER_RTT_Init();

 SEGGER_RTT_ConfigUpBuffer(0, NULL, NULL, 0,

SEGGER_RTT_MODE_BLOCK_IF_FIFO_FULL);

228 | P a g e

 xTaskCreate(vTask1, "Task 1", 1000, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL);

 vTaskStartScheduler();

 return 0;

}

In this example, we have used the SEGGER_RTT_printf function to print messages to the RTT

buffer. We have also initialized the RTT buffer and configured it to block if the buffer is full.

Once you have started the J-Link debugger and connected to the target device, you can use the J-

Link RTT Viewer to view the contents of the RTT buffer in real-time. This allows you to monitor

the behavior of the system and identify any issues with interrupt behavior in your FreeRTOS

application.

Troubleshooting common interrupt-related issues

Interrupts are a powerful tool for improving system performance and responsiveness, but they can

also introduce various issues in the system. In FreeRTOS, some common interrupt-related issues

include priority inversion, interrupt storm, and stack overflow. In this article, we will discuss these

issues and some troubleshooting techniques to solve them.

Priority Inversion: Priority inversion occurs when a low-priority task holds a resource that a high-

priority task needs. If a mid-priority interrupt occurs while the low-priority task holds the resource,

it can prevent the high-priority task from running, resulting in a priority inversion. To avoid

priority inversion, we can use the priority inheritance protocol, which temporarily raises the

priority of the low-priority task to the priority of the high-priority task until the resource is released.

Interrupt Storm: Interrupt storm occurs when an interrupt generates more interrupts at a higher rate

than the system can handle, leading to a system overload. This can happen if an interrupt is not

properly cleared or if the interrupt source is generating interrupts at a faster rate than expected. To

troubleshoot interrupt storms, we can use tools such as an oscilloscope or a logic analyzer to

monitor the interrupt signals and identify any unexpected behavior.

Stack Overflow: Interrupts use a separate stack to handle their operations, and if the interrupt stack

is too small, it can cause a stack overflow. This can happen if the interrupt service routine uses too

much stack space or if the system is generating too many interrupts at once. To solve stack

overflow issues, we can increase the size of the interrupt stack or reduce the stack usage in the

interrupt service routine.

To illustrate these issues and their solutions, we can consider the following example code for a

simple interrupt-driven system:

#include <FreeRTOS.h>

229 | P a g e

#include <task.h>

#include <queue.h>

#define LED_PIN 13

#define INTERRUPT_PIN 2

#define QUEUE_LENGTH 10

#define STACK_SIZE 100

QueueHandle_t queue;

void IRAM_ATTR interrupt_handler() {

 int data = digitalRead(INTERRUPT_PIN);

 xQueueSendFromISR(queue, &data, NULL);

}

void task_high_priority(void *pvParameters) {

 while (1) {

 digitalWrite(LED_PIN, HIGH);

 delay(500);

 digitalWrite(LED_PIN, LOW);

 delay(500);

 }

}

void task_low_priority(void *pvParameters) {

 int data;

 while (1) {

 xQueueReceive(queue, &data, portMAX_DELAY);

 if (data == HIGH) {

 digitalWrite(LED_PIN, HIGH);

 delay(100);

230 | P a g e

 digitalWrite(LED_PIN, LOW);

 delay(100);

 }

 }

}

void setup() {

 pinMode(LED_PIN, OUTPUT);

 pinMode(INTERRUPT_PIN, INPUT_PULLUP);

 attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN),

interrupt_handler, CHANGE);

 queue = xQueueCreate(QUEUE_LENGTH, sizeof(int));

 xTaskCreate(task_high_priority, "HighPriorityTask",

STACK_SIZE, NULL, tskIDLE_PRIORITY + 2, NULL);

 xTaskCreate(task_low_priority, "LowPriorityTask",

STACK_SIZE, NULL, tskIDLE_PRIORITY + 1, NULL);

}

void loop() {

 vTaskDelete(NULL);

}

This code sets up an interrupt to be triggered by a change in the input state of a pin. The interrupt

handler reads the input state and sends it to a queue. Two tasks are created, one with high priority

and one with low priority. The high-priority task simply toggles an LED, while the low-priority

task waits for data from the queue and toggles the LED if the input state is high.

231 | P a g e

Chapter 6:

Memory Management with FreeRTOS

232 | P a g e

Memory management is a crucial aspect of embedded systems development, especially in real-

time operating systems (RTOS). In such systems, memory is a scarce resource that needs to be

carefully managed to ensure optimal performance and stability. FreeRTOS, one of the most

popular open-source RTOSs, provides a range of features and tools for efficient memory

management.

In this chapter, we will explore the memory management features of FreeRTOS in detail. We will

begin by discussing the different types of memory available in embedded systems and their

characteristics. Next, we will delve into the FreeRTOS memory allocation scheme, including its

heap implementation and the use of memory pools.

One of the unique features of FreeRTOS is its support for dynamic memory allocation. We will

explore the use of FreeRTOS memory allocation APIs and discuss best practices for their use. We

will also examine the impact of memory fragmentation on system performance and discuss

strategies for mitigating its effects.

FreeRTOS provides several tools for memory profiling and analysis. We will explore these tools

in detail and discuss how they can be used to identify memory leaks and other memory-related

issues. We will also discuss the use of these tools in optimizing memory usage and improving

system performance.

Another important aspect of memory management in FreeRTOS is stack management. We will

discuss the stack implementation in FreeRTOS, including its size and growth direction. We will

also explore the use of stack overflow detection and prevention techniques.

Introduction to memory management

Overview of memory management and its importance

FreeRTOS is a real-time operating system that is designed to be used in embedded systems. One

of the critical features of any operating system is memory management. Memory management is

essential to ensure that the system is stable and reliable.

In FreeRTOS, memory management is handled through a set of memory allocation functions.

These functions are used to allocate and deallocate memory for various parts of the system, such

as tasks, queues, and semaphores.

FreeRTOS provides three different memory allocation schemes: static allocation, heap allocation,

and memory pools. Each scheme has its own advantages and disadvantages, and the choice of

which scheme to use depends on the requirements of the application.

Static allocation is the simplest form of memory allocation in FreeRTOS. In static allocation, the

memory for a task, queue, or semaphore is allocated at compile-time. This means that the amount

233 | P a g e

of memory that is used by the system is fixed and cannot be changed at run-time. Static allocation

is best used when the memory requirements of the system are well-known and fixed.

Heap allocation is a more flexible form of memory allocation. In heap allocation, memory is

allocated from a dynamically allocated heap. This means that the amount of memory that is used

by the system can be changed at run-time. Heap allocation is best used when the memory

requirements of the system are not well-known or when they may change at run-time.

Memory pools are a way to manage memory in a more efficient manner. A memory pool is a block

of memory that is divided into smaller, fixed-size blocks. These blocks are then allocated and

deallocated as needed. Memory pools are best used when the memory requirements of the system

are well-known and when the system requires a large number of small, fixed-size blocks of

memory.

FreeRTOS provides a set of memory allocation functions that can be used to allocate and

deallocate memory using any of these three schemes. The following code example demonstrates

the use of the xQueueCreate function to create a new queue using heap allocation:

xQueueHandle myQueue = NULL;

// Allocate memory for the queue

myQueue = xQueueCreate(10, sizeof(int));

// Check if the queue was created successfully

if (myQueue == NULL) {

 // Handle error

} else {

 // Use the queue

}

In this example, the xQueueCreate function is used to create a new queue with a maximum length

of 10 elements, with each element being of type int. The function returns a handle to the new

queue, which can be used to interact with the queue. If the queue was created successfully, the

handle will be non-null and can be used to interact with the queue. If the queue was not created

successfully, the handle will be null, and an error must be handled.

Memory management is a critical component of any operating system, and FreeRTOS provides

several different memory allocation schemes to manage memory efficiently. By choosing the

appropriate allocation scheme and using the provided memory allocation functions, it is possible

to create stable and reliable systems using FreeRTOS.

234 | P a g e

Types of memory in embedded systems

In FreeRTOS, memory management is a critical aspect of the operating system as it directly

impacts system performance and stability. In embedded systems, memory is typically categorized

into two types: volatile and non-volatile memory.

Volatile memory is the type of memory that loses its data when power is lost or turned off.

Examples of volatile memory include RAM, cache memory, and registers. Non-volatile memory,

on the other hand, retains its data even when power is turned off. Examples of non-volatile memory

include flash memory, EEPROM, and ROM.

FreeRTOS provides a set of memory management functions to allocate, deallocate, and manage

memory in embedded systems. These functions include:

pvPortMalloc(): This function is used to allocate memory dynamically at runtime. It returns a

pointer to the allocated memory block.

vPortFree(): This function is used to free the memory allocated by the pvPortMalloc() function.

pvPortRealloc(): This function is used to reallocate the previously allocated memory block. It takes

the pointer to the existing memory block, the new size of the block, and returns the pointer to the

reallocated block.

pvPortMallocAligned(): This function is used to allocate memory blocks aligned on a specific byte

boundary.

vTaskSuspendAll() and xTaskResumeAll(): These functions are used to temporarily suspend the

scheduling of tasks and to resume the scheduling of tasks, respectively.

Here is an example of using the pvPortMalloc() function in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

int main(void) {

 void* ptr;

 /* Allocate 10 bytes of memory */

 ptr = pvPortMalloc(10);

 /* Check if the memory was allocated successfully

*/

235 | P a g e

 if (ptr == NULL) {

 /* Error handling code */

 }

 /* Use the memory */

 /* ... */

 /* Free the memory */

 vPortFree(ptr);

 return 0;

}

Understanding the types of memory in embedded systems and using the appropriate memory

management functions provided by FreeRTOS is critical for optimal system performance and

stability.

Memory allocation and management in FreeRTOS

Memory allocation and management is a critical aspect of embedded systems development, and it

is especially important in real-time operating systems like FreeRTOS. In FreeRTOS, memory

management is handled by a set of functions that provide dynamic memory allocation and

deallocation at runtime. These functions are defined in the FreeRTOS heap management module.

One important concept to keep in mind when working with memory management in FreeRTOS is

the heap. The heap is a block of memory used to store dynamically allocated data. The FreeRTOS

heap management module provides functions for allocating memory from the heap, as well as for

freeing and reallocating memory.

Here are some of the memory management functions provided by FreeRTOS:

pvPortMalloc(size_t xWantedSize): This function is used to allocate memory from the heap. It

takes the size of the memory block to be allocated as a parameter and returns a pointer to the start

of the block.

vPortFree(void *pv): This function is used to free memory that was previously allocated with

pvPortMalloc(). It takes a pointer to the memory block to be freed as a parameter.

pvPortRealloc(void *pv, size_t xWantedSize): This function is used to resize a previously

allocated block of memory. It takes a pointer to the memory block to be resized and the new size

of the block as parameters. If the new size is smaller than the old size, the extra memory will be

236 | P a g e

freed. If the new size is larger than the old size, the function will attempt to extend the block if

possible.

Here is an example of using these memory management functions in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

int main(void) {

 void* ptr;

 /* Allocate 10 bytes of memory */

 ptr = pvPortMalloc(10);

 /* Check if the memory was allocated successfully

*/

 if (ptr == NULL) {

 /* Error handling code */

 }

 /* Use the memory */

 /* ... */

 /* Free the memory */

 vPortFree(ptr);

 return 0;

}

In addition to the basic memory management functions, FreeRTOS also provides some advanced

memory management features. For example, you can allocate memory aligned to a specific byte

boundary using the pvPortMallocAligned() function.

It is important to note that memory management in FreeRTOS is a complex topic, and improper

use of these functions can lead to memory leaks, fragmentation, and other issues. It is important to

237 | P a g e

carefully manage memory in your FreeRTOS applications and to use the appropriate functions for

your needs.

Memory allocation and management is a critical aspect of embedded systems development, and it

is especially important in real-time operating systems like FreeRTOS. FreeRTOS provides a set of

memory management functions that allow you to dynamically allocate and deallocate memory at

runtime. These functions must be used carefully to avoid issues like memory leaks and

fragmentation.

Heap and stack memory allocation in

FreeRTOS

Overview of heap and stack memory allocation

In embedded systems, memory management is a critical aspect of ensuring reliable and efficient

operation of the device. FreeRTOS provides a comprehensive memory management system that

allows for dynamic allocation and management of memory resources. This includes support for

both heap and stack memory allocation.

Heap memory is a contiguous block of memory used for dynamic memory allocation. It is often

used for tasks that require a flexible amount of memory, such as data structures, buffers, or

dynamic arrays. In FreeRTOS, heap memory is managed using the memory allocation functions

provided by the heap_4.c file.

Stack memory, on the other hand, is a limited resource used for storing local variables, function

parameters, and return addresses. In FreeRTOS, stack memory is allocated automatically when a

task is created, and the size of the stack can be configured using the

configMINIMAL_STACK_SIZE parameter in FreeRTOSConfig.h file.

To allocate heap memory in FreeRTOS, we can use the pvPortMalloc() function, which is provided

by the heap_4.c file. This function takes a size parameter and returns a pointer to the allocated

memory block. If the allocation fails, it returns NULL. Here's an example:

#include "FreeRTOS.h"

#include "task.h"

void vTaskFunction(void *pvParameters)

{

 // Allocate 10 bytes of heap memory

238 | P a g e

 void *ptr = pvPortMalloc(10);

 if(ptr != NULL)

 {

 // Memory allocation successful

 // Use the memory block here

 }

 // Free the memory when no longer needed

 vPortFree(ptr);

}

int main(void)

{

 // Create a task

 xTaskCreate(vTaskFunction, "Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

 // Start the scheduler

 vTaskStartScheduler();

 // The program should never reach here

 return 0;

}

To allocate stack memory in FreeRTOS, we can use the xTaskCreate() function to create a new

task. This function takes several parameters, including the task function, task name, stack size, and

priority. The stack size is specified using the configMINIMAL_STACK_SIZE parameter in

FreeRTOSConfig.h file. Here's an example:

#include "FreeRTOS.h"

#include "task.h"

239 | P a g e

void vTaskFunction(void *pvParameters)

{

 // Use the stack memory here

}

int main(void)

{

 // Create a task with a 100-byte stack

 xTaskCreate(vTaskFunction, "Task", 100, NULL,

tskIDLE_PRIORITY, NULL);

 // Start the scheduler

 vTaskStartScheduler();

 // The program should never reach here

 return 0;

}

Memory management is a critical aspect of developing reliable and efficient embedded systems.

FreeRTOS provides a comprehensive memory management system that allows for dynamic

allocation and management of both heap and stack memory. By using the provided memory

allocation functions and configuring the stack size appropriately, developers can ensure that their

tasks have the necessary memory resources to execute correctly.

Memory allocation strategies and algorithms

Memory allocation is an important aspect of any operating system, including FreeRTOS. In

FreeRTOS, the memory allocation is performed using heap memory, which is allocated

dynamically at runtime. Memory allocation strategies and algorithms play a vital role in managing

the heap memory efficiently.

In FreeRTOS, there are different memory allocation strategies and algorithms available that can

be used to manage heap memory. Some of the commonly used strategies and algorithms are:

First-fit Algorithm: This algorithm allocates the first available memory block that is large enough

to accommodate the requested size.

240 | P a g e

Best-fit Algorithm: This algorithm allocates the memory block that is closest to the requested size.

It searches for the smallest block that is larger than the requested size.

Worst-fit Algorithm: This algorithm allocates the largest available memory block to the requested

size.

FreeRTOS provides memory allocation APIs that can be used to allocate and deallocate memory

blocks. The following are some of the commonly used memory allocation APIs in FreeRTOS:

pvPortMalloc(): This API is used to allocate a block of memory from the heap. The size of the

block is specified as an input parameter.

vPortFree(): This API is used to free the memory block that was previously allocated using

pvPortMalloc().

pvPortReAlloc(): This API is used to reallocate the memory block. It takes two input parameters,

the pointer to the previously allocated block and the new size of the block.

In FreeRTOS, the heap memory is managed by a dedicated heap memory manager. The heap

memory manager keeps track of the allocated and free memory blocks. It also ensures that the

memory blocks are not corrupted and the heap memory is not exhausted.

The stack memory is another important aspect of memory management in FreeRTOS. The stack

memory is used to store the local variables and function call frames of tasks. Each task has its own

stack memory, and the stack size can be configured during task creation.

Memory management is an important aspect of FreeRTOS. FreeRTOS provides memory

allocation APIs and heap memory manager to manage the heap memory efficiently. The stack

memory is also an important aspect of memory management in FreeRTOS. By using the

appropriate memory allocation strategies and algorithms, the heap memory can be managed

effectively to prevent memory exhaustion and corruption.

Here is an example code that demonstrates the use of memory allocation APIs in FreeRTOS:

/* Allocate a block of 10 bytes from the heap */

void* ptr = pvPortMalloc(10);

/* Free the allocated memory block */

vPortFree(ptr);

/* Reallocate the memory block to 20 bytes */

void* new_ptr = pvPortReAlloc(ptr, 20);

241 | P a g e

Configuring heap and stack in FreeRTOS

Configuring heap and stack in FreeRTOS is an important aspect of memory management in

embedded systems. In FreeRTOS, heap memory is used for dynamic memory allocation and is

typically used for tasks, queues, and other data structures that require memory allocation during

runtime. Stack memory, on the other hand, is used for storing temporary data, function call

information, and task context information.

To configure heap and stack in FreeRTOS, the following steps can be taken:

Heap Configuration:

To configure heap in FreeRTOS, the heap_4.c or heap_5.c file provided by FreeRTOS can be used.

These files provide implementation of memory allocation and deallocation functions such as

pvPortMalloc() and vPortFree(). The heap_4.c file is designed for use in systems that have memory

protection unit (MPU), while the heap_5.c file is designed for systems that don't have MPU.

To use heap_4.c or heap_5.c file, it should be included in the project and

configTOTAL_HEAP_SIZE constant should be defined in the FreeRTOS configuration file. The

configTOTAL_HEAP_SIZE constant defines the size of the heap that will be used by FreeRTOS.

Example code for configuring heap in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "heap_4.c"

#define configTOTAL_HEAP_SIZE ((size_t) (15 * 1024

))

void main(void)

{

 // Initialize FreeRTOS heap

 vPortDefineHeapRegions(xHeapRegions);

 // Create tasks and start scheduler

 xTaskCreate(task1, "Task 1", 100, NULL, 1, NULL);

 xTaskCreate(task2, "Task 2", 100, NULL, 1, NULL);

242 | P a g e

 vTaskStartScheduler();

}

Stack Configuration:

To configure stack in FreeRTOS, configMINIMAL_STACK_SIZE and

configCHECK_FOR_STACK_OVERFLOW constants can be defined in the FreeRTOS

configuration file. The configMINIMAL_STACK_SIZE constant defines the minimum stack size

that will be used for tasks. The configCHECK_FOR_STACK_OVERFLOW constant enables

stack overflow detection, which is useful for detecting stack-related issues during runtime.

Example code for configuring stack in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#define configMINIMAL_STACK_SIZE ((unsigned short)

128)

#define configCHECK_FOR_STACK_OVERFLOW 0

void main(void)

{

 // Create tasks and start scheduler

 xTaskCreate(task1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(task2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 vTaskStartScheduler();

}

By properly configuring heap and stack in FreeRTOS, it is possible to optimize memory usage in

embedded systems and prevent memory-related issues during runtime.

243 | P a g e

Memory allocation schemes and strategies

Static memory allocation and its benefits

Static memory allocation is a method of allocating memory during compile-time. It is an

alternative to dynamic memory allocation, where memory is allocated during run-time. FreeRTOS

offers both static and dynamic memory allocation strategies for its tasks and kernel objects.

Static memory allocation has several benefits, including better memory management and avoiding

the overhead of dynamic memory allocation. It also provides deterministic memory allocation,

which means that the amount of memory required by a task is known at compile-time, allowing

for better resource planning and allocation.

In FreeRTOS, static memory allocation is done using pre-allocated memory buffers. The size of

the buffer is determined by the size of the kernel object being allocated. The user can allocate

memory statically by creating an array of bytes and then using the various FreeRTOS APIs to

create tasks and other kernel objects.

Here is an example of statically allocating memory for a task in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#define TASK_STACK_SIZE configMINIMAL_STACK_SIZE

static void vTaskFunction(void *pvParameters)

{

 // Task code here

}

int main(void)

{

 static StackType_t xStack[TASK_STACK_SIZE];

 static StaticTask_t xTaskBuffer;

 TaskHandle_t xTaskHandle = NULL;

244 | P a g e

 xTaskHandle = xTaskCreateStatic(

 vTaskFunction, // Task

function

 "Task", // Task name

 TASK_STACK_SIZE, // Stack size

 NULL, // Task

parameters

 tskIDLE_PRIORITY, // Task

priority

 xStack, // Stack buffer

 &xTaskBuffer); // Task buffer

 if(xTaskHandle == NULL)

 {

 // Error handling code

 }

 vTaskStartScheduler();

 // Control never reaches here

 return 0;

}

In the above example, we create a task named "Task" with a static stack of size

TASK_STACK_SIZE. The xTaskCreateStatic function returns a task handle, which can be used

to refer to the task in other FreeRTOS APIs. We also allocate a StaticTask_t buffer named

xTaskBuffer to hold the task control block.

Static memory allocation can also be used for other kernel objects such as semaphores, queues,

and mutexes. The process is similar to the one shown above for tasks, with the size of the object

determining the size of the buffer required for static allocation.

Static memory allocation offers several benefits in FreeRTOS, including better memory

management and deterministic memory allocation. It is done by pre-allocating memory buffers

and using the various FreeRTOS APIs to create kernel objects.

245 | P a g e

Dynamic memory allocation and its challenges

Dynamic memory allocation is a crucial aspect of any operating system, including FreeRTOS. It

allows tasks to dynamically allocate and deallocate memory at runtime, which is essential for

creating flexible and scalable applications. However, dynamic memory allocation also comes with

its own set of challenges, which must be addressed to ensure the stability and reliability of the

system.

One of the primary challenges of dynamic memory allocation is fragmentation. When memory is

allocated and deallocated multiple times, it can become fragmented, resulting in smaller, unusable

memory blocks. This can lead to memory leaks and eventually cause the system to crash. To

mitigate this issue, FreeRTOS provides several memory allocation strategies and algorithms.

One such algorithm is the heap_5 algorithm, which is designed to minimize fragmentation. It

works by dividing memory into blocks of different sizes, with each block being a power of two.

When memory is allocated, the algorithm searches for the smallest available block that can

accommodate the requested size. This helps reduce fragmentation by using memory efficiently.

To use the heap_5 algorithm in FreeRTOS, the following code can be used:

#include "FreeRTOS.h"

#include "task.h"

#include "heap_5.h"

#define HEAP_SIZE 1024

// Define the heap memory buffer

uint8_t ucHeap[HEAP_SIZE];

int main(void)

{

 // Initialize the heap with the heap_5 algorithm

 vPortDefineHeapRegions((const HeapRegion_t[]) { {

ucHeap, HEAP_SIZE } });

 // Create tasks and start the scheduler

 xTaskCreate(task1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

246 | P a g e

 xTaskCreate(task2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 vTaskStartScheduler();

 // Should never reach here

 return 0;

}

In this code, the vPortDefineHeapRegions() function is used to initialize the heap with the heap_5

algorithm. The function takes an array of HeapRegion_t structures, each of which specifies a

memory region and its size. The ucHeap buffer is used to store the memory allocated by the heap_5

algorithm.

Another approach to dynamic memory allocation in FreeRTOS is static memory allocation. In this

approach, memory is allocated statically at compile time, which can help reduce fragmentation

and improve system stability. To use static memory allocation in FreeRTOS, tasks can be defined

with statically allocated stacks using the configSUPPORT_STATIC_ALLOCATION and

configSUPPORT_DYNAMIC_ALLOCATION configuration options.

#include "FreeRTOS.h"

#include "task.h"

#define STACK_SIZE 128

// Define task structures with statically allocated

stacks

StaticTask_t task1Buffer;

StackType_t task1Stack[STACK_SIZE];

StaticTask_t task2Buffer;

StackType_t task2Stack[STACK_SIZE];

void task1(void *pvParameters)

{

 // Task code

}

247 | P a g e

void task2(void *pvParameters)

{

 // Task code

}

int main(void)

{

 // Create tasks using statically allocated stacks

 xTaskCreateStatic(task1, "Task 1", STACK_SIZE,

NULL, 1, task1Stack, &task1Buffer);

 xTaskCreateStatic(task2, "Task 2", STACK_SIZE,

NULL, 2, task2Stack, &task2Buffer);

 // Start the scheduler

 vTaskStartScheduler();

 // Should never reach here

 return 0;

}

In this code, the StaticTask_t structures and StackType_t arrays are used to define tasks with

statically allocated stacks. The xTaskCreateStatic() function is used to create tasks using the

statically allocated stacks.

Memory allocation schemes in FreeRTOS

FreeRTOS offers several memory allocation schemes that can be used to manage memory

effectively. These schemes include:

Heap_1: This scheme provides a statically allocated buffer for heap memory. The size of the buffer

is defined by the application developer. It provides a simple and efficient way to manage memory.

Heap_2: This scheme uses a memory pool for heap memory allocation. The size of the pool is

defined by the application developer. It provides better memory utilization than Heap_1 but

requires more code.

248 | P a g e

Heap_3: This scheme uses a single linked list to track free blocks of memory. The scheme uses

less code than Heap_2 but is less efficient in memory utilization.

Heap_4: This scheme uses a binary tree to track free blocks of memory. The scheme is more

efficient in memory utilization than Heap_3 but requires more code.

Heap_5: This scheme provides a thread-safe memory allocation scheme. It uses Heap_4 as its

underlying memory allocator.

The following code snippet shows an example of using Heap_4 for memory allocation:

/* Define the size of the heap. */

#define configTOTAL_HEAP_SIZE ((size_t) (16 *

1024))

/* Define the memory allocation scheme to use. */

#define configUSE_HEAP_4 1

/* Include the FreeRTOS header files. */

#include "FreeRTOS.h"

#include "task.h"

/* Declare a pointer to the heap buffer. */

static uint8_t ucHeap[configTOTAL_HEAP_SIZE];

/* Define the prototype for the application entry

point. */

void vApplicationMallocFailedHook(void);

/* Configure the heap using Heap_4. */

void vPortDefineHeapRegions(const HeapRegion_t * const

pxHeapRegions);

int main(void)

{

249 | P a g e

 /* Initialize the heap. */

 const HeapRegion_t xHeapRegions[] =

 {

 { ucHeap, sizeof(ucHeap) }

 };

 vPortDefineHeapRegions(xHeapRegions);

 /* Start the scheduler. */

 vTaskStartScheduler();

 /* The scheduler should never return. */

 for(;;);

}

/* Define the heap regions. */

void vPortDefineHeapRegions(const HeapRegion_t * const

pxHeapRegions)

{

 /* Set the heap regions. */

 vPortDefineHeapRegion(pxHeapRegions[0

].pucStartAddress,

 pxHeapRegions[0

].xSizeInBytes);

}

/* Hook function called when memory allocation fails.

*/

void vApplicationMallocFailedHook(void)

{

 /* Handle the memory allocation failure. */

 while(1);

}

250 | P a g e

In this example, the size of the heap is defined as configTOTAL_HEAP_SIZE. The memory

allocation scheme used is Heap_4, which is defined by setting configUSE_HEAP_4 to 1. The heap

buffer is defined as ucHeap.

The function vPortDefineHeapRegions() is called to define the heap regions. This function is

provided by FreeRTOS and is used to initialize the heap using the memory allocation scheme

defined. The vApplicationMallocFailedHook() function is called when memory allocation fails.

FreeRTOS offers several memory allocation schemes that can be used to manage memory

effectively. The application developer should choose the appropriate memory allocation scheme

based on the application's requirements.

Configuring the FreeRTOS heap and stack

Configuring the heap and stack for your project needs

In FreeRTOS, the heap and stack memory allocation can be configured to suit the project needs.

Heap memory is dynamic memory, and it is used for dynamically allocated data structures such as

queues, semaphores, and task control blocks. Stack memory, on the other hand, is used to store the

local variables of a task.

To configure the heap and stack memory in FreeRTOS, the FreeRTOSConfig.h file needs to be

modified. This file contains the configuration options for FreeRTOS, including heap and stack

size.

To configure the heap memory, the configTOTAL_HEAP_SIZE macro in FreeRTOSConfig.h file

can be used. The default value of this macro is 0, which means that the heap memory is not enabled

by default. To enable the heap memory, the macro value can be set to a non-zero value. For

example, the following code sets the heap size to 4KB:

#define configTOTAL_HEAP_SIZE ((size_t)(4096))

To configure the stack memory, the configMINIMAL_STACK_SIZE macro can be used. This

macro specifies the minimum stack size for each task. By default, this value is set to 128, which is

suitable for most applications. However, if the tasks in the application require more stack space,

this value can be increased. For example, the following code sets the minimum stack size to 256:

#define configMINIMAL_STACK_SIZE ((unsigned

short)256)

251 | P a g e

In addition to these macros, there are other configuration options available for memory allocation

in FreeRTOS. These options include:

• configSUPPORT_DYNAMIC_ALLOCATION: If this macro is set to 1, then dynamic

memory allocation is enabled in FreeRTOS. If it is set to 0, then only static memory

allocation is allowed.

• configSUPPORT_STATIC_ALLOCATION: If this macro is set to 1, then static memory

allocation is enabled in FreeRTOS. If it is set to 0, then only dynamic memory allocation

is allowed.

• configAPPLICATION_ALLOCATED_HEAP: If this macro is set to 1, then the

application can allocate its heap memory. If it is set to 0, then FreeRTOS will allocate heap

memory internally.

It is important to note that memory allocation in FreeRTOS can be a complex task, and it requires

careful consideration of the available memory resources and the memory requirements of the tasks

and data structures in the application. Therefore, it is recommended to use memory allocation

schemes such as static memory allocation or memory pools to optimize memory usage in

FreeRTOS applications.

Best practices for heap and stack configuration

Configuring the heap and stack memory correctly is crucial for any FreeRTOS project, as it directly

affects the performance, stability, and reliability of the system. Here are some best practices for

heap and stack configuration in FreeRTOS:

Determine the memory requirements of your application: Before configuring the heap and stack

memory, you must determine the memory requirements of your application. This includes the stack

size for each task, the amount of memory required by global variables, and the size of the heap.

Choose the appropriate memory allocation scheme: FreeRTOS provides different memory

allocation schemes such as static allocation, dynamic allocation, and hybrid allocation. You should

choose the appropriate scheme based on the memory requirements of your application and the

available memory resources.

Allocate sufficient memory for the stack: The stack memory is used by tasks to store their local

variables and function call information. It is essential to allocate sufficient memory for the stack

to avoid stack overflow errors.

Configure the heap size according to your needs: The heap memory is used for dynamic memory

allocation. You should configure the heap size based on the maximum number of memory blocks

required by your application.

252 | P a g e

Avoid dynamic memory allocation in critical sections: Dynamic memory allocation involves

memory allocation and deallocation, which can take a long time to complete. Avoid allocating

memory dynamically in critical sections to prevent system instability and unpredictable behavior.

Here is an example of how to configure the heap and stack memory in a FreeRTOS project:

/* Define the total heap size in bytes */

#define configTOTAL_HEAP_SIZE ((size_t) (32 *

1024))

/* Define the stack size for each task in bytes */

#define configMINIMAL_STACK_SIZE ((unsigned short)

128)

/* Allocate a fixed amount of memory for the heap */

static uint8_t ucHeap[configTOTAL_HEAP_SIZE];

int main(void)

{

 /* Configure the heap memory */

 vPortDefineHeapRegions(&ucHeap[0],

configTOTAL_HEAP_SIZE);

 /* Create tasks with appropriate stack size */

 xTaskCreate(task1, "Task1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(task2, "Task2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 /* Start the scheduler */

 vTaskStartScheduler();

 /* Should never get here */

 return 0;

253 | P a g e

}

In this example, we define the total heap size as 32KB and the stack size for each task as 128 bytes.

We allocate a fixed amount of memory for the heap using the vPortDefineHeapRegions() function.

Then, we create tasks with the appropriate stack size and start the scheduler.

By following these best practices, you can configure the heap and stack memory correctly for your

FreeRTOS project and ensure its stability and reliability.

Memory usage optimization and debugging

Techniques for optimizing memory usage in FreeRTOS

Memory usage is a critical factor in embedded systems, where resources are limited. FreeRTOS

provides various memory management techniques and APIs to optimize memory usage. This

subtopic will discuss the techniques for optimizing memory usage in FreeRTOS.

Use Static Memory Allocation: Static memory allocation is the process of allocating memory at

compile-time. It is a good option for systems that have a limited amount of memory. In FreeRTOS,

you can use static memory allocation to allocate memory for tasks, queues, semaphores, mutexes,

and other kernel objects. You can configure the amount of memory to be allocated statically in the

FreeRTOS configuration file. For example, the following code snippet shows how to statically

allocate memory for a task in FreeRTOS:

#define TASK_STACK_SIZE 128

static StackType_t xStack[TASK_STACK_SIZE];

static StaticTask_t xTaskBuffer;

xTaskCreateStatic(vTaskFunction, "Task",

TASK_STACK_SIZE, NULL, tskIDLE_PRIORITY, xStack,

&xTaskBuffer);

Use Dynamic Memory Allocation Carefully: Dynamic memory allocation is the process of

allocating memory at runtime. It is a flexible option but can lead to memory fragmentation and

potential memory leaks if not used correctly. In FreeRTOS, you can use dynamic memory

allocation to allocate memory for tasks, queues, semaphores, mutexes, and other kernel objects.

You can use the FreeRTOS memory allocation APIs to allocate and free memory dynamically. For

example, the following code snippet shows how to dynamically allocate memory for a task in

FreeRTOS:

254 | P a g e

TaskHandle_t xHandle = NULL;

xTaskCreate(vTaskFunction, "Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

&xHandle);

However, it is essential to use dynamic memory allocation carefully and avoid frequent memory

allocation and deallocation. You can also use memory pool or heap memory management

techniques to reduce the risk of memory fragmentation.

Optimize the Stack Size: Stack size is the amount of memory allocated to a task for storing local

variables and function calls. Allocating too much stack space can waste memory, while allocating

too little can result in stack overflow errors. FreeRTOS provides an API to get the minimum stack

size required for a task based on the task's function and parameters. You can use this API to

optimize the stack size for each task.

UBaseType_t uxRequiredStackDepth = (UBaseType_t)

uxTaskGetStackHighWaterMark(NULL);

Use Memory Pools: Memory pools are a pre-allocated block of memory used for allocating small

fixed-size blocks of memory. In FreeRTOS, you can use memory pools to reduce the risk of

memory fragmentation and improve memory allocation performance. You can create a memory

pool using the xQueueCreateStatic or xQueueCreate API. For example, the following code snippet

shows how to create a memory pool of 100 blocks, each of size 10 bytes:

#define BLOCK_SIZE 10

#define BLOCK_COUNT 100

static uint8_t ucPool[BLOCK_COUNT * BLOCK_SIZE];

static StaticQueue_t xPoolBuffer;

QueueHandle_t xPool = NULL;

xPool = xQueueCreateStatic(BLOCK_COUNT, BLOCK_SIZE,

ucPool, &xPoolBuffer);

Monitor Memory Usage: It is essential to monitor memory usage to detect memory leaks and

optimize memory usage. FreeRTOS provides various APIs to monitor memory usage, such as

xPortGetFreeHeapSize to get the amount of free heap memory and

uxTaskGetStackHighWaterMark to get the minimum stack size required for a task.

size_t xFreeHeapSpace = xPortGetFreeHeapSize();

255 | P a g e

Debugging memory-related issues with SEGGER tools

Memory-related issues can be challenging to debug in FreeRTOS. SEGGER provides tools that

can help to identify memory-related issues in FreeRTOS applications.

One of the tools provided by SEGGER is SystemView, which can be used to monitor and analyze

memory usage in real-time. SystemView can also provide information on the heap and stack usage

of the application.

Another tool provided by SEGGER is the J-Link debugger, which can be used to perform live

memory profiling of the application. This can help to identify memory leaks and other memory-

related issues.

To use these tools, it is important to ensure that the application is properly configured to enable

the necessary debug features. For example, in order to use SystemView, the application must be

compiled with trace hooks enabled, and the trace data must be captured and analyzed using a tool

such as J-Trace.

Here is an example of using SystemView to monitor memory usage in a FreeRTOS application:

#include "FreeRTOS.h"

#include "task.h"

#include "SEGGER_SYSVIEW.h"

void vTask1(void *pvParameters)

{

 int *p = NULL;

 while(1)

 {

 p = (int *)pvPortMalloc(sizeof(int));

 *p = 1;

 vTaskDelay(10);

 vPortFree(p);

 }

}

void vTask2(void *pvParameters)

256 | P a g e

{

 int *p = NULL;

 while(1)

 {

 p = (int *)pvPortMalloc(sizeof(int));

 *p = 2;

 vTaskDelay(10);

 vPortFree(p);

 }

}

int main(void)

{

 SEGGER_SYSVIEW_Conf();

 SEGGER_SYSVIEW_Start();

 xTaskCreate(vTask1, "Task 1", 100, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2", 100, NULL, 1, NULL);

 vTaskStartScheduler();

 while(1);

}

In this example, two tasks are created that allocate and free memory periodically. The

SEGGER_SYSVIEW_Conf() function is used to configure SystemView, and the

SEGGER_SYSVIEW_Start() function is used to start capturing trace data.

When this application is run with SystemView connected, it will display the memory usage of the

application in real-time. The memory usage of the application can be analyzed to identify potential

memory leaks or other memory-related issues.

Overall, using SEGGER tools can greatly simplify the process of debugging memory-related

issues in FreeRTOS applications. By enabling live memory profiling and analysis, developers can

quickly identify and resolve memory-related issues in their applications.

257 | P a g e

Tools for memory profiling and analysis

Memory profiling and analysis tools are important for optimizing memory usage and identifying

memory-related issues in FreeRTOS-based projects. In this subtopic, we will discuss some of the

popular memory profiling and analysis tools for FreeRTOS.

Heap and stack analysis with SEGGER SystemView: SEGGER SystemView is a real-time system

analysis tool that provides detailed insight into the behavior of an embedded system. It can be used

to analyze the heap and stack usage of a FreeRTOS-based project. By enabling the "Heap Status"

and "Stack Usage" options in SystemView, you can monitor the heap and stack usage of your

application in real-time. This can help you identify memory leaks, stack overflows, and other

memory-related issues.

Memory usage analysis with FreeRTOS+Trace: FreeRTOS+Trace is a kernel-aware tracing tool

that provides detailed insight into the behavior of FreeRTOS-based systems. It can be used to

analyze the memory usage of a FreeRTOS-based project. By enabling the "Memory Analysis"

option in FreeRTOS+Trace, you can monitor the memory usage of your application over time.

This can help you identify memory leaks and other memory-related issues.

Memory profiling with Eclipse Memory Analyzer: Eclipse Memory Analyzer (MAT) is a powerful

tool for analyzing Java heap dumps. However, it can also be used to analyze the heap dumps of

C/C++ applications, including FreeRTOS-based projects. By taking a heap dump of your

application and analyzing it with MAT, you can identify memory leaks and other memory-related

issues.

Memory analysis with Valgrind: Valgrind is a powerful memory analysis tool for C/C++

applications. It can be used to analyze the memory usage of FreeRTOS-based projects running on

Linux or other POSIX-compliant operating systems. By running your application under Valgrind's

Memcheck tool, you can detect memory leaks, uninitialized memory access, and other memory-

related issues.

In addition to these tools, there are many other memory profiling and analysis tools available for

FreeRTOS-based projects. It is important to choose the right tool for your specific needs and to

use it effectively to optimize memory usage and identify memory-related issues.

Memory protection and safety in FreeRTOS

Overview of memory protection and its importance

Memory protection is an important aspect of any operating system, including FreeRTOS. It refers

to the ability of the operating system to protect the memory space of one task from being accessed

or modified by another task or process. This is particularly important in systems where multiple

258 | P a g e

tasks or processes are running simultaneously, as memory protection helps to ensure the stability

and reliability of the system.

In FreeRTOS, memory protection is achieved through the use of memory protection units (MPUs),

which are hardware components that allow the operating system to define memory regions and

access permissions for different tasks. The MPU is typically configured to divide the memory

space into different regions, with each region assigned specific permissions such as read-only,

read-write, or execute-only.

When a task attempts to access a memory region that it is not allowed to access, the MPU generates

an exception which is handled by the operating system. This allows FreeRTOS to enforce memory

protection and prevent tasks from accessing memory regions that they should not.

FreeRTOS also provides additional features to enhance memory protection, such as stack overflow

detection and protection. Stack overflow occurs when a task attempts to write to memory beyond

the allocated stack space, which can cause memory corruption and instability. FreeRTOS provides

stack overflow protection by monitoring the stack usage of each task and generating an exception

when the stack usage exceeds a predefined limit.

Furthermore, FreeRTOS also provides tools for analyzing and debugging memory-related issues,

such as memory leaks and buffer overflows. These tools can help developers identify and fix

memory-related issues, ensuring the stability and reliability of their applications.

Here is an example code snippet that demonstrates the use of an MPU in FreeRTOS:

/* Define a memory region for task 1 */

const MemoryRegion_t task1Region = {

 .pvBaseAddress = (void*)0x10000000, /* Start

address of region */

 .ulLength = 0x10000, /* Length of region */

 .ulParameters = MPU_REGION_READ_WRITE /*

Permissions for region */

};

/* Define a memory region for task 2 */

const MemoryRegion_t task2Region = {

 .pvBaseAddress = (void*)0x20000000, /* Start

address of region */

 .ulLength = 0x10000, /* Length of region */

259 | P a g e

 .ulParameters = MPU_REGION_READ_ONLY /* Permissions

for region */

};

/* Initialize the MPU */

void vMPUInit(void)

{

 /* Enable the MPU */

 MPU_Enable();

 /* Configure task 1 region */

 MPU_CreateRegion(&task1Region);

 /* Configure task 2 region */

 MPU_CreateRegion(&task2Region);

}

/* Task 1 code */

void vTask1(void *pvParameters)

{

 /* Access memory in task 1 region */

 int *ptr = (int*)0x10001000;

 *ptr = 42;

 /* Access memory in task 2 region (should generate

exception) */

 int *ptr2 = (int*)0x20001000;

 *ptr2 = 42;

}

/* Task 2 code */

260 | P a g e

void vTask2(void *pvParameters)

{

 /* Access memory in task 2 region */

 int *ptr = (int*)0x20001000;

 int value = *ptr;

}

In this example, we define two memory regions with different permissions: task 1 has read-write

access to its region, while task 2 has read-only access to its region. The vMPUInit() function

initializes the MPU and configures the memory regions for each task.

Memory protection mechanisms in FreeRTOS

Memory protection is an important aspect of any operating system, including FreeRTOS. Memory

protection mechanisms help ensure the safety and stability of a system by preventing tasks from

accessing memory areas that they are not authorized to access. In FreeRTOS, memory protection

mechanisms are implemented using the Memory Protection Unit (MPU), which is a hardware

component found in many ARM Cortex-M microcontrollers.

The MPU provides a way to define a set of memory regions, each with its own access permissions.

These regions can be configured to allow or deny access to specific tasks, depending on their

access level. The MPU is typically used to protect the system's critical resources, such as the kernel

code and data, as well as any peripherals that require special access.

FreeRTOS provides two different memory protection schemes that can be used with the MPU:

privileged and unprivileged mode. In privileged mode, tasks have full access to the system's

memory and peripherals, whereas in unprivileged mode, tasks are restricted to a subset of the

system's resources.

To configure the MPU in FreeRTOS, the user needs to define a set of memory regions, each with

its own access permissions, using the MPU configuration registers. Here is an example of how to

set up a memory region in FreeRTOS using the MPU:

/* Define a memory region for task stack */

void vPortDefineTaskStackRegion(uint32_t

ulTaskStackSize)

{

 /* Ensure that the task stack size is aligned to

the MPU region size */

 ulTaskStackSize = (ulTaskStackSize +

portBYTE_ALIGNMENT - 1) & ~(portBYTE_ALIGNMENT - 1);

261 | P a g e

 /* Calculate the base address of the task stack */

 uint32_t ulTaskStackBase = (uint32_t) pvTaskStack

+ ulTaskStackSize;

 /* Set the region attributes */

 MPU->RNR = MPU_REGION_NUMBER_FOR_TASK_STACK;

 MPU->RBAR = ulTaskStackBase & MPU_RBAR_ADDRESS_Msk;

 MPU->RASR = MPU_RASR_ENABLE_Msk |

 MPU_RASR_SIZE_Msk |

 MPU_RASR_AP_Msk |

 MPU_RASR_TEX_Msk |

 MPU_RASR_S_Msk;

}

This code defines a memory region for a task stack using the MPU's configuration registers. It

calculates the base address of the task stack and sets the region attributes to enable the region, set

its size, and configure its access permissions.

FreeRTOS also provides several configuration options that can be used to enable and customize

memory protection, including configENABLE_MPU,

configRUN_FREERTOS_SECURE_ONLY, and

configPRIVILEGE_STACK_MINIMUM_SIZE. These options can be set in the FreeRTOS

configuration header file to customize the memory protection behavior of the system.

Memory protection mechanisms are an important aspect of any operating system, and FreeRTOS

provides several mechanisms to protect the system's critical resources using the MPU. By

configuring and using these mechanisms properly, developers can ensure the safety and stability

of their FreeRTOS-based systems.

Best practices for memory safety and protection

Memory safety and protection are critical aspects of developing reliable and secure embedded

systems using FreeRTOS. Here are some best practices to ensure memory safety and protection in

FreeRTOS:

Use static memory allocation: Static memory allocation is a safer option as it prevents heap

fragmentation and potential memory leaks that can occur with dynamic memory allocation.

Use memory protection mechanisms: FreeRTOS provides various mechanisms to protect memory

such as the use of MPU, Memory Protection Unit, or MMU, Memory Management Unit. These

262 | P a g e

mechanisms can be used to restrict access to specific memory regions and prevent unintended

memory access.

Use stack overflow protection: Stack overflow can be a significant issue in embedded systems,

and FreeRTOS provides stack overflow protection mechanisms. Stack overflow protection can be

enabled by setting a guard region around the stack to detect stack overflow.

Use appropriate data types: Using appropriate data types can prevent memory overflow and

underflow issues. For example, using uint8_t instead of int can prevent unintended memory access.

Use memory-safe programming practices: Avoid using unsafe functions such as strcpy and strcat

that can cause buffer overflow issues. Instead, use safe alternatives such as strncpy and strncat that

allow you to specify the maximum length of the destination buffer.

Test for memory safety and protection: Testing is critical to ensure memory safety and protection.

Use tools such as static analysis tools, dynamic analysis tools, and fuzz testing to identify memory-

related issues.

Here is an example code snippet that demonstrates the use of static memory allocation in

FreeRTOS:

#define BUFFER_SIZE 256

static uint8_t buffer[BUFFER_SIZE];

void vTaskFunction(void *pvParameters)

{

 // Use the buffer

 // ...

}

int main(void)

{

 // Create a task with static memory allocation

 xTaskCreate(vTaskFunction, "Task",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 // Start the scheduler

263 | P a g e

 vTaskStartScheduler();

 return 0;

}

In this example, a static buffer is declared with a fixed size of 256 bytes. The buffer is then used

in the vTaskFunction task. Using static memory allocation ensures that there are no heap

fragmentation issues or potential memory leaks.

264 | P a g e

Chapter 7:

Communication and Synchronization with

FreeRTOS

265 | P a g e

The ability to communicate and synchronize tasks is critical in many embedded systems

applications. In real-time systems, these tasks often have strict timing constraints, which must be

met for the system to function correctly. Furthermore, in many applications, these tasks must

operate in parallel, which requires them to communicate and synchronize their actions to achieve

a desired outcome.

FreeRTOS is an open-source real-time operating system designed to support the development of

embedded systems with small footprint and low-power requirements. One of the key features of

FreeRTOS is its support for communication and synchronization between tasks.

In this chapter, we will explore the communication and synchronization mechanisms provided by

FreeRTOS. We will start by discussing the basic concepts of tasks, scheduling, and interrupts in

FreeRTOS. We will then examine the various mechanisms provided by FreeRTOS for inter-task

communication, including message queues, semaphores, and event flags.

Next, we will dive into the different synchronization mechanisms provided by FreeRTOS,

including mutexes, binary semaphores, and counting semaphores. We will explore how these

mechanisms can be used to coordinate the actions of multiple tasks and ensure that they execute

in the correct order.

We will also discuss how to use FreeRTOS's software timers to schedule periodic and one-shot

events, and how to synchronize tasks using these timers. In addition, we will explore how

FreeRTOS supports the use of interrupts to communicate with tasks and synchronize their actions.

Finally, we will examine some advanced topics related to communication and synchronization in

FreeRTOS, including how to use the tickless idle mode to reduce power consumption, and how to

implement priority inheritance to prevent priority inversion.

Throughout the chapter, we will provide examples and code snippets to illustrate how to use the

various communication and synchronization mechanisms provided by FreeRTOS. We will also

discuss best practices for designing and implementing tasks, as well as tips for debugging and

troubleshooting FreeRTOS applications.

By the end of this chapter, readers will have a solid understanding of how to use FreeRTOS's

communication and synchronization mechanisms to design robust and reliable embedded systems

that meet their timing and performance requirements. Whether you are a seasoned embedded

systems developer or just getting started with FreeRTOS, this chapter will provide you with the

knowledge and tools you need to develop high-quality, real-time systems.

266 | P a g e

Introduction to inter-task communication

and synchronization

Overview of inter-task communication and synchronization

FreeRTOS is a real-time operating system that supports multitasking and enables developers to

build complex embedded systems. In such systems, tasks often need to communicate and

synchronize with each other to achieve a specific goal. FreeRTOS provides several mechanisms

to support inter-task communication and synchronization, which we will discuss in this subtopic.

Inter-Task Communication:

Inter-task communication refers to the exchange of data between tasks in a multitasking system.

FreeRTOS provides the following mechanisms for inter-task communication:

Direct Task Notification:

Direct task notification is a lightweight mechanism that allows a task to notify another task without

the need for a queue or semaphore. A notification is a 32-bit value that can be sent by one task and

received by another task. The receiving task can check the notification value and take appropriate

action. This mechanism is suitable for simple notifications that do not require any data exchange.

Here is an example of sending a notification from one task to another:

// Task A sends a notification to Task B

void taskA(void* pvParameters)

{

 for(;;)

 {

 // Send notification to Task B

 xTaskNotify(taskBHandle, 0x01,

eSetValueWithOverwrite);

 vTaskDelay(pdMS_TO_TICKS(500));

 }

}

// Task B waits for a notification from Task A

267 | P a g e

void taskB(void* pvParameters)

{

 uint32_t ulNotificationValue;

 for(;;)

 {

 // Wait for a notification from Task A

 xTaskNotifyWait(0x00, 0xFFFFFFFF,

&ulNotificationValue, portMAX_DELAY);

 // Handle the notification

 if(ulNotificationValue == 0x01)

 {

 // Do something

 }

 }

}

Queues:

Queues are a mechanism that allows tasks to send and receive messages. A queue is a FIFO data

structure that can hold a fixed number of items. Tasks can add items to the back of the queue and

remove items from the front of the queue.

Here is an example of sending a message from one task to another using a queue:

// Task A sends a message to Task B

void taskA(void* pvParameters)

{

 char* message = "Hello from Task A";

 for(;;)

 {

 // Send message to Task B

 xQueueSend(queueHandle, message,

portMAX_DELAY);

268 | P a g e

 vTaskDelay(pdMS_TO_TICKS(500));

 }

}

// Task B waits for a message from Task A

void taskB(void* pvParameters)

{

 char buffer[20];

 for(;;)

 {

 // Wait for a message from Task A

 xQueueReceive(queueHandle, buffer,

portMAX_DELAY);

 // Handle the message

 printf("Received message: %s\n", buffer);

 }

}

Semaphores

Semaphores are a mechanism that allows tasks to synchronize with each other. A semaphore is a

variable that can take two values: 0 and 1. A task can wait for a semaphore to become available,

or it can signal the semaphore to release a waiting task.

Here is an example of using a semaphore to synchronize two tasks:

SemaphoreHandle_t semaphoreHandle;

// Task A signals the semaphore

void taskA(void* pvParameters)

{

 for(;;)

 {

269 | P a g e

 // Signal the semaphore

 xSemaphoreGive(semaphoreHandle);

 vTaskDelay(pdMS_TO_TICKS(500));

 }

}

Types of inter-task communication and synchronization

Inter-task communication and synchronization is a crucial aspect of real-time operating systems

like FreeRTOS. It allows tasks to communicate with each other and synchronize their operations

to avoid race conditions and deadlocks. FreeRTOS provides several mechanisms for inter-task

communication and synchronization, including queues, semaphores, mutexes, and event groups.

Queues: Queues are used to pass messages between tasks. A queue can be used to send and receive

data of any size, making it a versatile inter-task communication mechanism. FreeRTOS provides

several types of queues, including binary, counting, and recursive. Queues are implemented using

a First In First Out (FIFO) data structure.

Here is an example of using a binary semaphore to send a message from one task to another:

#define QUEUE_LENGTH 5

#define ITEM_SIZE sizeof(int)

// Create a queue that can hold 5 integers

QueueHandle_t queue = xQueueCreate(QUEUE_LENGTH,

ITEM_SIZE);

// Task 1: Send a message to the queue

int data = 42;

xQueueSend(queue, &data, portMAX_DELAY);

// Task 2: Receive a message from the queue

int receivedData;

xQueueReceive(queue, &receivedData, portMAX_DELAY);

Semaphores: Semaphores are used to signal between tasks. A semaphore can be used to protect a

shared resource or to signal an event. FreeRTOS provides binary and counting semaphores. Binary

270 | P a g e

semaphores have a value of 0 or 1, while counting semaphores have a value between 0 and a

maximum value specified when the semaphore is created.

Here is an example of using a binary semaphore to synchronize two tasks:

SemaphoreHandle_t semaphore = xSemaphoreCreateBinary();

// Task 1: Take the semaphore

xSemaphoreTake(semaphore, portMAX_DELAY);

// Task 2: Give the semaphore

xSemaphoreGive(semaphore);

Mutexes: Mutexes are used to protect shared resources from simultaneous access by multiple tasks.

A mutex can be locked by one task at a time, and other tasks must wait until the mutex is released

before they can access the resource.

Here is an example of using a mutex to protect a shared resource:

SemaphoreHandle_t mutex = xSemaphoreCreateMutex();

// Task 1: Take the mutex

xSemaphoreTake(mutex, portMAX_DELAY);

sharedResource = 42;

xSemaphoreGive(mutex);

// Task 2: Take the mutex

xSemaphoreTake(mutex, portMAX_DELAY);

int value = sharedResource;

xSemaphoreGive(mutex);

Event groups: Event groups allow tasks to wait for a combination of events to occur before

continuing. An event group is a 32-bit value that can be set or cleared by tasks. Tasks can wait for

a combination of bits to be set or cleared before continuing.

Here is an example of using an event group to synchronize two tasks:

271 | P a g e

EventGroupHandle_t eventGroup = xEventGroupCreate();

// Task 1: Set bit 0 of the event group

xEventGroupSetBits(eventGroup, 0x01);

// Task 2: Wait for bit 0 to be set

xEventGroupWaitBits(eventGroup, 0x01, pdTRUE, pdTRUE,

portMAX_DELAY);

FreeRTOS provides several mechanisms for inter-task communication and synchronization.

Choosing the right mechanism for your application depends on the specific requirements of your

system. By using these mechanisms correctly, you can ensure that your tasks communicate and

synchronize their operations in a safe and efficient manner.

Benefits of using inter-task communication and synchronization

Inter-task communication and synchronization are essential features of FreeRTOS that enable

multiple tasks to communicate and coordinate with each other. In FreeRTOS, inter-task

communication refers to the exchange of data between tasks, while synchronization refers to the

coordination of task execution to ensure the correct order of operations.

One of the main benefits of using inter-task communication and synchronization is that it allows

for the development of complex applications with multiple tasks, each performing a specific

function. Tasks can exchange information with each other, collaborate to achieve a common goal,

and operate efficiently with minimum resource usage.

There are several types of inter-task communication and synchronization mechanisms in

FreeRTOS:

Queues: Queues are a simple and efficient way to exchange data between tasks. In FreeRTOS,

queues are implemented as a first-in, first-out (FIFO) buffer that can hold a fixed number of items

of a fixed size. Tasks can send messages to the queue and receive messages from the queue.

Semaphores: Semaphores are used for task synchronization and mutual exclusion. They are binary

flags that can be used to signal events between tasks. Semaphores can be used to synchronize the

execution of two or more tasks, and can be used to protect shared resources from simultaneous

access.

Mutexes: Mutexes are used for mutual exclusion and are similar to semaphores. However, mutexes

can be locked and unlocked by different tasks, and only one task can hold the mutex at a time.

Mutexes can be used to protect critical sections of code, such as shared resources or data structures.

272 | P a g e

Events: Events are used to notify tasks of specific events or conditions. Tasks can wait for events

to occur and then execute the appropriate code. Events can be used for tasks that need to respond

to external stimuli or events, such as input from a user or data from a sensor.

Here is an example of how to use a queue in FreeRTOS for inter-task communication:

#define QUEUE_LENGTH 10

#define QUEUE_ITEM_SIZE sizeof(uint32_t)

QueueHandle_t xQueue;

void task1(void *pvParameters) {

 uint32_t data = 123;

 while (1) {

 // Send data to the queue

 xQueueSend(xQueue, &data, 0);

 // Wait for 1 second

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

}

void task2(void *pvParameters) {

 uint32_t data;

 while (1) {

 // Receive data from the queue

 xQueueReceive(xQueue, &data, portMAX_DELAY);

 // Print the received data

 printf("Received data: %lu\n", data);

 }

273 | P a g e

}

int main(void) {

 // Create the queue

 xQueue = xQueueCreate(QUEUE_LENGTH,

QUEUE_ITEM_SIZE);

 // Create task1 and task2

 xTaskCreate(task1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(task2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 // Start the FreeRTOS scheduler

 vTaskStartScheduler();

 // Should never get here

 return 0;

}

In this example, task1 sends data to the queue using the xQueueSend() function, while task2

receives data from the queue using the xQueueReceive() function. The portMAX_DELAY

parameter in xQueueReceive() specifies that the task should block indefinitely if the queue is

empty.

Overall, inter-task communication and synchronization mechanisms in FreeRTOS provide an

efficient and reliable way for tasks to communicate and coordinate with each other, and are

essential for developing complex real-time applications.

Synchronization primitives in FreeRTOS

Overview of synchronization primitives

Synchronization primitives are programming constructs that are used to coordinate the behavior

of tasks in a multi-tasking system like FreeRTOS. These primitives are essential for inter-task

communication and synchronization, and they allow tasks to exchange data, synchronize their

274 | P a g e

execution, and manage shared resources in a controlled and safe manner. FreeRTOS provides

several synchronization primitives that can be used to implement different types of communication

and synchronization mechanisms between tasks.

Here is an overview of some of the synchronization primitives provided by FreeRTOS:

Semaphores: Semaphores are used to manage access to shared resources by ensuring that only one

task can access the resource at a time. A semaphore is a variable that can take on a limited number

of values (usually 0 or 1) and is used to indicate the availability of a resource. A task can request

a semaphore by trying to take it, and if the semaphore is not available, the task is blocked until it

becomes available. When a task has finished using the resource, it releases the semaphore so that

another task can access it.

Mutexes: Mutexes are similar to semaphores in that they are used to manage access to shared

resources. However, mutexes can be used to protect critical sections of code, where multiple tasks

need to access the same data structure. A mutex is a binary semaphore that is used to prevent two

tasks from accessing the same resource simultaneously. When a task acquires a mutex, it gains

exclusive access to the protected resource. Other tasks that try to access the resource while it is

locked will be blocked until the mutex is released.

Queues: Queues are used to send messages between tasks in a system. A queue is a buffer that can

hold a fixed number of messages or data items, and tasks can send messages to the queue or receive

messages from the queue. When a task sends a message to the queue, it is added to the end of the

queue. When a task receives a message, it takes the message from the front of the queue. If the

queue is empty, the task is blocked until a message becomes available.

Event groups: Event groups are used to synchronize multiple tasks based on a set of predefined

events. An event group is a set of flags that can be set or cleared by different tasks. When a task

waits on an event group, it can specify which events it is interested in. If any of the specified events

are set, the task is unblocked and can continue executing. Event groups are often used to implement

complex synchronization scenarios, where multiple tasks need to coordinate their actions based on

specific conditions.

In addition to these primitives, FreeRTOS also provides other synchronization mechanisms like

binary and counting semaphores, recursive mutexes, and software timers. These primitives are

designed to work together to provide a powerful and flexible system for inter-task communication

and synchronization.

Here's an example of using a semaphore to synchronize access to a shared resource:

/* Create a semaphore */

SemaphoreHandle_t xSemaphore = xSemaphoreCreateMutex();

/* Task 1 - Access shared resource */

275 | P a g e

void task1(void *pvParameters) {

 while(1) {

 /* Wait for the semaphore to become available

*/

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 /* Access shared resource */

 ...

 /* Release the semaphore */

 xSemaphoreGive(xSemaphore);

 }

}

/* Task 2 - Access shared resource */

void task2(void *pvParameters) {

 while(1) {

 /* Wait for the semaphore to become available

*/

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 /* Access shared resource */

 ...

 /* Release the semaphore */

 xSemaphoreGive(xSemaphore);

 }

}

Semaphore and mutex usage and examples

In FreeRTOS, semaphores and mutexes are commonly used synchronization primitives to

coordinate access to shared resources between tasks. They help prevent race conditions and ensure

276 | P a g e

thread-safe access to shared resources. In this note, we will provide an overview of semaphore and

mutex usage in FreeRTOS, along with some example code snippets.

Semaphore:

A semaphore is a synchronization object used to control access to a shared resource. It is typically

used to limit the number of tasks that can access a shared resource simultaneously. In FreeRTOS,

a semaphore is implemented using the xSemaphoreCreateBinary() function, which creates a binary

semaphore.

Here is an example of a binary semaphore usage in FreeRTOS:

// Create a binary semaphore

SemaphoreHandle_t xSemaphore =

xSemaphoreCreateBinary();

void Task1(void *pvParameters)

{

 while (1)

 {

 // Wait for semaphore to be available

 if (xSemaphoreTake(xSemaphore, portMAX_DELAY) ==

pdTRUE)

 {

 // Access the shared resource

 // ...

 // Release the semaphore

 xSemaphoreGive(xSemaphore);

 }

 }

}

void Task2(void *pvParameters)

{

 while (1)

277 | P a g e

 {

 // Wait for semaphore to be available

 if (xSemaphoreTake(xSemaphore, portMAX_DELAY) ==

pdTRUE)

 {

 // Access the shared resource

 // ...

 // Release the semaphore

 xSemaphoreGive(xSemaphore);

 }

 }

}

Mutex:

A mutex is similar to a semaphore, but it allows only one task to access the shared resource at a

time. In FreeRTOS, a mutex is implemented using the xSemaphoreCreateMutex() function.

Here is an example of mutex usage in FreeRTOS:

// Create a mutex

SemaphoreHandle_t xMutex = xSemaphoreCreateMutex();

void Task1(void *pvParameters)

{

 while (1)

 {

 // Wait for mutex to be available

 if (xSemaphoreTake(xMutex, portMAX_DELAY) ==

pdTRUE)

 {

 // Access the shared resource

 // ...

 // Release the mutex

278 | P a g e

 xSemaphoreGive(xMutex);

 }

 }

}

void Task2(void *pvParameters)

{

 while (1)

 {

 // Wait for mutex to be available

 if (xSemaphoreTake(xMutex, portMAX_DELAY) ==

pdTRUE)

 {

 // Access the shared resource

 // ...

 // Release the mutex

 xSemaphoreGive(xMutex);

 }

 }

}

Semaphore and mutex are commonly used synchronization primitives in FreeRTOS. They are

essential for controlling access to shared resources between tasks and ensuring thread-safe access.

The example code snippets provided above demonstrate how to use these primitives in FreeRTOS.

Binary and counting semaphores usage and examples

In FreeRTOS, semaphore is a synchronization mechanism used to protect access to a shared

resource or a critical section of code. Semaphores can be either binary or counting. Binary

semaphores are used for signaling between tasks, whereas counting semaphores are used to

manage the access to shared resources, such as a pool of buffers or a shared hardware device.

A binary semaphore can have only two states: taken or available. If a task tries to take a semaphore

that is already taken, it will block until the semaphore is released. A binary semaphore can be used

for inter-task signaling, where one task signals another task to perform some action. For example,

279 | P a g e

a task that receives data from a sensor can signal another task to process the data once it has

received it.

A counting semaphore can have a value greater than one, and it is used to manage access to a

shared resource. Each time a task takes the semaphore, the value is decremented. When the task

releases the semaphore, the value is incremented. If a task tries to take a semaphore that has a value

of zero, it will block until the semaphore is released.

Here's an example of how to use binary and counting semaphores in FreeRTOS:

/* Define the semaphore handles */

SemaphoreHandle_t xBinarySemaphore;

SemaphoreHandle_t xCountingSemaphore;

void vTask1(void *pvParameters)

{

 /* Create a binary semaphore */

 xBinarySemaphore = xSemaphoreCreateBinary();

 while(true)

 {

 /* Wait for the binary semaphore */

 xSemaphoreTake(xBinarySemaphore, portMAX_DELAY

);

 /* Do some work */

 ...

 }

}

void vTask2(void *pvParameters)

{

 /* Create a counting semaphore with an initial

value of 1 */

280 | P a g e

 xCountingSemaphore = xSemaphoreCreateCounting(1, 1

);

 while(true)

 {

 /* Wait for the counting semaphore */

 xSemaphoreTake(xCountingSemaphore,

portMAX_DELAY);

 /* Do some work */

 ...

 /* Release the counting semaphore */

 xSemaphoreGive(xCountingSemaphore);

 }

}

void vInterruptHandler(void)

{

 /* Give the binary semaphore from an interrupt */

 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 xSemaphoreGiveFromISR(xBinarySemaphore,

&xHigherPriorityTaskWoken);

 /* If giving the semaphore unblocked a task, yield

to the newly unblocked task */

 if(xHigherPriorityTaskWoken)

 {

 portYIELD_FROM_ISR();

 }

}

281 | P a g e

In this example, vTask1 waits for the xBinarySemaphore binary semaphore, while vTask2 waits

for the xCountingSemaphore counting semaphore. The vInterruptHandler interrupt handler gives

the xBinarySemaphore semaphore from an interrupt context, and yields to the newly unblocked

task if necessary.

Using semaphores is a powerful technique for managing shared resources and synchronizing tasks

in FreeRTOS. By carefully choosing the appropriate type of semaphore and managing its use, you

can ensure that your system operates correctly and efficiently.

Semaphores and mutexes for shared

resources

Resource sharing and protection using semaphores and mutexes

Resource sharing and protection are essential concepts in any multi-tasking operating system,

including FreeRTOS. Inter-task communication and synchronization mechanisms such as

semaphores and mutexes play a vital role in providing safe and controlled access to shared

resources, preventing data corruption and race conditions.

In FreeRTOS, semaphores and mutexes are two synchronization primitives that can be used for

resource sharing and protection.

Semaphore:

A semaphore is a synchronization primitive that allows multiple tasks to access a shared resource

while enforcing a limit on the maximum number of tasks that can access it at a time. The

semaphore is essentially a counter that is initialized to a given value, and each time a task accesses

the shared resource, the semaphore is decremented. When the semaphore reaches zero, no more

tasks can access the resource until it is released by another task.

The following code demonstrates the usage of semaphore in FreeRTOS:

// Create a semaphore with an initial count of 1

SemaphoreHandle_t xSemaphore =

xSemaphoreCreateCounting(1, 1);

// In task 1, acquire the semaphore and access the

shared resource

282 | P a g e

if (xSemaphoreTake(xSemaphore, portMAX_DELAY) ==

pdTRUE) {

 // Access the shared resource

 // ...

 // Release the semaphore

 xSemaphoreGive(xSemaphore);

}

// In task 2, attempt to acquire the semaphore (may

block if it is not available)

if (xSemaphoreTake(xSemaphore, portMAX_DELAY) ==

pdTRUE) {

 // Access the shared resource

 // ...

 // Release the semaphore

 xSemaphoreGive(xSemaphore);

}

Mutex:

A mutex (short for mutual exclusion) is a synchronization primitive that provides exclusive access

to a shared resource. Only one task can acquire a mutex at a time, and any other task that attempts

to acquire it while it is locked will block until the mutex is released.

The following code demonstrates the usage of mutex in FreeRTOS:

// Create a mutex

SemaphoreHandle_t xMutex = xSemaphoreCreateMutex();

// In task 1, acquire the mutex and access the shared

resource

if (xSemaphoreTake(xMutex, portMAX_DELAY) == pdTRUE) {

283 | P a g e

 // Access the shared resource

 // ...

 // Release the mutex

 xSemaphoreGive(xMutex);

}

// In task 2, attempt to acquire the mutex (may block

if it is locked)

if (xSemaphoreTake(xMutex, portMAX_DELAY) == pdTRUE) {

 // Access the shared resource

 // ...

 // Release the mutex

 xSemaphoreGive(xMutex);

}

Resource sharing and protection using semaphores and mutexes:

The main benefit of using semaphores and mutexes in FreeRTOS is to ensure that multiple tasks

can safely access a shared resource. For example, consider a scenario where multiple tasks need

to access a shared memory buffer. If each task simply accesses the buffer without any

synchronization mechanism, it can lead to data corruption and race conditions. However, by using

a semaphore or a mutex, the tasks can acquire and release the synchronization primitive before

and after accessing the buffer, ensuring that only one task accesses it at a time.

Semaphores and mutexes are powerful synchronization primitives that can be used to ensure safe

and controlled access to shared resources in FreeRTOS. By using them, we can prevent data

corruption and race conditions and improve the overall reliability of the system.

Mutexes and priority inheritance

In FreeRTOS, mutexes are synchronization objects that can be used to protect shared resources

from simultaneous access by multiple tasks. When a task acquires a mutex, it gains exclusive

access to the protected resource, and other tasks that try to acquire the same mutex are blocked

until the mutex is released by the owning task.

One common issue that can arise with mutexes is priority inversion, where a low-priority task

holds a mutex that is needed by a high-priority task, causing the high-priority task to block. To

284 | P a g e

address this issue, FreeRTOS provides priority inheritance, where the priority of a task holding a

mutex is temporarily raised to the highest priority of any task waiting for that mutex. This ensures

that the high-priority task is able to acquire the mutex and proceed with its execution, even if a

low-priority task currently holds the mutex.

Here is an example of how to use mutexes and priority inheritance in FreeRTOS:

/* Define a mutex handle */

SemaphoreHandle_t xMutex;

/* Create the mutex */

xMutex = xSemaphoreCreateMutex();

void vTask1(void *pvParameters) {

 while (1) {

 /* Acquire the mutex */

 xSemaphoreTake(xMutex, portMAX_DELAY);

 /* Access the shared resource */

 shared_resource = shared_resource + 1;

 /* Release the mutex */

 xSemaphoreGive(xMutex);

 }

}

void vTask2(void *pvParameters) {

 while (1) {

 /* Acquire the mutex */

 xSemaphoreTake(xMutex, portMAX_DELAY);

 /* Access the shared resource */

 shared_resource = shared_resource - 1;

285 | P a g e

 /* Release the mutex */

 xSemaphoreGive(xMutex);

 }

}

int main(void) {

 /* Create the tasks */

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 /* Start the scheduler */

 vTaskStartScheduler();

 /* Should not reach here */

 return 0;

}

In this example, two tasks are accessing a shared resource using a mutex. The vTask1 task

increments the value of the shared resource, while the vTask2 task decrements it. Both tasks

acquire the mutex using xSemaphoreTake, which blocks if the mutex is already held by another

task. The portMAX_DELAY parameter specifies that the task should block indefinitely until the

mutex becomes available.

To prevent priority inversion, the vTask2 task is given a higher priority than the vTask1 task.

Additionally, priority inheritance is enabled by default in FreeRTOS, so when the vTask2 task

tries to acquire the mutex while it is held by the vTask1 task, the priority of the vTask1 task is

temporarily raised to the same priority as the vTask2 task. This ensures that the vTask2 task is able

to acquire the mutex and proceed with its execution, even though it has a higher priority than the

vTask1 task.

Semaphores and their use cases

Semaphores are synchronization primitives that are commonly used in real-time operating systems

like FreeRTOS to protect shared resources and coordinate access to them. A semaphore is

essentially a counter that can be incremented or decremented, and tasks can block or unblock

themselves based on the value of the counter.

286 | P a g e

In FreeRTOS, there are two types of semaphores: binary and counting semaphores. Binary

semaphores are used to protect access to a shared resource that can be used by only one task at a

time, while counting semaphores are used to protect access to a pool of resources that can be used

by multiple tasks simultaneously.

Binary Semaphore Usage in FreeRTOS:

Binary semaphores are the simplest type of semaphore and are commonly used to protect access

to shared resources that can be used by only one task at a time. A binary semaphore can have only

two states: available (or “unlocked”) and unavailable (or “locked”).

Here is an example of using a binary semaphore in FreeRTOS:

#include "FreeRTOS.h"

#include "semphr.h"

// Declare a binary semaphore

SemaphoreHandle_t xBinarySemaphore;

void vTask1(void *pvParameters)

{

 while(1)

 {

 // Take the semaphore

 xSemaphoreTake(xBinarySemaphore, portMAX_DELAY);

 // Access shared resource here

 // Give the semaphore back

 xSemaphoreGive(xBinarySemaphore);

 // Perform other tasks

 vTaskDelay(100);

 }

}

287 | P a g e

void vTask2(void *pvParameters)

{

 while(1)

 {

 // Take the semaphore

 xSemaphoreTake(xBinarySemaphore, portMAX_DELAY);

 // Access shared resource here

 // Give the semaphore back

 xSemaphoreGive(xBinarySemaphore);

 // Perform other tasks

 vTaskDelay(100);

 }

}

int main(void)

{

 // Create the semaphore

 xBinarySemaphore = xSemaphoreCreateBinary();

 // Start the tasks

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 // Start the scheduler

 vTaskStartScheduler();

288 | P a g e

 // This should never be reached

 return 0;

}

In this example, two tasks are accessing a shared resource protected by a binary semaphore. The

xSemaphoreTake() function is used to acquire the semaphore and block the task if it is unavailable,

and the xSemaphoreGive() function is used to release the semaphore and unblock any tasks waiting

on it.

Counting Semaphore Usage in FreeRTOS:

Counting semaphores are used to protect access to a pool of resources that can be used by multiple

tasks simultaneously. A counting semaphore has a maximum count value, and tasks can take and

give semaphore tokens up to this maximum count.

Here is an example of using a counting semaphore in FreeRTOS:

#include "FreeRTOS.h"

#include "semphr.h"

// Declare a counting semaphore

SemaphoreHandle_t xCountingSemaphore;

void vTask1(void *pvParameters)

{

 while(1)

 {

 // Take the semaphore

 xSemaphoreTake(xCountingSemaphore, portMAX_DELAY

);

 // Access shared resource here

 // Give the semaphore back

 xSemaphoreGive(xCountingSemaphore);

289 | P a g e

 // Perform other tasks

 vTaskDelay(100);

 }

}

Queues and pipes for message passing

Overview of message passing and its benefits

Message passing is a technique used to enable inter-task communication and synchronization in

FreeRTOS. In this approach, tasks communicate with each other by sending and receiving

messages. Each message contains data that is transmitted from the sending task to the receiving

task. The receiving task can then use the data to perform a specific action.

Message passing has several benefits, including better task isolation, reduced data coupling, and

improved fault tolerance. It also simplifies the design and development of complex systems by

providing a flexible mechanism for task communication.

FreeRTOS provides several message passing mechanisms, including queues, mailboxes, and

pipes. These mechanisms differ in their implementation and behavior, making them suitable for

different use cases.

Queues in FreeRTOS are message passing buffers that allow one task to send data to another task.

They can be used to send and receive discrete data items such as integers, floats, or pointers.

Queues can also be used to send and receive data structures of variable length. Queues can be

implemented as either binary or counting. In a binary queue, the size of the queue is fixed, and the

queue is either empty or full. In a counting queue, the size of the queue can be dynamically

adjusted, and the queue can contain any number of messages up to the maximum size.

Mailboxes in FreeRTOS are similar to queues but are designed to handle messages that are larger

in size. They are implemented as a circular buffer that allows messages of any size to be sent and

received. Mailboxes are useful when a task needs to send or receive large data structures or

messages.

Pipes in FreeRTOS are message passing buffers that allow multiple tasks to communicate with

each other. Pipes are useful for sending data between multiple tasks in a system. They are

implemented as a circular buffer and allow multiple tasks to send and receive messages.

290 | P a g e

Here is an example of how to use a queue in FreeRTOS:

#include <FreeRTOS.h>

#include <queue.h>

QueueHandle_t xQueue;

void SenderTask(void *pvParameters)

{

 int i;

 for (i = 0; i < 10; i++)

 {

 xQueueSend(xQueue, &i, portMAX_DELAY);

 }

}

void ReceiverTask(void *pvParameters)

{

 int i;

 for (;;)

 {

 xQueueReceive(xQueue, &i, portMAX_DELAY);

 printf("Received %d from queue\n", i);

 }

}

int main(void)

{

 xQueue = xQueueCreate(5, sizeof(int));

 xTaskCreate(SenderTask, "Sender", 100, NULL, 1,

NULL);

291 | P a g e

 xTaskCreate(ReceiverTask, "Receiver", 100, NULL, 1,

NULL);

 vTaskStartScheduler();

 return 0;

}

In this example, two tasks, SenderTask and ReceiverTask, are created. The SenderTask task sends

integers to the queue using the xQueueSend function, and the ReceiverTask task receives integers

from the queue using the xQueueReceive function. The xQueueCreate function creates the queue,

which has a maximum size of 5 and contains integers.

Overall, message passing is a powerful technique for enabling inter-task communication and

synchronization in FreeRTOS. By using queues, mailboxes, and pipes, developers can create

flexible and scalable systems that can communicate data between tasks with ease.

Queue and pipe usage and examples

In FreeRTOS, queues and pipes are used for inter-task communication by passing messages

between tasks. Queues are used for passing messages of fixed size, while pipes are used for

messages of varying size.

A queue is a data structure that allows for the storage and retrieval of items in a first-in-first-out

(FIFO) order. In FreeRTOS, a queue is created using the xQueueCreate function. Here's an

example of creating a queue of 10 items, each item being a pointer to a int variable:

#define QUEUE_LENGTH 10

xQueueHandle queue = xQueueCreate(QUEUE_LENGTH,

sizeof(int *));

To send an item to the queue, the xQueueSend function is used. Here's an example of sending a

pointer to an int variable to the queue:

int data = 42;

xQueueSend(queue, &data, portMAX_DELAY);

The portMAX_DELAY parameter specifies the maximum amount of time to wait for space to

become available in the queue. In this case, the function will block indefinitely until space is

available.

292 | P a g e

To receive an item from the queue, the xQueueReceive function is used. Here's an example of

receiving an item from the queue:

int *received_data;

xQueueReceive(queue, &received_data, portMAX_DELAY);

The portMAX_DELAY parameter specifies the maximum amount of time to wait for an item to

become available in the queue. In this case, the function will block indefinitely until an item is

available.

A pipe, on the other hand, is a data structure that allows for the storage and retrieval of items in a

first-in-first-out (FIFO) order, but with items of varying size. In FreeRTOS, a pipe is created using

the xStreamBufferCreate function. Here's an example of creating a pipe with a maximum size of

50 bytes:

#define PIPE_LENGTH 50

xStreamBufferHandle pipe =

xStreamBufferCreate(PIPE_LENGTH, 1);

To send data to the pipe, the xStreamBufferSend function is used. Here's an example of sending a

string of text to the pipe:

char *data = "Hello, world!";

xStreamBufferSend(pipe, data, strlen(data),

portMAX_DELAY);

The portMAX_DELAY parameter specifies the maximum amount of time to wait for space to

become available in the pipe. In this case, the function will block indefinitely until space is

available.

To receive data from the pipe, the xStreamBufferReceive function is used. Here's an example of

receiving data from the pipe:

char received_data[PIPE_LENGTH];

size_t received_data_length =

xStreamBufferReceive(pipe, received_data, PIPE_LENGTH,

portMAX_DELAY);

293 | P a g e

The portMAX_DELAY parameter specifies the maximum amount of time to wait for data to

become available in the pipe. In this case, the function will block indefinitely until data is available.

Queues and pipes are powerful tools for inter-task communication in FreeRTOS, allowing tasks

to share data and synchronize their execution. They can be used in a variety of scenarios, including

data logging, sensor data acquisition, and more.

Message buffering and synchronization

In FreeRTOS, message passing is a popular method of inter-task communication, allowing tasks

to communicate with each other in a synchronous or asynchronous manner. A queue or a pipe is

often used to implement message passing.

A queue is a FIFO (First-In-First-Out) data structure that can hold a fixed number of items.

FreeRTOS offers two types of queues: standard queues and binary semaphores. Standard queues

are used to transfer data between tasks, while binary semaphores are used for synchronization

purposes.

A pipe, on the other hand, is a type of message passing mechanism that allows tasks to send

messages of different lengths and types to each other. Pipes are typically used for streaming data

between tasks or for implementing a producer-consumer pattern.

To use a queue or a pipe in FreeRTOS, you need to define the queue or pipe handle and specify its

properties, such as the maximum number of items in the queue, the size of each item, and whether

the queue is blocking or non-blocking.

Here's an example of using a queue for inter-task communication:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

// Define a queue handle

QueueHandle_t xQueue;

// Define a task that sends data to the queue

void vTask1(void *pvParameters)

{

 int dataToSend = 42;

 while(1)

294 | P a g e

 {

 xQueueSend(xQueue, &dataToSend, 0);

 vTaskDelay(1000 / portTICK_PERIOD_MS);

 }

}

// Define a task that receives data from the queue

void vTask2(void *pvParameters)

{

 int dataReceived;

 while(1)

 {

 xQueueReceive(xQueue, &dataReceived,

portMAX_DELAY);

 // Do something with the received data

 }

}

void main(void)

{

 // Create the queue

 xQueue = xQueueCreate(5, sizeof(int));

 // Create the tasks

 xTaskCreate(vTask1, "Task1",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 xTaskCreate(vTask2, "Task2",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 // Start the scheduler

295 | P a g e

 vTaskStartScheduler();

}

In this example, xQueueCreate() is used to create a queue that can hold up to 5 integers. vTask1

sends data to the queue using xQueueSend(), while vTask2 receives data from the queue using

xQueueReceive().

The second parameter of xQueueSend() and xQueueReceive() is a pointer to the data being sent

or received. The third parameter specifies the maximum amount of time to wait for the operation

to complete, in case the queue is full or empty.

Message buffering and synchronization are important considerations when using queues and pipes.

A full queue can block the task that is trying to send data to it, while an empty queue can block the

task that is trying to receive data from it. You can use blocking or non-blocking queues to control

the behavior of tasks that interact with a queue.

Overall, queues and pipes provide a flexible and efficient way to implement inter-task

communication and message passing in FreeRTOS.

Mailboxes for message buffering

Overview of mailboxes and their usage

In FreeRTOS, a mailbox is a data structure used for inter-task communication. It is used to send

messages from one task to another in a thread-safe manner. A mailbox can be thought of as a queue

with a fixed length of one, where each item in the queue is a message.

A mailbox can be created using the xQueueCreate function. The first parameter of this function

specifies the maximum number of messages that can be stored in the mailbox, while the second

parameter specifies the size of each message in bytes.

xQueueHandle mailbox = xQueueCreate(1, sizeof(int));

In the above code, we create a mailbox that can store one integer value.

To send a message to a mailbox, we use the xQueueSend function. This function takes three

parameters - the handle to the mailbox, a pointer to the message being sent, and a timeout value.

If the mailbox is full, the function will block until the mailbox becomes available, or the timeout

period elapses.

int message = 42;

296 | P a g e

if(xQueueSend(mailbox, &message, 100) == pdPASS){

 // Message sent successfully

}

In the above code, we send the integer value 42 to the mailbox. The timeout value is set to 100,

which means that the function will block for 100 milliseconds if the mailbox is full.

To receive a message from a mailbox, we use the xQueueReceive function. This function takes

three parameters - the handle to the mailbox, a pointer to the buffer where the received message

will be stored, and a timeout value. If there is no message available in the mailbox, the function

will block until a message becomes available, or the timeout period elapses.

int received_message;

if(xQueueReceive(mailbox, &received_message, 100) ==

pdPASS){

 // Message received successfully

 printf("Received message: %d\n", received_message);

}

In the above code, we receive a message from the mailbox and store it in the integer variable

received_message. If a message is received successfully, we print its value to the console.

Mailboxes are useful in scenarios where we want to send messages of a fixed size between tasks.

They provide a thread-safe way of communicating between tasks, ensuring that messages are not

lost or corrupted due to concurrent access.

Mailbox configuration and examples

Mailboxes are another form of inter-task communication and synchronization in FreeRTOS.

Mailboxes allow tasks to communicate by passing messages of fixed or variable length between

each other.

A mailbox is a structure that contains a queue and a binary semaphore. The queue stores the

messages, and the semaphore is used to indicate if a message is available in the queue or not. Tasks

can use the mailbox to send and receive messages with each other.

To use a mailbox, first, a mailbox must be created using the xQueueCreate function. The function

takes two arguments: the maximum number of messages that the queue can hold, and the size of

each message in bytes.

Here is an example of creating a mailbox with a maximum of 10 messages and a message size of

4 bytes:

297 | P a g e

xQueueHandle mailbox = xQueueCreate(10, 4);

Once the mailbox is created, tasks can use the xQueueSend and xQueueReceive functions to send

and receive messages to and from the mailbox.

Here is an example of sending a message to the mailbox:

int message = 123;

xQueueSend(mailbox, &message, 0);

In this example, the address of the message variable is passed as the second argument to the

xQueueSend function. The third argument is the block time in ticks. If the mailbox is full, the task

will block until space is available.

Here is an example of receiving a message from the mailbox:

int received_message;

xQueueReceive(mailbox, &received_message,

portMAX_DELAY);

In this example, the address of the received_message variable is passed as the second argument to

the xQueueReceive function. The third argument is the block time in ticks. If the mailbox is empty,

the task will block until a message is available.

One of the benefits of using mailboxes is that they provide a mechanism for tasks to communicate

with each other without the need for shared memory or global variables. This can help to prevent

race conditions and other synchronization issues that can arise when multiple tasks access the same

data.

Mailboxes provide a way for tasks to communicate with each other by passing messages of fixed

or variable length between them. They are created using the xQueueCreate function and can be

used with the xQueueSend and xQueueReceive functions to send and receive messages. Mailboxes

provide a safe and efficient mechanism for inter-task communication and synchronization in

FreeRTOS.

Benefits and drawbacks of using mailboxes

Mailboxes in FreeRTOS provide a communication mechanism for tasks to pass messages to each

other without direct coupling. They are useful in situations where a single task may receive

messages from multiple sources, and it is not necessary to know the source of the message.

298 | P a g e

The benefits of using mailboxes in FreeRTOS are:

• Decoupling: Tasks can communicate with each other without being directly coupled. This

provides a layer of abstraction, which simplifies the design and maintenance of the system.

• Priority-based delivery: Mailboxes can be configured to deliver messages based on task

priorities. This means that higher priority tasks can be served first, ensuring that time-

critical messages are not delayed.

• Blocking and non-blocking operation: Mailboxes support both blocking and non-blocking

message delivery. This provides flexibility in the design of the system.

• Error detection: FreeRTOS mailboxes provide error detection mechanisms that can detect

overflow, underflow, and other types of errors.

• However, there are also some drawbacks to using mailboxes in FreeRTOS:

• Memory overhead: Mailboxes require a certain amount of memory to be allocated. This

can be a concern in memory-constrained systems.

• Limited message size: Mailboxes have a fixed maximum message size. This can limit the

types of data that can be passed between tasks.

• Complexity: Mailboxes can introduce additional complexity to the design of the system.

To use mailboxes in FreeRTOS, the first step is to create a mailbox handle using the

xQueueCreate() API function. This function takes two arguments: the maximum number of

messages the mailbox can hold, and the size of each message in bytes. For example, the following

code creates a mailbox that can hold up to 10 messages, each of which is 4 bytes in size:

xQueueHandle myMailbox = xQueueCreate(10, 4);

Once the mailbox has been created, messages can be sent using the xQueueSend() API function.

This function takes three arguments: the mailbox handle, a pointer to the data to be sent, and a

timeout value. For example, the following code sends a message to the mailbox:

int myMessage = 42;

xQueueSend(myMailbox, &myMessage, 0);

Messages can be received using the xQueueReceive() API function. This function takes three

arguments: the mailbox handle, a pointer to a buffer to store the received data, and a timeout value.

For example, the following code receives a message from the mailbox:

int receivedMessage;

299 | P a g e

xQueueReceive(myMailbox, &receivedMessage,

portMAX_DELAY);

In this example, portMAX_DELAY is used as the timeout value, which means that the function

will block indefinitely until a message is received.

Overall, mailboxes can be a useful tool for inter-task communication in FreeRTOS. They provide

a flexible and reliable way to pass messages between tasks, and can be configured to support a

wide range of use cases. However, like any tool, they must be used carefully and appropriately to

avoid introducing unnecessary complexity or performance issues.

Task notifications for event signaling

Overview of task notifications and event signaling

Task notifications and event signaling are important features of FreeRTOS that allow tasks to

communicate with each other and synchronize their operations. Notifications are lightweight

signals that can be sent from one task to another, while event signaling provides a more powerful

mechanism for task synchronization and communication.

Notifications are used to signal events or conditions between tasks. A notification is a 32-bit value

that can be sent from one task to another, and can carry additional data with it. Notifications can

be used to wake up a task that is waiting for an event to occur, or to signal that a resource is

available for use. Notifications are a fast and efficient way to communicate between tasks, and can

be used to avoid the overhead of using message queues or other synchronization primitives.

Event signaling provides a more powerful mechanism for task synchronization and

communication. An event is a set of flags that can be set or cleared by tasks or interrupts. Tasks

can wait for specific events to occur before proceeding with their operations, and can set or clear

events to signal other tasks or interrupts. Events can be used to synchronize the execution of

multiple tasks or to manage access to shared resources. FreeRTOS provides several event signaling

mechanisms, including event groups and task notifications.

Task notifications and event signaling are implemented using hardware interrupts, and can be used

to implement interrupt-driven designs in FreeRTOS. When a task sends a notification or sets an

event, the hardware interrupt wakes up the receiving task and triggers its execution. This allows

tasks to respond quickly to events and conditions, and can reduce latency and improve overall

system performance.

Here's an example of how to use task notifications in FreeRTOS:

/* Task 1 */

300 | P a g e

void vTask1(void *pvParameters)

{

 for (;;)

 {

 /* Wait for a notification */

 ulTaskNotificationValue =

ulTaskNotifyTake(pdTRUE, portMAX_DELAY);

 /* Process the notification */

 if (ulTaskNotificationValue == 1)

 {

 /* Handle notification 1 */

 }

 else if (ulTaskNotificationValue == 2)

 {

 /* Handle notification 2 */

 }

 }

}

/* Task 2 */

void vTask2(void *pvParameters)

{

 for (;;)

 {

 /* Wait for a random period of time */

 vTaskDelay(pdMS_TO_TICKS(rand() % 1000));

 /* Send a notification to Task 1 */

 xTaskNotify(vTask1Handle, 1,

eSetValueWithOverwrite);

301 | P a g e

 }

}

In this example, Task 1 waits for a notification to occur using the ulTaskNotifyTake() function,

which blocks the task until a notification is received. When a notification is received, Task 1

processes the notification based on its value. Task 2 sends a notification to Task 1 using the

xTaskNotify() function, which wakes up Task 1 and sends it a notification value of 1. Task 1 then

handles the notification by executing the appropriate code.

Overall, task notifications and event signaling are powerful features of FreeRTOS that can be used

to implement efficient and responsive designs. By using notifications and events, tasks can

communicate with each other quickly and efficiently, and respond to events and conditions in a

timely manner.

Notification configuration and usage in FreeRTOS

Notifications in FreeRTOS are used to signal between tasks that an event has occurred, without

the need for one task to continuously check the status of another task. Notifications are lightweight

and have low overhead, making them a good choice for simple event signaling.

Notification Configuration:

To use notifications in FreeRTOS, first, a notification object must be created with the

xTaskNotifyWait() API. This API sets up the notification object and blocks the task until a

notification is received. Here is an example:

TaskHandle_t xTaskToNotify;

// Create the notification object

TaskNotifyHandle_t xTaskNotify;

xTaskNotify = xTaskNotifyCreate();

// Block the task until a notification is received

ulTaskNotifyTake(pdTRUE, portMAX_DELAY);

To send a notification from another task, the xTaskNotify() API can be used. This API can be

called with or without a notification value, which can be used to pass data between tasks. Here is

an example:

302 | P a g e

TaskNotifyHandle_t xTaskNotify;

// Send a notification to the waiting task

xTaskNotify(xTaskToNotify, 0, eIncrement);

Usage of Notification:

Notifications can be used for a variety of purposes, including:

• Signaling that a resource is available for use.

• Signaling that an event has occurred, such as a button press or sensor reading.

• Signaling that a task should terminate or restart.

• Notifications can also be used in conjunction with other synchronization mechanisms, such

as semaphores or mutexes, to provide more complex synchronization.

Benefits of Notifications:

Notifications have several benefits, including:

• Low overhead: Notifications are lightweight and have low overhead, making them a good

choice for simple event signaling.

• Flexibility: Notifications can be used for a variety of purposes, including signaling events,

passing data between tasks, and terminating tasks.

• Fast: Notifications are fast and can be used to signal events in real-time.

• Low memory usage: Notifications use a small amount of memory, making them suitable

for use in memory-constrained systems.

Drawbacks of Notifications:

Notifications have a few drawbacks, including:

• Limited data transfer: Notifications can only transfer small amounts of data, making them

unsuitable for large data transfers.

• Non-persistent: Notifications are not persistent, meaning that they are lost if a task is not

waiting for a notification when it is sent.

Overall, notifications are a useful and flexible synchronization mechanism in FreeRTOS, with low

overhead and fast performance. They are a good choice for simple event signaling and can be used

in conjunction with other synchronization mechanisms to provide more complex synchronization.

Event signaling and synchronization using notifications

FreeRTOS provides a feature called task notifications, which allows for efficient inter-task

communication and synchronization. Task notifications are lightweight, fast, and efficient

mechanisms for signaling events or data between tasks without the need for a semaphore or mutex.

303 | P a g e

Notifications can be used to signal an event or data between tasks, and it supports both binary and

counting modes.

In binary mode, a notification can either be in a set or unset state, while in counting mode, the

notification holds a count value. Notifications can be used to wake up a waiting task or to

communicate data between tasks.

Notification Configuration and Usage:

To use task notifications, a task must first create a notification object of type TaskHandle_t using

xTaskGetCurrentTaskHandle(), which returns the handle of the calling task. Then, the notification

can be set, cleared or waited upon using ulTaskNotifyTake(), xTaskNotify(), and

xTaskNotifyGive(), respectively.

/* Task A */

void vTaskA(void *pvParameters) {

 TaskHandle_t xTaskBHandle;

 uint32_t ulNotificationValue;

 /* Get the handle of TaskB */

 xTaskBHandle = xTaskGetHandle("TaskB");

 /* Wait for notification from TaskB */

 ulNotificationValue = ulTaskNotifyTake(pdTRUE,

portMAX_DELAY);

 /* Process notification from TaskB */

 printf("TaskA: Received notification with value

%lu\n", ulNotificationValue);

}

/* Task B */

void vTaskB(void *pvParameters) {

 TaskHandle_t xTaskAHandle;

 /* Get the handle of TaskA */

304 | P a g e

 xTaskAHandle = xTaskGetHandle("TaskA");

 /* Send notification to TaskA */

 xTaskNotify(xTaskAHandle, 123,

eSetValueWithOverwrite);

 /* Wait for notification from TaskA */

 ulNotificationValue = ulTaskNotifyTake(pdTRUE,

portMAX_DELAY);

 /* Process notification from TaskA */

 printf("TaskB: Received notification with value

%lu\n", ulNotificationValue);

}

In the example above, TaskA waits for a notification from TaskB using ulTaskNotifyTake(), and

TaskB sends a notification to TaskA using xTaskNotify(). The notification value is set to 123 using

eSetValueWithOverwrite, which overwrites any previous notification value. Once the notification

is received, the task processes the notification value.

Event Signaling and Synchronization using Notifications:

Task notifications can also be used for event signaling and synchronization between tasks. In this

case, a task waits for a set of events from other tasks using the ulTaskNotifyTake() function with

a mask of events to wait for. Once one or more events are set, the task is unblocked and can process

the events.

/* Task A */

void vTaskA(void *pvParameters) {

 TaskHandle_t xTaskBHandle;

 uint32_t ulNotificationValue;

 /* Get the handle of TaskB */

 xTaskBHandle = xTaskGetHandle("TaskB");

305 | P a g e

 /* Wait for notification from TaskB with event 1 or

2 set */

 ulNotificationValue = ulTaskNotifyTake(pdTRUE,

portMAX_DELAY, 0x03);

 /* Process notification from TaskB */

 if (ulNotificationValue & 0x01) {

 printf("TaskA: Received event 1\n");

 }

 if (ulNotificationValue & 0x02) {

 printf("TaskA: Received event 2\n");

 }

}

Debugging communication and

synchronization issues with SEGGER tools

Debugging techniques for communication and synchronization issues

Debugging communication and synchronization issues in FreeRTOS can be challenging due to the

complexity of the system and the potential for race conditions and deadlocks. However, there are

several techniques and tools that can be used to simplify the process and identify the root cause of

the problem.

One useful technique is to use debug print statements in the code to track the flow of execution

and monitor the values of variables and flags that are relevant to the communication and

synchronization process. For example, you can use the printf() function in C to print debug

messages to the console or a serial port.

Another useful tool for debugging FreeRTOS is the SEGGER SystemView, which provides real-

time visualization of the system's behavior and allows for tracing and analysis of events, tasks, and

interrupts. SystemView can be used to identify issues such as task blocking or priority inversions,

and to optimize the system's performance by analyzing CPU usage and memory allocation.

Here's an example of how to use debug print statements to identify a synchronization issue in

FreeRTOS:

306 | P a g e

#include "FreeRTOS.h"

#include "task.h"

xSemaphoreHandle xMutex;

void vTask1(void *pvParameters) {

 while (1) {

 if (xSemaphoreTake(xMutex, (TickType_t)10) ==

pdTRUE) {

 printf("Task 1 got the mutex.\n");

 // Do some critical section stuff here

 xSemaphoreGive(xMutex);

 } else {

 printf("Task 1 failed to get the mutex.\n");

 }

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

}

void vTask2(void *pvParameters) {

 while (1) {

 if (xSemaphoreTake(xMutex, (TickType_t)10) ==

pdTRUE) {

 printf("Task 2 got the mutex.\n");

 // Do some critical section stuff here

 xSemaphoreGive(xMutex);

 } else {

 printf("Task 2 failed to get the mutex.\n");

 }

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

307 | P a g e

}

int main(void) {

 xMutex = xSemaphoreCreateMutex();

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 vTaskStartScheduler();

 while (1) {

 }

}

In this example, we have two tasks that are attempting to access a shared resource using a mutex.

We can use printf() statements to monitor the flow of execution and identify any issues with the

synchronization process.

If we notice that one task is consistently failing to acquire the mutex, we can use SystemView to

trace the events and identify the cause of the problem. For example, we may find that the task is

being preempted by another task with a higher priority, causing it to wait indefinitely for the mutex.

In this case, we may need to adjust the task priorities or use priority inheritance to ensure that the

mutex is available when needed.

Using SEGGER tools for analyzing communication and synchronization behavior

SEGGER tools are widely used for analyzing and debugging FreeRTOS applications. They offer

several features that help to diagnose issues related to inter-task communication and

synchronization. Some of the SEGGER tools used for analyzing FreeRTOS applications are:

SystemView: It is a real-time recording and visualization tool that provides a graphical view of

task states, interrupts, and communication events in real-time. It helps to analyze the

communication and synchronization behavior of FreeRTOS applications.

J-Link: It is a hardware debugging tool that provides real-time tracing, profiling, and code

coverage analysis of FreeRTOS applications. It helps to diagnose communication and

synchronization issues by providing detailed information about the system behavior.

308 | P a g e

Ozone: It is a debugger that provides real-time tracing and profiling of FreeRTOS applications. It

helps to diagnose communication and synchronization issues by providing detailed information

about the system behavior.

To use these tools, the FreeRTOS application needs to be configured to generate trace events. The

trace events are captured by the SEGGER tool, which then provides a graphical view of the system

behavior.

Here is an example of how to configure the FreeRTOS application to generate trace events for use

with SEGGER SystemView:

#include "FreeRTOS.h"

#include "task.h"

#include "SEGGER_SYSVIEW.h"

void vTask1(void *pvParameters) {

 while (1) {

 // Task code here

 SEGGER_SYSVIEW_SendTaskState(1, 0); // Send

task state to SystemView

 }

}

void vTask2(void *pvParameters) {

 while (1) {

 // Task code here

 SEGGER_SYSVIEW_SendTaskState(2, 0); // Send

task state to SystemView

 }

}

int main(void) {

 SEGGER_SYSVIEW_Conf();

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

309 | P a g e

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 vTaskStartScheduler();

 return 0;

}

In this example, the SEGGER_SYSVIEW_SendTaskState function is called to send the task state

to SystemView. The SEGGER_SYSVIEW_Conf function is called to configure SystemView to

receive trace events from the FreeRTOS application.

Once the FreeRTOS application is running, the SEGGER tool can be used to visualize the system

behavior. For example, SystemView can be used to view the task states, communication events,

and synchronization events in real-time. This helps to diagnose communication and

synchronization issues in the FreeRTOS application.

Troubleshooting common communication and synchronization-related issues

FreeRTOS provides a range of communication and synchronization mechanisms for tasks to

interact with each other. However, issues can arise when implementing these mechanisms that can

result in incorrect behavior, deadlocks, or other problems.

Here are some common communication and synchronization-related issues that can occur in

FreeRTOS along with some techniques to troubleshoot them:

Race conditions: These occur when two tasks attempt to access a shared resource simultaneously,

leading to unexpected behavior or crashes. To diagnose race conditions, you can use SEGGER

SystemView to monitor task interactions and identify conflicts. To avoid race conditions, you

should use semaphores or mutexes to protect shared resources.

Deadlocks: These occur when tasks get stuck waiting for each other to release resources, resulting

in a system freeze. To diagnose deadlocks, you can use SystemView to identify which tasks are

blocked and which resources they are waiting for. To prevent deadlocks, you should use priority

inheritance techniques or avoid using multiple resources within a single critical section.

Starvation: This occurs when a task is prevented from running indefinitely, typically because

higher priority tasks are monopolizing the CPU. To diagnose starvation, you can use SystemView

to monitor task execution and identify which tasks are consuming excessive CPU time. To prevent

starvation, you should use task priorities judiciously and avoid busy-waiting loops.

Missed notifications: These occur when a task fails to receive a notification, resulting in incorrect

behavior. To diagnose missed notifications, you can use SystemView to monitor task interactions

and identify which tasks are not receiving notifications. To prevent missed notifications, you

should use proper synchronization techniques such as semaphores or event groups.

310 | P a g e

Here's an example code snippet that illustrates the use of an event group to synchronize task

behavior:

// Define an event group handle

EventGroupHandle_t xEventGroup;

// Define an event bit

#define BIT_0 (1 << 0)

// Task that sets the event bit

void vTask1(void *pvParameters)

{

 while(1)

 {

 // Wait for a button press

 if(button_pressed())

 {

 // Set the event bit

 xEventGroupSetBits(xEventGroup, BIT_0);

 }

 }

}

// Task that waits for the event bit

void vTask2(void *pvParameters)

{

 while(1)

 {

 // Wait for the event bit to be set

 EventBits_t bits =

xEventGroupWaitBits(xEventGroup, BIT_0, pdTRUE,

pdFALSE, portMAX_DELAY);

311 | P a g e

 // Do something now that the event has occurred

 do_something();

 }

}

// Initialization code

void vInit(void)

{

 // Create the event group

 xEventGroup = xEventGroupCreate();

 // Create the tasks

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, NULL);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 2, NULL);

 // Start the scheduler

 vTaskStartScheduler();

}

In this example, Task 1 waits for a button press and sets an event bit when the button is pressed.

Task 2 waits for the event bit to be set using the xEventGroupWaitBits() function. Once the event

has occurred, Task 2 performs some action.

Overall, effective communication and synchronization are critical for proper operation of

FreeRTOS-based systems. Careful attention to synchronization techniques, debugging, and

troubleshooting can help ensure smooth operation of your application.

312 | P a g e

Chapter 8:

Timer Management with FreeRTOS

313 | P a g e

Real-time systems often require the use of timers to schedule periodic or one-shot events. Timers

can be used for a wide range of tasks, such as triggering sensor readings, updating display

information, or scheduling communication between tasks. In such systems, timer management is

crucial to ensuring that tasks execute on time and meet their timing requirements.

FreeRTOS is an open-source real-time operating system that provides powerful timer management

capabilities. It offers a variety of timer types, including software timers, hardware timers, and low-

power tickless timers. FreeRTOS also provides a range of features to manage timers, such as timer

queues, timer callback functions, and timer notifications.

In this chapter, we will explore the timer management capabilities of FreeRTOS. We will start by

discussing the basics of timer management, including the various types of timers and their

applications in real-time systems. We will then delve into the different timer management features

provided by FreeRTOS, starting with the software timers.

Software timers are one of the most commonly used timers in FreeRTOS. They are implemented

entirely in software and can be used for tasks that do not require high precision timing. We will

discuss the structure of software timers, their configuration, and their use in real-time systems. We

will also provide examples of how to create and manage software timers in FreeRTOS.

Next, we will move on to hardware timers, which are implemented in hardware and provide much

higher precision timing than software timers. FreeRTOS provides support for hardware timers on

a variety of microcontrollers, and we will explore how to configure and use hardware timers in

FreeRTOS. We will also discuss the various hardware timers available on popular microcontrollers

and how to select the appropriate hardware timer for a particular application.

Introduction to timer management

Overview of timers and their applications

FreeRTOS provides support for software timers, which can be used to execute a function after a

specified period of time. Timers are useful for scheduling periodic tasks and performing time-

based operations.

Timers are created using the xTimerCreate() function. The first parameter is a string that identifies

the timer. The second parameter is the duration of the timer in ticks. The third parameter specifies

whether the timer should be an auto-reload timer or not. If it is an auto-reload timer, the timer will

automatically restart after it has expired. If it is not an auto-reload timer, the timer will only expire

once. The fourth parameter is a pointer to an optional callback function that will be executed when

the timer expires. The last parameter is a pointer to a structure that will be used to store the timer's

state.

314 | P a g e

Here is an example of creating and starting a timer in FreeRTOS:

// Define a callback function that will be called when

the timer expires

void myTimerCallback(TimerHandle_t xTimer)

{

 // Perform the time-based operation

 printf("Timer expired\n");

}

// Create and start the timer

void createTimer()

{

 // Create a timer that expires after 1000 ticks (1

second)

 TimerHandle_t xTimer = xTimerCreate("MyTimer",

1000, pdTRUE, NULL, myTimerCallback);

 // Start the timer

 xTimerStart(xTimer, 0);

}

In this example, we create a timer that expires after 1000 ticks (which is 1 second if the tick rate

is 1 kHz). We specify that the timer should be an auto-reload timer by passing pdTRUE as the

third parameter. We also specify a callback function (myTimerCallback()) that will be called when

the timer expires.

We then start the timer using the xTimerStart() function. The second parameter specifies the

number of ticks to wait before the timer should start. In this case, we set it to 0 so that the timer

starts immediately.

FreeRTOS also provides APIs to stop and delete timers. To stop a timer, use the xTimerStop()

function. To delete a timer, use the xTimerDelete() function.

Timers can be very useful for scheduling periodic tasks or performing time-based operations in

FreeRTOS. By using software timers, you can reduce the need for hardware timers, which can

help to reduce system cost and complexity.

315 | P a g e

Types of timers and their features

In FreeRTOS, there are two types of timers available: software timers and hardware timers. Both

timers are used to generate a time delay or to perform periodic tasks.

Software timers are implemented entirely in software and are dependent on the RTOS tick

interrupt. When a software timer is created, the RTOS kernel will automatically start and manage

the timer. The software timer can be configured to either start as soon as it is created or to start

after a specified delay. The software timer can be set to expire only once or repeatedly at a fixed

interval.

Hardware timers are typically implemented in hardware and provide a more accurate and precise

way to measure time intervals. They are typically used in applications that require very high

precision timing or for driving external hardware. FreeRTOS provides a hardware timer

abstraction layer, allowing the user to use hardware timers from multiple platforms in a consistent

way.

Here's an example of creating and starting a software timer in FreeRTOS:

/* Define a timer handle */

TimerHandle_t myTimer;

/* Create a timer that will expire after 1000ms (one

second) */

myTimer = xTimerCreate("My Timer", pdMS_TO_TICKS(1000),

pdTRUE, 0, vTimerCallback);

/* Start the timer */

xTimerStart(myTimer, 0);

In this example, xTimerCreate creates a new software timer named "My Timer" that will expire

after 1000ms (one second) and calls vTimerCallback when it expires. xTimerStart starts the timer.

Here's an example of configuring and starting a hardware timer in FreeRTOS:

/* Define a timer handle */

TimerHandle_t myTimer;

316 | P a g e

/* Configure the hardware timer to generate an

interrupt every 1ms */

configureHardwareTimer(1);

/* Create a timer that will use the hardware timer */

myTimer = xTimerCreate("My Timer", 0, pdTRUE, 0,

vTimerCallback);

/* Start the timer */

xTimerStart(myTimer, 0);

In this example, configureHardwareTimer configures a hardware timer to generate an interrupt

every 1ms. xTimerCreate creates a new software timer named "My Timer" that will use the

hardware timer and call vTimerCallback when it expires. xTimerStart starts the timer.

FreeRTOS provides several features that make it easy to use timers in applications, including the

ability to synchronize with other tasks using blocking calls and the ability to query the status of a

timer at any time. Timers can be useful in a wide range of applications, from scheduling periodic

tasks to implementing time-outs for operations.

Benefits of using timers in FreeRTOS

Timers are an important feature in FreeRTOS that provide a way to execute tasks periodically or

after a specific amount of time. They can be used for a variety of tasks, such as scheduling periodic

sensor readings, controlling motor speeds, or monitoring system health. Timers are particularly

useful in embedded systems where real-time performance is critical. In this section, we will discuss

the benefits of using timers in FreeRTOS along with some code examples.

Precision Timing: One of the primary benefits of using timers in FreeRTOS is the ability to

perform precise timing operations. This is because timers are implemented using the hardware

timers available on the microcontroller. The use of hardware timers ensures that timing operations

are accurate and consistent, which is essential for many real-time applications.

Reduced CPU Load: Another advantage of using timers is that they can reduce the CPU load. This

is because timers are implemented using interrupts, which means that the CPU is not continuously

polling for the timer to expire. Instead, the timer interrupt signals the CPU to execute the associated

task, allowing it to focus on other tasks in the meantime.

Easy to Use: Timers in FreeRTOS are easy to use and implement. They can be created and

managed using the built-in FreeRTOS API functions, which are designed to be intuitive and user-

friendly.

Now let's take a look at some code examples to demonstrate the use of timers in FreeRTOS.

317 | P a g e

// Define a timer handle

TimerHandle_t myTimerHandle;

// Timer callback function

void myTimerCallback(TimerHandle_t xTimer) {

 // Perform some task here

}

// Create the timer

myTimerHandle = xTimerCreate("MyTimer",

pdMS_TO_TICKS(500), pdTRUE, 0, myTimerCallback);

// Start the timer

xTimerStart(myTimerHandle, 0);

In this example, we first define a timer handle using the TimerHandle_t data type. We then define

a callback function that will be executed when the timer expires. This function can be used to

perform any desired task. Next, we create the timer using the xTimerCreate() API function. This

function takes several parameters, including the name of the timer, the timer period in milliseconds

(converted to FreeRTOS ticks using the pdMS_TO_TICKS() macro), a boolean value indicating

whether the timer should auto-reload after each expiration, and a pointer to the timer callback

function.

Finally, we start the timer using the xTimerStart() API function. This function takes two

parameters: the timer handle and a value indicating the amount of time to wait before starting the

timer.

The use of timers in FreeRTOS provides many benefits for real-time applications, including

precision timing, reduced CPU load, and ease of use. By leveraging the built-in FreeRTOS API

functions, it is easy to create and manage timers in a variety of applications.

318 | P a g e

Configuring and using timers in FreeRTOS

Timer configuration and initialization

Timers are essential in any embedded system as they allow developers to schedule tasks and events

at specific intervals. FreeRTOS provides an efficient and reliable timer implementation that can

be used for various applications, including scheduling tasks, triggering events, and measuring time.

To use timers in FreeRTOS, developers need to configure and initialize them. The timer

configuration process involves setting up the timer's parameters, such as the timer period, the

timer's mode, and the timer's callback function. The timer initialization process involves creating

and starting the timer.

The following code snippet demonstrates how to configure and initialize a timer in FreeRTOS:

// Define the timer period and the timer callback

function

#define TIMER_PERIOD_MS 1000

void vTimerCallback(TimerHandle_t xTimer)

{

 // Timer callback code goes here

}

// Create and initialize the timer

TimerHandle_t xTimer = xTimerCreate("Timer", //

Text name for the timer

 pdMS_TO_TICKS(

TIMER_PERIOD_MS), // The timer period

 pdTRUE, //

The timer will auto-reload

 (void *) 0, //

No timer ID

 vTimerCallback //

The timer callback function

);

xTimerStart(xTimer, 0); // Start the timer with a

block time of 0 ticks

319 | P a g e

In this code, the xTimerCreate() function creates a timer with the specified period, mode, callback

function, and timer ID. The pdMS_TO_TICKS() macro converts the timer period from

milliseconds to FreeRTOS ticks. The xTimerStart() function starts the timer with a block time of

0 ticks, which means it starts immediately.

FreeRTOS provides several timer modes, including:

• One-shot mode: The timer triggers only once.

• Auto-reload mode: The timer automatically restarts after triggering.

• Periodic mode: The timer triggers periodically at a fixed interval.

• Developers can choose the mode that best suits their application's requirements.

Using timers in FreeRTOS has several benefits, including:

• Accurate and reliable timing: FreeRTOS timers use the system tick to ensure accurate

timing, regardless of the system load.

• Efficient use of system resources: FreeRTOS timers are lightweight and efficient, allowing

developers to schedule multiple timers without wasting system resources.

• Simplified code: By using timers, developers can schedule tasks and events at specific

intervals without the need for complex code.

FreeRTOS timers provide a reliable and efficient way to schedule tasks and events in an embedded

system. By configuring and initializing timers correctly, developers can take advantage of

FreeRTOS's timer implementation to simplify their code and improve system performance.

Timer usage and examples

In FreeRTOS, timers are used to execute tasks periodically or after a specific time interval. Timers

can be used for a variety of applications, such as triggering an event, measuring time intervals, and

scheduling tasks. In this subtopic, we will discuss the usage and examples of timers in FreeRTOS.

Timer Configuration and Initialization:

FreeRTOS provides the xTimerCreate() API to create a new timer object. The xTimerCreate() API

takes several parameters, including the timer period, auto-reload flag, callback function, and timer

name.

The following code demonstrates the creation of a timer object with a period of 1000 milliseconds,

which will call the callback function vTimerCallback() when the timer expires:

/* Create a new timer object */

TimerHandle_t xTimer = xTimerCreate("Timer", /* Text

name of the timer */

320 | P a g e

pdMS_TO_TICKS(1000), /* Timer period in milliseconds */

 pdTRUE, /* Auto-

reload the timer */

 NULL, /* Timer ID

*/

 vTimerCallback); /*

Timer callback function */

if(xTimer == NULL)

{

 /* The timer was not created successfully */

}

Timer Usage and Examples:

Once a timer is created, it can be started and stopped using the xTimerStart() and xTimerStop()

APIs, respectively. The timer period can also be changed dynamically using the

xTimerChangePeriod() API.

The following code demonstrates the usage of a timer to execute a task every 1000 milliseconds:

/* Create a new timer object */

TimerHandle_t xTimer = xTimerCreate("Timer", /* Text

name of the timer */

pdMS_TO_TICKS(1000), /* Timer period in milliseconds */

 pdTRUE, /* Auto-

reload the timer */

 NULL, /* Timer ID

*/

 vTimerCallback); /*

Timer callback function */

if(xTimer == NULL)

{

 /* The timer was not created successfully */

321 | P a g e

}

/* Start the timer */

xTimerStart(xTimer, 0);

/* Define the task to be executed by the timer */

void vTaskFunction(void *pvParameters)

{

 /* Task code goes here */

}

/* Define the timer callback function */

void vTimerCallback(TimerHandle_t xTimer)

{

 /* Call the task */

 xTaskCreate(vTaskFunction, /* Task function */

 "Task", /* Text name for the task */

 configMINIMAL_STACK_SIZE, /* Stack

depth */

 NULL, /* Task parameters */

 tskIDLE_PRIORITY, /* Task priority */

 NULL); /* Task handle */

}

In this example, the timer object xTimer is created with a period of 1000 milliseconds and an auto-

reload flag. The timer is started using the xTimerStart() API, and the task to be executed is defined

in the vTaskFunction() function. The vTimerCallback() function is the timer callback function,

which creates a new task using the xTaskCreate() API every time the timer expires.

Benefits of using timers in FreeRTOS:

Using timers in FreeRTOS provides several benefits, including:

• Timers allow tasks to be executed periodically or after a specific time interval, which can

be useful for scheduling tasks and triggering events.

322 | P a g e

• Timers can be used to measure time intervals, which can be useful for performance analysis

and debugging.

• Timers can be used to implement timeouts, which can prevent tasks from waiting

indefinitely for a resource that may never become available.

• Timers can be used to implement watchdog functionality, which can detect and recover

from system faults and errors.

Overall, timers are a powerful and flexible feature in FreeRTOS that can be used for a wide range

of applications.

Timer synchronization and accuracy in FreeRTOS

In FreeRTOS, timers are used to perform tasks at regular intervals or after a specific delay. Timers

can be used to synchronize tasks or trigger events at specific times, and they are essential for real-

time systems.

Timer synchronization and accuracy are important considerations in FreeRTOS to ensure that the

tasks execute at the desired time and with minimal latency. The accuracy of the timer depends on

the hardware clock of the system and the tick rate of the FreeRTOS kernel.

FreeRTOS provides several timer types that can be used for different purposes. The software timer

is a generic timer that can be used for periodic tasks, one-shot tasks, and even as a delay function.

The hardware timer is a timer that uses hardware interrupts and is typically used for real-time tasks.

To ensure accurate timing in FreeRTOS, it is important to choose the correct timer type and

configure it properly. The tick rate of the kernel should be set to a value that is a multiple of the

hardware clock rate to ensure accurate timing.

Here is an example of using a software timer in FreeRTOS to toggle an LED every second:

#include "FreeRTOS.h"

#include "task.h"

#include "timers.h"

#define LED_PIN 13

static void vTimerCallback(TimerHandle_t xTimer)

{

 static BaseType_t xLEDState = pdFALSE;

 digitalWrite(LED_PIN, xLEDState);

 xLEDState = !xLEDState;

323 | P a g e

}

void setup()

{

 pinMode(LED_PIN, OUTPUT);

 TimerHandle_t xTimer = xTimerCreate("Timer",

pdMS_TO_TICKS(1000), pdTRUE, 0, vTimerCallback);

 xTimerStart(xTimer, 0);

}

void loop()

{

 vTaskDelay(pdMS_TO_TICKS(100));

}

In this example, a software timer is created with a period of 1000 milliseconds (1 second) and a

callback function that toggles an LED. The timer is started in the setup function, and the loop

function contains a small delay to allow the kernel to run other tasks.

It is important to note that the delay function used in the loop function should be a FreeRTOS

delay function, such as vTaskDelay or xQueueReceive, and not the standard delay function

provided by the Arduino library. The FreeRTOS delay functions allow other tasks to run during

the delay, ensuring that the timing of the software timer is not affected by other tasks.

Accurate timing is essential in real-time systems, and FreeRTOS provides several timer types and

functions to ensure accurate timing and synchronization of tasks. By choosing the correct timer

type and configuring it properly, developers can ensure that their FreeRTOS-based systems operate

reliably and accurately.

Timer types and modes

Overview of timer types and modes

FreeRTOS provides several types of timers that can be used for various purposes. These timers

can be categorized into two main types: software timers and hardware timers.

324 | P a g e

Software Timers:

Software timers are implemented using the FreeRTOS kernel tick interrupt. They are used to

generate periodic events, measure time intervals, and perform time-based tasks. Each software

timer is associated with a callback function that is executed when the timer expires.

Software timers can be one-shot or periodic. One-shot timers trigger only once and then stop, while

periodic timers trigger repeatedly at a fixed interval until stopped.

The following code snippet shows how to create a one-shot software timer in FreeRTOS:

// Define a callback function to be executed when the

timer expires

void vTimerCallback(TimerHandle_t xTimer) {

 // Do something here

}

// Create a timer with a period of 1000ms (one-shot)

TimerHandle_t xTimer = xTimerCreate("Timer",

pdMS_TO_TICKS(1000), pdFALSE, 0, vTimerCallback);

// Start the timer

xTimerStart(xTimer, 0);

Hardware Timers:

Hardware timers are implemented using the hardware timers available on the microcontroller.

They provide higher accuracy and precision than software timers, and can be used for tasks that

require precise timing, such as PWM generation or pulse counting.

FreeRTOS supports various types of hardware timers, including one-shot timers, periodic timers,

and capture timers. One-shot hardware timers trigger only once and then stop, while periodic

hardware timers trigger repeatedly at a fixed interval until stopped. Capture timers are used to

measure the duration of an external event or pulse.

The following code snippet shows how to create a periodic hardware timer in FreeRTOS:

// Define a callback function to be executed when the

timer expires

void vTimerCallback(TimerHandle_t xTimer) {

 // Do something here

325 | P a g e

}

// Create a timer with a period of 1000ms (periodic)

TimerHandle_t xTimer = xTimerCreate("Timer",

pdMS_TO_TICKS(1000), pdTRUE, 0, vTimerCallback);

// Start the timer

xTimerStart(xTimer, 0);

Overall, using timers in FreeRTOS can help simplify timing-based tasks and provide more

accurate and precise timing control.

One-shot and periodic timers and their applications

FreeRTOS is a real-time operating system that provides various features for time-sensitive

applications. One such feature is timers, which allow the application to perform tasks at specific

intervals or after a certain amount of time has elapsed. There are two types of timers in FreeRTOS:

software timers and hardware timers. Software timers are managed entirely in software, while

hardware timers are managed by the hardware.

One-shot and periodic timers are two modes of software timers in FreeRTOS. A one-shot timer

executes a task once after a specified delay, while a periodic timer repeatedly executes a task at a

specified interval.

To create a one-shot timer, the xTimerCreate() API function is used. The function takes several

parameters, including the timer period, the timer callback function, and a timer ID. The timer

callback function is called when the timer expires, and it is responsible for executing the desired

task.

Here's an example of creating a one-shot timer that toggles an LED after a 1-second delay:

#include "FreeRTOS.h"

#include "timers.h"

#define LED_PIN 13

void vTimerCallback(TimerHandle_t xTimer)

{

 digitalWrite(LED_PIN, !digitalRead(LED_PIN)); //

toggle LED

326 | P a g e

}

void setup()

{

 pinMode(LED_PIN, OUTPUT);

 TimerHandle_t xTimer = xTimerCreate("Timer",

1000/portTICK_PERIOD_MS, pdFALSE, (void *)0,

vTimerCallback);

 if (xTimer != NULL)

 {

 xTimerStart(xTimer, 0);

 }

}

void loop()

{

 // nothing to do here

}

In this example, the TimerHandle_t variable xTimer is created using the xTimerCreate() function

with a period of 1000ms (1 second) and the pdFALSE parameter indicating that this is a one-shot

timer. The timer callback function vTimerCallback() is defined to toggle the LED, and it is passed

as a parameter to the xTimerCreate() function. Finally, the timer is started using the xTimerStart()

function.

To create a periodic timer, the xTimerCreate() function is used with the pdTRUE parameter

indicating that this is a periodic timer. Here's an example of a periodic timer that flashes an LED

every 500ms:

#include "FreeRTOS.h"

#include "timers.h"

#define LED_PIN 13

void vTimerCallback(TimerHandle_t xTimer)

327 | P a g e

{

 digitalWrite(LED_PIN, !digitalRead(LED_PIN)); //

toggle LED

}

void setup()

{

 pinMode(LED_PIN, OUTPUT);

 TimerHandle_t xTimer = xTimerCreate("Timer",

500/portTICK_PERIOD_MS, pdTRUE, (void *)0,

vTimerCallback);

 if (xTimer != NULL)

 {

 xTimerStart(xTimer, 0);

 }

}

void loop()

{

 // nothing to do here

}

In this example, the xTimerCreate() function is called with a period of 500ms and the pdTRUE

parameter indicating that this is a periodic timer. The timer callback function vTimerCallback() is

defined to toggle the LED, and it is passed as a parameter to the xTimerCreate() function. The

timer is then started using the xTimerStart() function.

One-shot and periodic timers offer several benefits in FreeRTOS. They provide a way to execute

time-sensitive tasks at specific intervals or after a certain amount of time has elapsed. This can be

useful for tasks such as periodic sensor readings, scheduling periodic updates, or controlling the

duration of specific events. By using timers, developers can create applications that are more

efficient, accurate, and reliable.

Hardware and software timers and their features

In FreeRTOS, timers are a powerful feature that enables you to execute code at predefined intervals

or after a specific delay. FreeRTOS supports two types of timers, hardware and software timers.

328 | P a g e

In this note, we will discuss the features and usage of both hardware and software timers in

FreeRTOS.

Hardware timers are generally used for critical time-sensitive applications. They have the

following features:

• Accurate: Hardware timers are highly accurate and are not affected by the CPU load. They

can produce precise time intervals, which is important for many real-time applications.

• Interrupt-based: Hardware timers are based on hardware interrupts, which are generated by

the timer hardware. When the timer expires, the hardware generates an interrupt, which

triggers the execution of the timer callback function.

• Configurable: Hardware timers are highly configurable and can be set up to generate

interrupts at a specific interval or after a specific delay.

FreeRTOS provides an API to create, start, stop, and delete hardware timers. Here is an example

code that creates and starts a hardware timer:

// Define a timer handle

TimerHandle_t xTimer;

// Define a timer callback function

void vTimerCallback(TimerHandle_t xTimer)

{

 // This code will execute when the timer expires

}

// Create a hardware timer that expires after 1000 ms

xTimer = xTimerCreate(

 "MyTimer",

 1000 / portTICK_PERIOD_MS, // 1000 ms period

 pdTRUE, // Auto-reload the

timer

 0, // Timer ID (not used

in this example)

 vTimerCallback // Timer callback

function

);

329 | P a g e

// Start the timer

xTimerStart(xTimer, 0);

Software timers, on the other hand, are typically used for non-critical tasks or tasks that do not

require high accuracy. They have the following features:

• Flexibility: Software timers are more flexible than hardware timers because they are not

dependent on hardware resources. They can be used to perform a wide range of tasks, such

as updating a user interface or checking a sensor value.

• Lightweight: Software timers are lightweight and do not require much overhead. They can

be created and deleted dynamically, making them ideal for dynamic systems.

• Less accurate: Software timers are less accurate than hardware timers because they are

affected by the CPU load. If the CPU is busy, the timer may not execute at the exact time

it was scheduled.

FreeRTOS provides an API to create, start, stop, and delete software timers. Here is an example

code that creates and starts a software timer:

// Define a timer handle

TimerHandle_t xTimer;

// Define a timer callback function

void vTimerCallback(TimerHandle_t xTimer)

{

 // This code will execute when the timer expires

}

// Create a software timer that expires after 1000 ms

xTimer = xTimerCreate(

 "MyTimer",

 1000 / portTICK_PERIOD_MS, // 1000 ms period

 pdTRUE, // Auto-reload the

timer

 0, // Timer ID (not used

in this example)

 vTimerCallback // Timer callback

function

330 | P a g e

);

// Start the timer

xTimerStart(xTimer, 0);

Timers are a powerful feature in FreeRTOS that enables you to execute code at predefined intervals

or after a specific delay. FreeRTOS supports both hardware and software timers, which have

different features and are used for different applications. The usage of timers in FreeRTOS can

greatly improve the efficiency of a real-time application.

Timer period and resolution

Timer period configuration and its effects

In FreeRTOS, the timer period is the amount of time that elapses between each timer tick. Timer

periods are configured using the configTICK_RATE_HZ constant, which defines the frequency

of the FreeRTOS tick interrupt.

The tick interrupt is used by FreeRTOS's kernel to keep track of time and to perform scheduling

operations. The tick interrupt occurs at a fixed interval, which is determined by the timer period.

Changing the timer period has an effect on the behavior of the system. A shorter period results in

more frequent interrupts, which can cause increased overhead and decreased performance. A

longer period can result in less precise timing and reduced accuracy.

Here is an example of how to configure the timer period in FreeRTOS:

#define configTICK_RATE_HZ 1000 // Set the timer tick

rate to 1000 Hz

int main(void) {

 // Configure the timer period

 TickType_t xFrequency = pdMS_TO_TICKS(1000); // Set

the timer period to 1000 ms

 vTaskSetTimeOutState(NULL); // Initialize the task

timeout state

331 | P a g e

 vTaskSetTimeout(xFrequency); // Set the task

timeout to the desired period

 // Start the scheduler

 vTaskStartScheduler();

 return 0;

}

In this example, the configTICK_RATE_HZ constant is set to 1000, which means that the

FreeRTOS tick interrupt occurs at a rate of 1000 Hz. The pdMS_TO_TICKS() macro is used to

convert the desired timer period from milliseconds to ticks. In this case, the timer period is set to

1000 ms.

The vTaskSetTimeOutState() and vTaskSetTimeout() functions are used to set the task timeout to

the desired period. This ensures that the task is scheduled at the appropriate interval.

It is important to note that changing the timer period can have implications for the rest of the

system. For example, shorter timer periods can increase the frequency of context switches and

interrupt handling, which can affect the performance of other tasks in the system. Therefore, it is

important to carefully consider the desired timer period and its effects on the system as a whole.

Timer resolution and its impact on accuracy

Timer resolution is a crucial factor in determining the accuracy and precision of timers in

FreeRTOS. The timer resolution refers to the smallest possible time interval that can be measured

by a timer. This is typically determined by the underlying hardware and software implementation.

In FreeRTOS, the timer resolution is typically determined by the tick rate of the system. The tick

rate refers to the frequency at which the operating system's tick interrupt occurs. This interrupt is

used to update the system time and to trigger time-related events, such as timeouts for timers.

The tick rate can be configured during the initialization of the FreeRTOS kernel. The configuration

is typically done in the board-specific startup code or in the system initialization function. The

following code snippet shows an example of how to configure the tick rate to 1 kHz (i.e., a tick

every millisecond).

void SystemInit(void)

{

 // System clock initialization code here

332 | P a g e

 // Configure the tick rate to 1 kHz

 const uint32_t tick_rate = 1000; // Hz

 const uint32_t tick_period = SystemCoreClock /

tick_rate;

 SysTick_Config(tick_period);

}

In this example, the SysTick_Config() function is used to configure the system tick interrupt. The

tick_period variable is calculated based on the desired tick rate and the system clock frequency.

The SysTick_Config() function then sets up the interrupt to occur every tick_period clock cycles.

It's important to note that the timer resolution has an impact on the accuracy and precision of timers

in FreeRTOS. For example, if the tick rate is set to 1 kHz, the smallest possible timer interval is 1

millisecond. This means that any timer with a period smaller than 1 millisecond will not be

accurately measured. Additionally, the accuracy of longer timers may be affected by the resolution

of the tick rate. For example, a timer with a period of 1 second may be accurate to within a few

milliseconds, depending on the tick rate and the system load.

The timer resolution is an important factor to consider when using timers in FreeRTOS. It's

important to choose an appropriate tick rate based on the requirements of the system and the

accuracy needed for timers. Additionally, it's important to keep in mind that the timer resolution

may affect the accuracy and precision of timers, particularly for short intervals.

Best practices for timer configuration

Timers are an essential tool for managing time-sensitive tasks in real-time operating systems like

FreeRTOS. Here are some best practices for configuring and using timers in FreeRTOS:

Choose the appropriate timer type: FreeRTOS supports both hardware and software timers.

Hardware timers use the microcontroller's built-in timer peripherals and provide higher accuracy

and precision. Software timers, on the other hand, are implemented using the FreeRTOS kernel

and can be used in systems without hardware timers or where software control is necessary.

Set the timer period carefully: The timer period determines the interval between timer ticks and

the resolution of the timer. Choosing an appropriate timer period can be a balancing act between

accuracy and resource utilization. If the period is too short, the timer interrupt may consume too

much CPU time. If the period is too long, the timer may not be accurate enough for the intended

use.

Use the appropriate timer mode: FreeRTOS supports both one-shot and periodic timer modes.

One-shot timers trigger a single interrupt after the timer period elapses, while periodic timers

trigger interrupts repeatedly at fixed intervals. Choose the appropriate mode based on the

requirements of your application.

333 | P a g e

Be mindful of timer accuracy: Timer accuracy can be affected by a variety of factors, including

clock drift, interrupt latency, and system load. Take steps to mitigate these effects, such as using

hardware timers, setting timer priorities appropriately, and minimizing interrupt processing time.

Here's an example code snippet demonstrating how to configure and use a periodic software timer

in FreeRTOS:

#include "FreeRTOS.h"

#include "timers.h"

#define TIMER_PERIOD_MS 1000

static void vTimerCallback(TimerHandle_t xTimer)

{

 // Perform timer-related tasks here

}

void vApplicationTickHook(void)

{

 // Increment the FreeRTOS tick count

 // This function is called by the FreeRTOS tick

interrupt

}

int main(void)

{

 TimerHandle_t xTimer;

 // Create a periodic software timer with a 1s

period

 xTimer = xTimerCreate("Timer",

pdMS_TO_TICKS(TIMER_PERIOD_MS),

 pdTRUE, (void *)0,

vTimerCallback);

334 | P a g e

 if (xTimer == NULL) {

 // Handle timer creation error

 }

 // Start the timer

 xTimerStart(xTimer, 0);

 // Start the FreeRTOS scheduler

 vTaskStartScheduler();

 // Should not reach here

 while (1);

}

In this example, a periodic software timer is created using the xTimerCreate function. The timer

has a 1s period and calls the vTimerCallback function on each interrupt. The timer is started using

the xTimerStart function, and the FreeRTOS scheduler is started using the vTaskStartScheduler

function.

Overall, using timers in FreeRTOS requires careful consideration of timer type, period, mode, and

accuracy to ensure the reliable and efficient operation of real-time tasks.

Timer synchronization and accuracy

Overview of timer synchronization and accuracy

FreeRTOS provides a reliable and accurate timer system for scheduling tasks and events. Timers

are used to perform actions at a fixed rate or after a specified amount of time. Timers can also be

used for synchronization purposes, where a task waits for a timer to expire before proceeding.

FreeRTOS offers different types of timers with varying features to suit different applications. The

accuracy of the timer depends on the resolution and the clock source used. The clock source for

the timer can be a hardware timer or a software timer, and the resolution of the timer is determined

by the tick rate of the FreeRTOS kernel.

335 | P a g e

Timer synchronization is essential to ensure that timers expire at the expected time.

Synchronization can be achieved using a combination of software and hardware mechanisms. The

timer driver for the hardware timer ensures that the timer is accurate, and the FreeRTOS kernel

ensures that the timer is synchronized to the tick rate.

The accuracy of the timer can be affected by the number of tasks running on the system, as the tick

rate can be impacted by the number of context switches that occur. To ensure that the timer is as

accurate as possible, it is recommended to minimize the number of context switches and reduce

the number of running tasks.

Below is an example of how to configure and use a timer in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "timers.h"

#define TIMER_PERIOD_MS 1000

static TimerHandle_t xTimer;

void vTimerCallback(TimerHandle_t pxTimer) {

 // Timer expired, do something

}

void vTaskFunction(void *pvParameters) {

 // Create a software timer

 xTimer = xTimerCreate(

 "Software Timer", // Name of the timer

 pdMS_TO_TICKS(TIMER_PERIOD_MS), // Period of

the timer in ticks

 pdTRUE, // Auto-reload the

timer

 0, // ID of the timer

(not used here)

 vTimerCallback // Callback function

when the timer expires

);

336 | P a g e

 // Start the timer

 xTimerStart(xTimer, 0);

 while(1) {

 // Do something

 }

}

In this example, a software timer is created using the xTimerCreate function. The period of the

timer is set to 1000 milliseconds using the pdMS_TO_TICKS macro, which converts milliseconds

to ticks based on the tick rate of the FreeRTOS kernel. The pdTRUE parameter indicates that the

timer should auto-reload when it expires, and the vTimerCallback function is called when the timer

expires.

The timer is started using the xTimerStart function, which takes the handle of the timer and a block

time parameter. The block time parameter is set to 0, which means the function will not block and

return immediately.

Timers are an essential feature in FreeRTOS for scheduling tasks and events. FreeRTOS offers

different types of timers with varying features, and their accuracy is determined by the resolution

and clock source used. Timer synchronization is necessary to ensure that timers expire at the

expected time, and the accuracy can be affected by the number of tasks running on the system.

Timer drift and correction mechanisms

In real-time systems, timers are used to perform a variety of tasks at predetermined times, including

scheduling tasks, managing resource allocation, and generating periodic signals. However, timer

drift can cause problems when these tasks need to be executed with a high degree of accuracy.

Therefore, it is important to have mechanisms in place to correct timer drift and maintain timer

accuracy. In FreeRTOS, there are several mechanisms available to correct timer drift, including

tickless idle mode and clock calibration.

Tickless idle mode is a feature in FreeRTOS that allows the system to enter a low-power state

when no tasks are executing. During tickless idle mode, the system's clock is stopped and will only

be re-enabled when a task is scheduled to run or when an interrupt occurs. This reduces the number

of interrupts generated by the system, which can help to reduce power consumption and improve

system performance. Additionally, tickless idle mode can help to reduce timer drift by allowing

the system to re-synchronize the clock with an external time source.

Clock calibration is another mechanism available in FreeRTOS to correct timer drift. Clock

calibration involves periodically measuring the system's clock frequency and adjusting it to

maintain accuracy over time. This is particularly important for systems that require high levels of

337 | P a g e

accuracy, such as those used in aerospace or medical applications. FreeRTOS provides a built-in

clock calibration feature that can be used to periodically calibrate the system's clock and maintain

accuracy.

Here is an example code snippet that demonstrates how to use the clock calibration feature in

FreeRTOS:

/* Define the number of ticks to use for calibration */

#define CALIBRATION_TICKS 1000

/* Task to perform clock calibration */

void vCalibrationTask(void *pvParameters)

{

 TickType_t xLastWakeTime;

 TickType_t xTicks;

 /* Initialize the last wake time */

 xLastWakeTime = xTaskGetTickCount();

 while(1)

 {

 /* Wait for the specified number of ticks */

 vTaskDelayUntil(&xLastWakeTime,

CALIBRATION_TICKS);

 /* Measure the number of ticks since the last

calibration */

 xTicks = xTaskGetTickCount() - xLastWakeTime;

 /* Calculate the clock frequency based on the

number of ticks */

 configCPU_CLOCK_HZ = xTicks *

configTICK_RATE_HZ / CALIBRATION_TICKS;

338 | P a g e

 /* Reset the last wake time */

 xLastWakeTime = xTaskGetTickCount();

 }

}

int main()

{

 /* Create the calibration task */

 xTaskCreate(vCalibrationTask, "Calibration",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL

);

 /* Start the scheduler */

 vTaskStartScheduler();

 return 0;

}

In this example, a task is created to perform clock calibration by measuring the number of ticks

that occur over a specified period of time. The clock frequency is then calculated based on the

number of ticks, and the system's clock is adjusted to maintain accuracy over time.

Timers are an essential component of real-time systems, but timer drift can cause problems when

high levels of accuracy are required. FreeRTOS provides several mechanisms to correct timer drift

and maintain accuracy, including tickless idle mode and clock calibration. By using these

mechanisms, developers can ensure that their systems maintain high levels of accuracy over time.

External clock synchronization and its benefits

FreeRTOS is a popular real-time operating system (RTOS) used in embedded systems to manage

tasks, resources, and communication. One important aspect of FreeRTOS is its support for timers,

which can be used to schedule tasks, measure time intervals, and synchronize system behavior. In

this note, we will discuss the benefits of using external clock synchronization in FreeRTOS and

provide some example codes.

339 | P a g e

Overview of Timer Synchronization in FreeRTOS:

FreeRTOS provides several timer types that can be used for different purposes. These include

hardware timers, software timers, and tick timers. Hardware timers use dedicated hardware

resources to generate interrupts at specified intervals, while software timers use software counters

to emulate timers. Tick timers, on the other hand, use the system tick interrupt to maintain a tick

count that can be used for timing purposes.

When multiple timers are used in a system, it is important to ensure that they are synchronized to

avoid timing errors and conflicts. Timer synchronization can be achieved using external clock

sources, which provide accurate and consistent timing signals that can be used to trigger timer

events.

Benefits of External Clock Synchronization in FreeRTOS:

External clock synchronization offers several benefits for FreeRTOS systems, including:

Accurate timing: External clocks provide highly accurate and stable timing signals that can be used

to synchronize timers and ensure precise timing measurements.

Reduced jitter: Jitter refers to the variation in timing intervals caused by fluctuations in system

clock or interrupt processing. External clock synchronization can help reduce jitter and improve

system performance.

Improved reliability: By using a reliable external clock source, system designers can reduce the

risk of timer drift or failure, which can lead to system errors or crashes.

Example Code for External Clock Synchronization in FreeRTOS

FreeRTOS provides a tickless idle mode that can be used to save power by turning off the system

tick interrupt when there are no tasks to be executed. To use this mode, an external clock source

must be connected to the system to provide accurate timing signals.

Here is an example code that shows how to configure external clock synchronization in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#define EXT_CLOCK_HZ 1000000 /* external clock

frequency in Hz */

#define TICK_RATE_HZ 100 /* tick rate in Hz */

void vApplicationSetupTimerInterrupt(void)

340 | P a g e

{

 /* Set up the timer interrupt to use the external

clock */

 vPortSetupTimerInterrupt();

 /* Configure the timer to generate interrupts at a

fixed frequency */

 ulPortSetInterruptMaskFromISR();

 {

 portDISABLE_INTERRUPTS();

 {

 /* Configure the timer to generate

interrupts at a fixed frequency */

 ulPortSetFrequencyHz(EXT_CLOCK_HZ);

 /* Configure the tick interrupt to fire at

a fixed rate */

 xPortSysTickHandlerSetInterval(1000000 /

TICK_RATE_HZ);

 }

 portENABLE_INTERRUPTS();

 }

 ulPortClearInterruptMaskFromISR();

}

In this code, the vApplicationSetupTimerInterrupt() function is called to set up the timer interrupt.

The vPortSetupTimerInterrupt() function is used to configure the timer to use the external clock

source, and the ulPortSetInterruptMaskFromISR() and ulPortClearInterruptMaskFromISR()

functions are used to protect the timer configuration from concurrent access.

The ulPortSetFrequencyHz() function is used to set the timer frequency to the external clock

frequency, and the xPortSysTickHandlerSetInterval() function is used to set the tick rate to the

desired value. The tick rate is calculated as the external clock frequency divided by the desired

tick rate in Hz.

341 | P a g e

Debugging timer-related issues with

SEGGER tools

Debugging techniques for timer-related issues

Debugging timer-related issues in FreeRTOS can be challenging as they often involve issues

related to timing and synchronization. However, there are several techniques that can be used to

identify and fix such issues.

Check the timer configuration: The first step in debugging timer-related issues is to check the timer

configuration. Make sure that the timer is configured correctly with the appropriate clock source,

timer resolution, and period. Ensure that the timer is initialized before it is started and that the

interrupt handler is correctly defined.

Use logging and debugging tools: Using logging and debugging tools can help identify timer-

related issues. For example, FreeRTOS provides a trace tool that can be used to log events and

provide visibility into the execution of tasks, interrupts, and timers. Other debugging tools such as

JTAG and SWD can also be used to monitor the execution of the code and identify any issues.

Check for timer drift: Timer drift can occur due to clock inaccuracies, interrupts, and other factors.

To check for timer drift, compare the actual timer values with the expected values. If there is a

significant difference between the two values, it could indicate a timer drift issue. Use correction

mechanisms such as adjusting the timer period or using external clock synchronization to correct

the drift.

Use critical sections and mutexes: If multiple tasks are using the same timer, use critical sections

or mutexes to ensure that only one task can access the timer at a time. This can prevent issues such

as timer resetting, which can occur if two tasks try to reset the timer at the same time.

Check for interrupt nesting: Interrupt nesting can occur if an interrupt handler triggers another

interrupt before completing its execution. This can cause timer-related issues such as incorrect

timer values or unexpected interrupt behavior. To prevent interrupt nesting, use interrupt priority

levels and avoid performing lengthy operations within interrupt handlers.

Debugging timer-related issues in FreeRTOS requires careful attention to the timer configuration,

use of debugging tools, monitoring for timer drift, use of synchronization mechanisms, and

prevention of interrupt nesting. These techniques can help identify and fix timer-related issues and

ensure the accurate and reliable execution of timers in FreeRTOS.

Using SEGGER tools for analyzing timer behavior

SEGGER is a software development company that provides a range of powerful tools for

debugging and analyzing embedded systems. In the context of FreeRTOS, SEGGER offers several

useful tools for analyzing timer behavior, including SystemView and J-Link.

342 | P a g e

SystemView is a real-time recording and visualization tool that allows developers to track and

analyze the behavior of FreeRTOS tasks, events, and other system components. One of its key

features is the ability to track and display the behavior of FreeRTOS timers in real-time, allowing

developers to identify issues related to timer synchronization and accuracy.

J-Link is a popular hardware debugger that can be used with FreeRTOS applications to monitor

and control the behavior of the system in real-time. With J-Link, developers can set breakpoints,

examine variables, and step through code, making it an invaluable tool for identifying and

troubleshooting timer-related issues.

To use these tools for analyzing timer behavior in FreeRTOS, developers can follow these steps:

• Install and configure the appropriate software and hardware components, including

SystemView and J-Link.

• Instrument the FreeRTOS application code with the appropriate timer-related tracing and

profiling functions.

• Configure the trace output to be sent to the appropriate interface, such as a UART or J-

Link probe.

• Run the application and observe the output in the SystemView or J-Link interface.

• Analyze the output to identify any issues related to timer synchronization or accuracy.

Here is an example code snippet that shows how to use the SEGGER SystemView API to trace

the behavior of a timer in a FreeRTOS application:

#include "FreeRTOS.h"

#include "task.h"

#include "SEGGER_SYSVIEW.h"

// Define a timer handle

TimerHandle_t my_timer;

// Define a timer callback function

void my_timer_callback(TimerHandle_t xTimer) {

 // Do something when the timer expires

}

void vTaskFunction(void *pvParameters) {

 // Create a timer with a 1 second period and a

callback function

343 | P a g e

 my_timer = xTimerCreate("MyTimer",

pdMS_TO_TICKS(1000), pdTRUE, 0, my_timer_callback);

 // Start the timer

 xTimerStart(my_timer, 0);

 while (1) {

 // Do some work

 vTaskDelay(pdMS_TO_TICKS(500));

 }

}

int main(void) {

 // Initialize the SEGGER SystemView API

 SEGGER_SYSVIEW_Conf();

 SEGGER_SYSVIEW_Start();

 // Create a task that uses a timer

 xTaskCreate(vTaskFunction, "Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 // Start the FreeRTOS scheduler

 vTaskStartScheduler();

 // Should never reach here

 return 0;

}

In this example, the SystemView API is used to trace the behavior of the my_timer timer, which

is created in the vTaskFunction task. The timer is configured to have a 1 second period and a

callback function that is called when the timer expires. The task also performs some other work

every 500ms, using the vTaskDelay function to wait between iterations.

344 | P a g e

By observing the SystemView output, developers can track the behavior of the timer and identify

any issues related to synchronization or accuracy. For example, if the timer is not firing at the

expected intervals, it may be due to a synchronization issue between the timer and other system

components. Similarly, if the timer is firing at irregular intervals, it may be due to issues related to

timer accuracy or drift.

Troubleshooting common timer-related issues

Timers are an essential part of FreeRTOS, and they are commonly used for periodic tasks,

scheduling, and synchronization. Although they offer numerous benefits, they can also be a source

of issues and errors in the system. In this note, we will discuss some common timer-related issues

in FreeRTOS and how to troubleshoot them.

Timer is not firing: If the timer is not firing, there are a few things to check. First, ensure that the

timer is created and initialized correctly. Check if the timer is enabled and if the timer's period is

set correctly. If the timer is still not firing, check if there is any blocking code that prevents the

timer from running. You can also use the debugger to set breakpoints and track the timer's

behavior.

Timer drift: Timer drift occurs when the timer's period is not accurate, leading to tasks running at

the wrong times. The most common cause of timer drift is a lack of synchronization with an

accurate

e clock source. Ensure that the system clock is synchronized with an external clock source, and

use the appropriate clock source for your application. Also, consider using hardware timers for

increased accuracy.

Timer overflow: Timer overflow happens when the timer's counter reaches its maximum value and

resets to zero, causing the timer to stop working. To prevent timer overflow, ensure that the timer's

period is set appropriately and that the timer's counter has enough bits to count to the desired value.

Task delays: In some cases, tasks may be delayed due to the timer not firing at the expected time.

This delay can be caused by a few things, such as a slow system clock or a high system load. You

can increase the timer's resolution, reduce the system load, or adjust the timer's period to reduce

task delays.

Incorrect timer mode: FreeRTOS supports different timer modes such as one-shot, periodic, and

software timers. Ensure that the timer is set to the correct mode for your application. For example,

use a one-shot timer for a single task and a periodic timer for recurring tasks.

To troubleshoot these timer-related issues, you can use SEGGER tools such as SystemView and

Ozone. These tools allow you to monitor the system's behavior and track the timer's activity. You

can use SystemView to visualize the system's activity, including task execution and timer behavior.

Ozone allows you to debug the system and analyze the timer's behavior at the register level.

Timers are essential in FreeRTOS and offer numerous benefits, but they can also cause issues and

errors in the system. By understanding the common timer-related issues and troubleshooting

techniques, you can ensure that your system runs smoothly and efficiently.

345 | P a g e

Chapter 9:

Advanced FreeRTOS Concepts and Techniques

346 | P a g e

FreeRTOS (Free Real-Time Operating System) is a popular open-source real-time operating

system used in embedded systems and IoT devices. It is designed to be simple and easy to use

while providing efficient and reliable scheduling of tasks and resources. FreeRTOS offers a wide

range of features and capabilities that enable developers to build complex applications with ease.

This chapter will focus on advanced FreeRTOS concepts and techniques that go beyond the basic

features of the operating system. These concepts and techniques will help developers to design and

implement efficient and reliable real-time systems.

One of the most important advanced concepts in FreeRTOS is task synchronization. In a multi-

tasking environment, tasks need to communicate and synchronize their operations to ensure correct

and predictable behavior. FreeRTOS provides several synchronization primitives, such as

semaphores, mutexes, and queues, that enable tasks to coordinate their actions and share resources.

Another important concept is memory management. FreeRTOS provides a memory management

scheme that enables dynamic allocation and deallocation of memory blocks in real-time systems.

This allows tasks to allocate memory as needed, while ensuring that memory is released when it

is no longer needed, preventing memory leaks and system crashes.

FreeRTOS also provides advanced features for task scheduling and priority management. These

features enable developers to fine-tune the scheduling behavior of the operating system to meet

the specific requirements of their applications. For example, developers can set task priorities,

assign time slices, and implement preemption to ensure that critical tasks are executed in a timely

and predictable manner.

In addition to these advanced concepts, FreeRTOS also provides techniques for power

management, interrupt handling, and debugging. These techniques help developers to optimize the

performance and reliability of their systems, while minimizing power consumption and improving

system stability.

Overall, this chapter will provide a comprehensive overview of advanced FreeRTOS concepts and

techniques, along with practical examples and code snippets. Whether you are a seasoned

embedded systems developer or just starting out, this chapter will help you to master the intricacies

of FreeRTOS and build efficient and reliable real-time systems.

Co-routines and their use cases

Overview of co-routines and their benefits

Co-routines are a unique feature of FreeRTOS that allow multiple concurrent threads of execution

within a single task. Co-routines are designed to be lightweight and efficient, allowing developers

to implement complex task logic without the overhead of a full-blown task. In this way, co-routines

can be used to improve system responsiveness and reduce memory usage.

347 | P a g e

The benefits of co-routines in FreeRTOS include:

Reduced memory usage: Co-routines are lightweight and use significantly less memory than tasks.

This makes them ideal for systems with limited memory resources.

Improved responsiveness: Co-routines allow for concurrent execution within a single task, which

can improve system responsiveness and reduce latency.

Simplified task logic: Co-routines allow developers to implement complex task logic in a more

natural and intuitive way. This can simplify code and make it easier to maintain.

Low overhead: Co-routines have lower overhead than tasks, making them ideal for implementing

time-critical operations.

To use co-routines in FreeRTOS, the following steps need to be taken:

• Include the FreeRTOS.h header file in the project.

• Create a co-routine using the xCoRoutineCreate() API function.

• Implement the co-routine function, which should have the following signature:

• void vCoRoutineFunction(void *pvParameters);

• Start the co-routine using the xCoRoutineGenericCreate() API function.

• Resume the co-routine using the vCoRoutineResume() API function.

Here's an example of how to use co-routines in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "croutine.h"

void vCoRoutineFunction(void *pvParameters)

{

 // Co-routine logic here

}

void vTaskFunction(void *pvParameters)

{

 // Create the co-routine

 CoRoutineHandle_t xHandle =

xCoRoutineCreate(vCoRoutineFunction, NULL, 0);

348 | P a g e

 // Start the co-routine

 xCoRoutineGenericCreate(xHandle);

 while (1)

 {

 // Resume the co-routine

 vCoRoutineResume(xHandle);

 // Task logic here

 }

}

void main()

{

 // Create the task

 xTaskCreate(vTaskFunction, "Task", 1000, NULL, 1,

NULL);

 // Start the scheduler

 vTaskStartScheduler();

}

In this example, we create a co-routine using the vCoRoutineFunction() function, which is then

started within the vTaskFunction() task using the xCoRoutineCreate() and

xCoRoutineGenericCreate() API functions. The co-routine is then resumed within the task using

the vCoRoutineResume() API function.

Overall, co-routines are a powerful tool in FreeRTOS for implementing complex task logic in an

efficient and scalable way. By using co-routines, developers can improve system responsiveness,

reduce memory usage, and simplify code.

Implementing co-routines in FreeRTOS

Co-routines are a lightweight alternative to traditional FreeRTOS tasks, providing a mechanism

for non-preemptive multitasking. In this subtopic, we will discuss the implementation of co-

routines in FreeRTOS.

349 | P a g e

Co-routines are built on top of FreeRTOS tasks and use the same scheduler to manage execution.

However, unlike tasks, co-routines are cooperative rather than preemptive. This means that a co-

routine must explicitly yield control to another co-routine or task before other co-routines can be

executed.

To implement a co-routine in FreeRTOS, we must define a function that performs a specific action

and yields control to the scheduler when it is finished. This function can then be invoked as a co-

routine using the xCoRoutineCreate() API. The following code snippet shows an example of a co-

routine that counts from 1 to 10 and yields control after each count:

static void vCountCoRoutine(CoRoutineHandle_t xHandle,

UBaseType_t uxIndex)

{

 int iCount = 1;

 while(iCount <= 10)

 {

 printf("Count = %d\r\n", iCount++);

 vCoRoutineDelay(xHandle, pdMS_TO_TICKS(100));

 }

 vCoRoutineExit(xHandle);

}

void vCoRoutineDelay(CoRoutineHandle_t xHandle,

TickType_t xTicksToDelay)

{

 vTaskSuspendAll();

 {

 vTaskSetTimeOutState(&xHandle->xWait);

 vTaskSetTimeOut(0);

 vTaskDelay(xTicksToDelay);

 }

 xTaskResumeAll();

}

350 | P a g e

CoRoutineHandle_t xCountCoRoutine;

xCoRoutineCreate(vCountCoRoutine, 0, 1);

In this example, the vCountCoRoutine() function counts from 1 to 10 and yields control to the

scheduler after each count by calling the vCoRoutineDelay() function. This function suspends the

co-routine and sets a timeout before resuming it after a specified delay.

To create the co-routine, we use the xCoRoutineCreate() API and pass it a pointer to the co-routine

function, a unique identifier, and a priority value.

Co-routines in FreeRTOS have several benefits. They have a small memory footprint and low

overhead, making them ideal for implementing simple tasks that do not require the full features of

tasks. Co-routines also enable finer-grained control over task execution and can be used to

implement cooperative multitasking patterns.

However, co-routines have some limitations. They are not preemptive, so they cannot be used to

implement tasks that require strict timing guarantees or real-time constraints. Co-routines also have

limited functionality compared to tasks and cannot use all of the same FreeRTOS APIs.

Co-routines are a useful tool for implementing simple, non-preemptive tasks in FreeRTOS. By

defining a co-routine function that yields control to the scheduler when it is finished, we can create

lightweight tasks that have a low memory footprint and minimal overhead.

Use cases and examples of co-routines

Co-routines are a fundamental building block of FreeRTOS and are used extensively in

FreeRTOS-based applications. They allow for concurrent execution of multiple tasks or threads,

but with much lower overhead than traditional multitasking methods. Co-routines are essentially

lightweight threads that share a common stack and run in a cooperative fashion, meaning they

yield execution control to other co-routines voluntarily. In this way, co-routines can implement

complex, cooperative behaviors with very low overhead.

Here are some use cases and examples of co-routines in FreeRTOS:

Implementing a state machine:

A state machine is a common software design pattern used in embedded systems. It is a finite state

machine that transitions between various states based on input events. Co-routines are well suited

for implementing state machines because they can be used to create multiple independent

execution contexts that can cooperate to implement the overall state machine. This can help reduce

the complexity of the state machine and make it more efficient.

Here is an example of how co-routines can be used to implement a state machine:

static void state1(void)

351 | P a g e

{

 while(true)

 {

 // Wait for an event

 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);

 // Do some processing

 // Transition to state2

 vTaskPrioritySet(NULL, configMAX_PRIORITIES -

1);

 vTaskSuspend(NULL);

 }

}

static void state2(void)

{

 while(true)

 {

 // Wait for an event

 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);

 // Do some processing

 // Transition to state1

 vTaskPrioritySet(NULL, configMAX_PRIORITIES -

2);

 vTaskSuspend(NULL);

 }

}

352 | P a g e

void vApplicationIdleHook(void)

{

 // Notify state1 to transition to state2

 vTaskNotifyGiveFromISR(xState1Handle, NULL);

}

int main(void)

{

 // Create state1 and state2 co-routines

 xTaskCreate(state1, "state1",

configMINIMAL_STACK_SIZE, NULL, configMAX_PRIORITIES -

1, &xState1Handle);

 xTaskCreate(state2, "state2",

configMINIMAL_STACK_SIZE, NULL, configMAX_PRIORITIES -

2, &xState2Handle);

 // Start the scheduler

 vTaskStartScheduler();

 // This point should never be reached

 return 0;

}

In this example, state1 and state2 are two co-routines that implement two states of a state machine.

Each co-routine waits for an event using ulTaskNotifyTake, does some processing, and then

transitions to the other state using vTaskPrioritySet and vTaskSuspend. When an event occurs, the

idle task uses vTaskNotifyGiveFromISR to notify state1 to transition to state2.

Implementing a cooperative multitasking system:

Cooperative multitasking is a method of multitasking in which tasks voluntarily yield execution

control to other tasks, rather than being preempted by the operating system. Co-routines are well

suited for implementing cooperative multitasking because they can yield execution control to other

co-routines voluntarily.

Here is an example of how co-routines can be used to implement a cooperative multitasking

system:

353 | P a g e

static void task1(void)

{

 while(true)

 {

 // Do some processing

 // Yield execution to task2

 vTaskDelay(pdMS_TO_TICKS(10));

 }

}

Interrupts as tasks and interrupt nesting

Overview of interrupts as tasks and their usage

In FreeRTOS, interrupts can be treated as tasks and can be managed in a similar way to tasks. This

allows for a more unified and simplified approach to handling interrupts, and can help to reduce

the complexity of the system.

Here is an overview of interrupts as tasks and their usage in FreeRTOS:

Interrupts as Tasks:

In FreeRTOS, interrupts can be treated as tasks and can be managed in a similar way to tasks. This

means that interrupts can be prioritized and scheduled just like tasks, and can communicate with

other tasks using various synchronization mechanisms provided by FreeRTOS.

To use interrupts as tasks, a software interrupt can be created using the xSemaphoreCreateBinary

function. The interrupt service routine (ISR) can then notify the software interrupt using the

xSemaphoreGiveFromISR function. The task that is waiting on the software interrupt can then be

woken up and executed.

Here is an example of how interrupts can be treated as tasks in FreeRTOS:

SemaphoreHandle_t xSemaphore;

354 | P a g e

void vSoftwareInterruptHandler(void)

{

 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 // Notify the software interrupt

 xSemaphoreGiveFromISR(xSemaphore,

&xHigherPriorityTaskWoken);

 // If a higher priority task is woken up, yield to

it

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

void vTask(void *pvParameters)

{

 while(true)

 {

 // Wait for the software interrupt

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 // Do some processing

 }

}

int main(void)

{

 // Create the software interrupt

 xSemaphore = xSemaphoreCreateBinary();

 // Create the task that waits for the software

interrupt

355 | P a g e

 xTaskCreate(vTask, "Task",

configMINIMAL_STACK_SIZE, NULL, configMAX_PRIORITIES -

1, NULL);

 // Enable the interrupt

 vSoftwareInterruptEnable();

 // Start the scheduler

 vTaskStartScheduler();

 // This point should never be reached

 return 0;

}

In this example, a software interrupt is created using xSemaphoreCreateBinary. The interrupt

service routine vSoftwareInterruptHandler notifies the software interrupt using

xSemaphoreGiveFromISR, and yields to a higher priority task if one is woken up. The task vTask

waits for the software interrupt using xSemaphoreTake, and does some processing when it is

notified.

Usage of Interrupts as Tasks in FreeRTOS:

Interrupts as tasks can be used in a variety of ways in FreeRTOS, such as:

a) Handling of low-latency, real-time events:

In many embedded systems, there are real-time events that require immediate attention. Interrupts

can be used to handle these events as tasks, providing low-latency response and reducing the

overhead of context switching.

b) Implementing communication between tasks:

Interrupts can be used to implement communication between tasks in a more efficient way than

using semaphores or message queues. For example, a task can notify another task of an event using

an interrupt, which can wake up the other task immediately and reduce the overhead of context

switching.

c) Implementing synchronization mechanisms:

Interrupts can be used to implement synchronization mechanisms between tasks, such as locking

and unlocking resources. For example, an interrupt can be used to lock a shared resource, and

another interrupt can be used to unlock it.

356 | P a g e

Treating interrupts as tasks in FreeRTOS provides a unified and simplified approach to handling

interrupts, and can be used in a variety of ways to improve the efficiency and responsiveness of

the system.

Interrupt nesting and its challenges

Interrupt nesting occurs when an interrupt occurs while another interrupt is being serviced. In

FreeRTOS, interrupt nesting can be a challenging issue that can lead to unintended behavior and

system instability. In this note, we will discuss interrupt nesting and its challenges in FreeRTOS,

along with suitable codes.

Interrupt Nesting:

Interrupt nesting can occur in FreeRTOS when a higher priority interrupt occurs while a lower

priority interrupt is being serviced. When this happens, the FreeRTOS scheduler will temporarily

disable task scheduling to allow the higher priority interrupt to be serviced. Once the higher priority

interrupt has been serviced, the scheduler will re-enable task scheduling and resume the interrupted

lower priority interrupt.

However, if a higher priority interrupt occurs while the scheduler is disabled, the higher priority

interrupt will be serviced immediately without allowing the lower priority interrupt to complete.

This can cause unintended behavior and system instability.

Challenges of Interrupt Nesting in FreeRTOS:

Interrupt nesting can be challenging in FreeRTOS due to the following reasons:

a) Priority Inversion:

Priority inversion occurs when a higher priority interrupt is blocked by a lower priority interrupt

that is currently being serviced. This can occur when a low priority interrupt acquires a resource

that a higher priority interrupt is waiting for. In this situation, the higher priority interrupt is

effectively blocked by the lower priority interrupt, leading to priority inversion and potential

system instability.

b) Race Conditions:

Race conditions can occur when two or more interrupts access the same resource at the same time.

This can lead to unpredictable behavior and potential system instability.

c) Stack Overflow:

When interrupts are nested, the stack usage increases, and there is a risk of stack overflow. This

can lead to unpredictable behavior and potential system instability.

Handling Interrupt Nesting in FreeRTOS:

To handle interrupt nesting in FreeRTOS, the following approaches can be used:

357 | P a g e

a) Use Preemptive Priority Scheduling:

Preemptive priority scheduling can be used to ensure that higher priority interrupts are always

serviced before lower priority interrupts. This can help to prevent priority inversion and improve

system stability.

b) Use Priority Inheritance Protocol:

Priority inheritance protocol can be used to prevent priority inversion by temporarily boosting the

priority of a low priority interrupt to the priority of a high priority interrupt that is blocked by the

low priority interrupt.

c) Use Adequate Stack Size:

To prevent stack overflow, it is important to use an adequate stack size for each interrupt. The

FreeRTOS kernel provides a uxTaskGetStackHighWaterMark function that can be used to check

the stack usage of each task, including interrupts.

Example Code:

Here is an example code that shows how to handle interrupt nesting in FreeRTOS using preemptive

priority scheduling:

#define HIGH_PRIORITY_INTERRUPT_PRIORITY 3

#define LOW_PRIORITY_INTERRUPT_PRIORITY 4

void vHighPriorityInterruptHandler(void)

{

 // Service the high priority interrupt

}

void vLowPriorityInterruptHandler(void)

{

 // Service the low priority interrupt

}

void vTask(void *pvParameters)

{

 while(true)

 {

 // Do some processing

358 | P a g e

 }

}

int main(void)

{

 // Enable interrupts

 vInterruptEnable();

 // Set the priority of the high priority interrupt

 vInterruptSetPriority(

HIGH_PRIORITY_INTERRUPT_PRIORITY);

 // Set the priority of the low priority interrupt

 vInterruptSetPriority(

LOW_PRIORITY_INTERRUPT_PRIORITY);

 // Register the high priority interrupt

 vInterruptRegister(vHighPriorityInterruptHandler

);

 // Register the low priority interrupt

 vInterruptRegister(vLowPriorityInterruptHandler);

 // Create the task

 xTaskCreate(vTask, "Task",

configMINIMAL_STACK_SIZE, NULL, configMAX_PRIORITIES -

1, NULL);

Best practices for handling nested interrupts

FreeRTOS provides a flexible and powerful framework for handling nested interrupts. However,

nested interrupts can pose challenges, including priority inversion, race conditions, and stack

overflow. In this note, we will discuss best practices for handling nested interrupts in FreeRTOS,

along with suitable codes.

359 | P a g e

Use Preemptive Priority Scheduling:

Preemptive priority scheduling can be used to ensure that higher priority interrupts are always

serviced before lower priority interrupts. This can help to prevent priority inversion and improve

system stability. In FreeRTOS, tasks and interrupts are assigned priorities, with higher numbers

indicating higher priority. Preemptive priority scheduling is enabled by default in FreeRTOS.

Use Adequate Stack Size:

When interrupts are nested, the stack usage increases, and there is a risk of stack overflow. This

can lead to unpredictable behavior and potential system instability. To prevent stack overflow, it

is important to use an adequate stack size for each interrupt. The FreeRTOS kernel provides a

uxTaskGetStackHighWaterMark function that can be used to check the stack usage of each task,

including interrupts. This function can be used to determine the appropriate stack size for each

interrupt.

Use Priority Inheritance Protocol:

Priority inheritance protocol can be used to prevent priority inversion by temporarily boosting the

priority of a low priority interrupt to the priority of a high priority interrupt that is blocked by the

low priority interrupt. This can help to prevent deadlock and improve system stability. FreeRTOS

provides a built-in priority inheritance mechanism that can be enabled for specific mutexes using

the xMutexCreateRecursive function.

Use Critical Sections:

Critical sections can be used to prevent race conditions by ensuring that only one interrupt or task

can access a shared resource at a time. In FreeRTOS, critical sections can be created using the

taskENTER_CRITICAL and taskEXIT_CRITICAL macros.

Use the FreeRTOS Interrupt Safe API:

The FreeRTOS Interrupt Safe API can be used to safely access FreeRTOS functions from within

an interrupt service routine (ISR). This API provides a set of functions that can be called from

within an ISR without causing race conditions or other unexpected behavior. The Interrupt Safe

API is provided by the portmacro.h header file.

Use the FreeRTOS Event Group API:

The FreeRTOS Event Group API can be used to synchronize interrupts and tasks using event flags.

Event flags can be used to signal the occurrence of an event and allow one or more tasks to wait

for the event to occur. The Event Group API is provided by the event_groups.h header file.

Example Code:

Here is an example code that demonstrates some of the best practices for handling nested interrupts

in FreeRTOS:

360 | P a g e

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#define HIGH_PRIORITY_INTERRUPT_PRIORITY 3

#define LOW_PRIORITY_INTERRUPT_PRIORITY 4

void vHighPriorityInterruptHandler(void)

{

 // Service the high priority interrupt

}

void vLowPriorityInterruptHandler(void)

{

 taskENTER_CRITICAL();

 // Service the low priority interrupt

 taskEXIT_CRITICAL();

}

void vTask(void *pvParameters)

{

 while(true)

 {

 // Do some processing

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 }

}

int main(void)

{

 // Enable interrupts

361 | P a g e

 vInterruptEnable();

 // Set the priority of the high priority interrupt

 vInterruptSetPriority(

HIGH_PRIORITY_INTERRUPT_PRIORITY);

 // Set the priority of the low priority interrupt

 vInterruptSetPriority(

LOW_PRIORITY_INTERRUPT_PRIORITY);

 // Register the high priority interrupt

 vInterruptRegister(vHighPriorityInterruptHandler

);

 // Register the low priority interrupt

 vInterruptRegister(vLowPriorityInterruptHandler);

Software timers and their applications

Overview of software timers and their benefits

Software timers are a type of timer that is implemented in software rather than hardware. They can

be used to schedule tasks to execute at specific intervals or after a specific delay. In FreeRTOS,

software timers are implemented as part of the FreeRTOS kernel, and they provide several benefits

over hardware timers.

Benefits of Software Timers in FreeRTOS:

Precision:

Software timers are highly precise and have a low overhead, which makes them ideal for use in

real-time systems. They can be configured to execute at specific intervals with a high degree of

accuracy, ensuring that tasks are executed on time.

362 | P a g e

Flexibility:

Software timers are highly flexible and can be used to schedule tasks to execute at specific intervals

or after a specific delay. They can also be used to implement complex scheduling algorithms, such

as round-robin scheduling or rate monotonic scheduling.

Portability:

Software timers are highly portable and can be used on a wide range of platforms and

microcontrollers. They can be easily integrated into existing software systems and can be used to

implement a wide range of functionality.

Low Resource Requirements:

Software timers require minimal resources, which makes them ideal for use in embedded systems

with limited resources. They can be implemented with minimal code and memory overhead,

ensuring that they do not impact system performance.

Using Software Timers in FreeRTOS:

In FreeRTOS, software timers are implemented as part of the FreeRTOS kernel, and they can be

created and managed using the xTimerCreate, xTimerStart, and xTimerStop functions. These

functions allow tasks to create software timers, start and stop them, and configure their behavior.

Here is an example code that demonstrates how to use software timers in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "timers.h"

#define TIMER_PERIOD_MS 1000

#define TIMER_ID 0

void vTimerCallback(TimerHandle_t xTimer)

{

 // This function will be called each time the timer

expires

}

int main(void)

363 | P a g e

{

 // Create a new software timer with a period of

TIMER_PERIOD_MS milliseconds

 TimerHandle_t xTimer = xTimerCreate(

 "Timer", // Name of the timer

 pdMS_TO_TICKS(TIMER_PERIOD_MS), // Timer

period in ticks

 pdTRUE, // Timer auto-reload

flag

 (void*)TIMER_ID, // Timer ID

 vTimerCallback // Timer callback

function

);

 // Start the software timer

 xTimerStart(xTimer, 0);

 // Run the FreeRTOS scheduler

 vTaskStartScheduler();

}

In this example, a software timer is created using the xTimerCreate function. The timer has a

period of TIMER_PERIOD_MS milliseconds and is configured to auto-reload. When the timer

expires, the vTimerCallback function will be called. The timer is started using the xTimerStart

function and is then managed by the FreeRTOS scheduler. The timer can be stopped using the

xTimerStop function.

Overall, software timers are a powerful and flexible feature of the FreeRTOS kernel, and they can

be used to implement a wide range of functionality in real-time embedded systems. By providing

precision, flexibility, portability, and low resource requirements, software timers are an essential

tool for any developer working with FreeRTOS.

Implementing software timers in FreeRTOS

In FreeRTOS, software timers are implemented using the timers.h header file. This header file

defines the functions and data types required to create and manage software timers. To implement

a software timer in FreeRTOS, you need to follow the following steps:

364 | P a g e

Step 1: Include the Required Header Files

To use software timers in FreeRTOS, you need to include the following header files in your code:

#include "FreeRTOS.h"

#include "timers.h"

Step 2: Define the Timer Callback Function

When a software timer expires, FreeRTOS calls a user-defined function known as the timer

callback function. This function is responsible for performing the required task. To define a timer

callback function, you need to create a function with the following signature:

void vTimerCallback(TimerHandle_t xTimer);

The vTimerCallback function takes a single argument, which is a handle to the timer that expired.

Step 3: Create the Software Timer

To create a software timer, you need to call the xTimerCreate function. This function takes the

following arguments:

TimerHandle_t xTimerCreate(

 const char * const pcTimerName,

 const TickType_t xTimerPeriod,

 const UBaseType_t uxAutoReload,

 void * const pvTimerID,

 TimerCallbackFunction_t pxCallbackFunction

);

The xTimerCreate function returns a handle to the newly created timer. The arguments to the

xTimerCreate function are:

• pcTimerName: A pointer to a null-terminated string that contains the name of the timer.

This is used for debugging purposes only and can be set to NULL.

• xTimerPeriod: The period of the timer in ticks. The period is the time between timer

expirations.

• uxAutoReload: A boolean flag that determines whether the timer should automatically

restart after it expires. Set this to pdTRUE to enable auto-reload and pdFALSE to disable

it.

• pvTimerID: A pointer to user-defined data that is passed to the timer callback function

when the timer expires. This can be set to NULL if no data is required.

365 | P a g e

• pxCallbackFunction: A pointer to the timer callback function that is called when the timer

expires.

Here is an example of how to create a software timer:

TimerHandle_t xTimer;

xTimer = xTimerCreate("MyTimer", pdMS_TO_TICKS(1000),

pdTRUE, 0, vTimerCallback);

In this example, a timer is created with a period of 1000 milliseconds (1 second), and the auto-

reload flag is set to pdTRUE. The timer is also given the name "MyTimer" and is associated with

the vTimerCallback function.

Step 4: Start and Stop the Timer

Once you have created a software timer, you can start and stop it using the xTimerStart and

xTimerStop functions, respectively. These functions take the timer handle as an argument and

return a boolean value that indicates whether the operation was successful.

xTimerStart(xTimer, 0);

xTimerStop(xTimer, 0);

In this example, the timer is started using the

xTimerStart function and is stopped using the

xTimerStop function.

Step 5: Clean up the Timer

When you are finished with a software timer, you should

delete it using the xTimerDelete function. This

function takes the timer handle as an argument and

frees the memory associated with the timer.

scss

Copy code

xTimerDelete(xTimer, 0);

Use cases and examples of software timers

Software timers are a powerful feature of FreeRTOS that can be used for a variety of purposes.

Here are some examples of how software timers can be used in FreeRTOS:

366 | P a g e

Periodic Tasks:

One of the most common uses of software timers is to perform a periodic task. For example, you

may want to read a sensor every 500ms. You can create a software timer with a period of 500ms

and attach a callback function that reads the sensor.

Here is an example of how to create a periodic task using a software timer:

void vTimerCallback(TimerHandle_t xTimer)

{

 // Perform periodic task

}

void vTaskFunction(void *pvParameters)

{

 TimerHandle_t xTimer = xTimerCreate("PeriodicTimer",

pdMS_TO_TICKS(500), pdTRUE, 0, vTimerCallback);

 xTimerStart(xTimer, 0);

 while(1)

 {

 // Perform other tasks

 }

}

In this example, a software timer is created with a period of 500ms and is associated with the

vTimerCallback function. The timer is started using the xTimerStart function, and the

vTaskFunction performs other tasks while the timer is running.

Debouncing Inputs:

When you have a switch or button connected to an input pin, it may generate multiple transitions

as it bounces. You can use a software timer to debounce the input and ensure that only one

transition is detected.

Here is an example of how to debounce an input using a software timer:

void vTimerCallback(TimerHandle_t xTimer)

367 | P a g e

{

 // Read input pin and take action

}

void vTaskFunction(void *pvParameters)

{

 TimerHandle_t xTimer = xTimerCreate("DebounceTimer",

pdMS_TO_TICKS(50), pdFALSE, 0, vTimerCallback);

 while(1)

 {

 // Read input pin

 if (xInputPin == pdTRUE)

 {

 xTimerStart(xTimer, 0);

 }

 }

}

In this example, a software timer is created with a period of 50ms and is associated with the

vTimerCallback function. When the input pin is detected as high, the timer is started using the

xTimerStart function. The vTimerCallback function is called when the timer expires, and the input

pin is read again to determine if the transition was valid.

Resource Management:

Software timers can also be used for resource management in FreeRTOS. For example, you may

have a shared resource that can only be accessed by one task at a time. You can use a software

timer to ensure that the resource is released after a certain amount of time, even if the task that

acquired it crashes or is blocked.

Here is an example of how to use a software timer for resource management:

SemaphoreHandle_t xResourceSemaphore;

void vTimerCallback(TimerHandle_t xTimer)

368 | P a g e

{

 xSemaphoreGive(xResourceSemaphore);

}

void vTaskFunction(void *pvParameters)

{

 TimerHandle_t xTimer = xTimerCreate("ResourceTimer",

pdMS_TO_TICKS(5000), pdFALSE, 0, vTimerCallback);

 while(1)

 {

 xSemaphoreTake(xResourceSemaphore, portMAX_DELAY);

 // Access shared resource

 xTimerStart(xTimer, 0);

 }

}

Dynamic memory allocation in FreeRTOS

Overview of dynamic memory allocation and its challenges

Dynamic memory allocation is a method of allocating memory during runtime. It allows programs

to request memory dynamically from the operating system or runtime system, as opposed to

statically allocating memory during compilation.

In FreeRTOS, dynamic memory allocation is commonly used to allocate memory for tasks,

queues, semaphores, and other objects. However, there are several challenges associated with

dynamic memory allocation that can impact the performance and stability of an application.

One of the main challenges of dynamic memory allocation is memory fragmentation. Over time,

the memory pool can become fragmented, which means that there are many small blocks of

memory scattered throughout the pool. This can make it difficult to allocate large blocks of

memory, even if there is enough free memory available. Fragmentation can also lead to inefficient

memory usage and reduced system performance.

369 | P a g e

Another challenge of dynamic memory allocation is memory leaks. Memory leaks occur when

memory is allocated but not freed when it is no longer needed. Over time, this can cause the

memory pool to become exhausted, which can cause the system to crash or behave unpredictably.

To overcome these challenges, FreeRTOS provides a heap memory management mechanism that

allows dynamic memory allocation to be controlled and monitored. The heap memory

management mechanism consists of two components: the heap implementation and the memory

allocation scheme.

The heap implementation is responsible for managing the memory pool and allocating and

deallocating memory blocks. FreeRTOS provides several heap implementations, including a fixed-

size heap, a heap that uses malloc and free, and a heap that uses a dedicated memory region.

The memory allocation scheme is responsible for managing how memory is allocated and released.

FreeRTOS provides several memory allocation schemes, including first fit, best fit, and worst fit.

These schemes determine how the heap implementation chooses which memory block to allocate

when a request is made.

Here is an example of how to use dynamic memory allocation in FreeRTOS:

void vTaskFunction(void *pvParameters)

{

 int *pData;

 while(1)

 {

 // Allocate memory dynamically

 pData = pvPortMalloc(sizeof(int));

 // Check if memory allocation was successful

 if (pData != NULL)

 {

 // Use allocated memory

 *pData = 10;

 // Free allocated memory

 vPortFree(pData);

370 | P a g e

 }

 }

}

In this example, memory is allocated dynamically using the pvPortMalloc function. The size of

the memory block is determined by the sizeof operator. If the memory allocation is successful, the

allocated memory is used and then freed using the vPortFree function. If the memory allocation

fails, pvPortMalloc returns a NULL pointer.

Dynamic memory allocation is a powerful feature of FreeRTOS that allows programs to allocate

memory during runtime. However, it is important to understand the challenges associated with

dynamic memory allocation, such as memory fragmentation and memory leaks. By using

FreeRTOS's heap memory management mechanism, these challenges can be overcome, and

dynamic memory allocation can be used effectively and efficiently.

Dynamic memory allocation schemes in FreeRTOS

Dynamic memory allocation is an essential part of embedded systems programming, as it allows

programs to request memory dynamically during runtime. FreeRTOS provides several dynamic

memory allocation schemes that can be used to manage memory efficiently and avoid

fragmentation and memory leaks.

The memory allocation schemes provided by FreeRTOS are:

• First-fit allocation scheme

• Best-fit allocation scheme

• Worst-fit allocation scheme

• Thread-Safe implementation

Each of these memory allocation schemes has its own advantages and disadvantages. Here's a brief

overview of each of them:

First-fit allocation scheme:

The first-fit allocation scheme is the simplest and fastest of all the allocation schemes provided by

FreeRTOS. It works by scanning the free list of memory blocks and allocating the first block that

is large enough to satisfy the allocation request. This scheme is suitable for systems with a

relatively small number of free blocks and low fragmentation.

Best-fit allocation scheme:

The best-fit allocation scheme works by scanning the free list of memory blocks and allocating the

smallest block that is large enough to satisfy the allocation request. This scheme is more complex

than the first-fit scheme and can help to reduce fragmentation by minimizing the amount of unused

371 | P a g e

memory left over after an allocation. However, it is also slower and requires more memory

overhead.

Worst-fit allocation scheme:

The worst-fit allocation scheme works by scanning the free list of memory blocks and allocating

the largest block that is large enough to satisfy the allocation request. This scheme can help to

reduce fragmentation by leaving large blocks of unused memory between allocations. However, it

is slower and requires more memory overhead than the first-fit scheme.

Thread-Safe implementation:

FreeRTOS also provides a thread-safe implementation of its memory allocation functions. This

implementation uses mutexes to ensure that only one task can access the heap at a time, preventing

race conditions and memory corruption.

Here is an example of how to use the first-fit allocation scheme in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "heap_1.h"

void vTaskFunction(void *pvParameters)

{

 int *pData;

 while(1)

 {

 // Allocate memory dynamically using the first-

fit scheme

 pData = pvPortMalloc(sizeof(int));

 // Check if memory allocation was successful

 if (pData != NULL)

 {

 // Use allocated memory

 *pData = 10;

372 | P a g e

 // Free allocated memory

 vPortFree(pData);

 }

 }

}

int main(void)

{

 // Create task

 xTaskCreate(vTaskFunction, "Task 1",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

 // Start FreeRTOS scheduler

 vTaskStartScheduler();

 // Should never reach here

 return 0;

}

In this example, the pvPortMalloc function is used to allocate memory dynamically using the first-

fit scheme. The size of the memory block is determined by the sizeof operator. If the memory

allocation is successful, the allocated memory is used and then freed using the vPortFree function.

If the memory allocation fails, pvPortMalloc returns a NULL pointer.

FreeRTOS provides several dynamic memory allocation schemes that can be used to manage

memory efficiently in embedded systems. The choice of memory allocation scheme depends on

the specific requirements of the application and the characteristics of the system. By using the

appropriate memory allocation scheme, applications can avoid fragmentation and memory leaks

and use memory efficiently.

Best practices for dynamic memory allocation

Dynamic memory allocation is a powerful feature that allows programs to allocate memory during

runtime. However, it is also a potential source of problems such as fragmentation and memory

373 | P a g e

leaks, especially in embedded systems with limited memory resources. To use dynamic memory

allocation effectively in FreeRTOS, it is important to follow some best practices.

Here are some best practices for dynamic memory allocation in FreeRTOS:

Use static allocation whenever possible:

Static allocation is faster and more efficient than dynamic allocation, as it allows the compiler to

optimize memory usage. Therefore, it is recommended to use static allocation for data structures

that are known at compile time and do not change during runtime.

Avoid frequent memory allocation and deallocation:

Frequent memory allocation and deallocation can cause fragmentation and reduce the efficiency

of the memory allocator. Therefore, it is recommended to allocate memory in large blocks and

reuse them whenever possible.

Use the appropriate memory allocation scheme:

FreeRTOS provides several memory allocation schemes, each with its own advantages and

disadvantages. Choose the appropriate scheme based on the requirements of the application and

the characteristics of the system.

Check for memory allocation errors:

Always check the return value of the memory allocation function to ensure that the allocation was

successful. If the allocation fails, handle the error gracefully and avoid memory leaks.

Use memory debugging tools:

Memory debugging tools such as the FreeRTOS heap tracing feature can help to detect memory

leaks and other memory-related issues. Use these tools to debug and optimize memory usage in

the application.

Here's an example of how to use dynamic memory allocation following these best practices:

#include "FreeRTOS.h"

#include "task.h"

#define DATA_SIZE 100

void vTaskFunction(void *pvParameters)

{

374 | P a g e

 int *pData[DATA_SIZE];

 int i;

 // Allocate memory in large blocks and reuse it

 for (i = 0; i < DATA_SIZE; i++)

 {

 pData[i] = pvPortMalloc(sizeof(int));

 if (pData[i] != NULL)

 {

 *pData[i] = i;

 }

 }

 // Use allocated memory

 for (i = 0; i < DATA_SIZE; i++)

 {

 if (pData[i] != NULL)

 {

 vTaskDelay(1000 / portTICK_PERIOD_MS);

 vPortFree(pData[i]);

 }

 }

 vTaskDelete(NULL);

}

int main(void)

{

 // Create task

375 | P a g e

 xTaskCreate(vTaskFunction, "Task 1",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

 // Start FreeRTOS scheduler

 vTaskStartScheduler();

 // Should never reach here

 return 0;

}

In this example, the pvPortMalloc function is used to allocate memory in large blocks and reuse

it. The size of each block is determined by the sizeof operator, and the DATA_SIZE macro

determines the number of blocks to allocate. The vPortFree function is used to free the allocated

memory when it is no longer needed.

By following these best practices, you can effectively use dynamic memory allocation in

FreeRTOS while avoiding fragmentation and memory leaks.

Power management and low-power modes

Overview of power management and low-power modes

Power management is an important aspect of embedded systems, as it can significantly impact the

battery life and energy efficiency of the system. FreeRTOS provides several features for power

management and low-power modes that can help to optimize energy usage.

FreeRTOS provides several low-power modes that can be used to reduce the power consumption

of the system. The available low-power modes depend on the specific hardware platform, but some

common low-power modes include:

Sleep mode: In sleep mode, the CPU is stopped and the clock is turned off, but the RAM and

peripherals remain active. Sleep mode is useful for reducing power consumption during short idle

periods.

Standby mode: In standby mode, the CPU and peripherals are stopped, but the RAM remains

active. Standby mode is useful for reducing power consumption during longer idle periods.

376 | P a g e

Hibernate mode: In hibernate mode, the CPU and peripherals are turned off, and the RAM is saved

to non-volatile memory. Hibernate mode is useful for reducing power consumption during

extended periods of inactivity.

FreeRTOS also provides several features for power management, including:

Tickless idle mode: Tickless idle mode is a feature that allows FreeRTOS to enter low-power mode

during idle periods. In tickless idle mode, the system wakes up only when there is work to be done,

rather than periodically as in normal idle mode.

Co-operative tickless mode: In co-operative tickless mode, the application can request to enter

low-power mode during periods of inactivity. The application must explicitly yield to FreeRTOS

to enter low-power mode.

Here is an example of how to use low-power modes in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

void vTaskFunction(void *pvParameters)

{

 // Do some work here

 vTaskDelay(1000 / portTICK_PERIOD_MS);

 // Request to enter low-power mode

 vTaskSuspendAll();

 vPortEnterSleepMode();

 xTaskResumeAll();

 vTaskDelete(NULL);

}

int main(void)

{

 // Create task

377 | P a g e

 xTaskCreate(vTaskFunction, "Task 1",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

 // Start FreeRTOS scheduler

 vTaskStartScheduler();

 // Should never reach here

 return 0;

}

In this example, the vTaskSuspendAll function is used to suspend all tasks and enter low-power

mode, and the xTaskResumeAll function is used to resume the tasks when the system wakes up.

The vPortEnterSleepMode function is used to enter the low-power mode.

By using low-power modes and power management features in FreeRTOS, you can significantly

improve the energy efficiency of your embedded system.

Configuring and using low-power modes in FreeRTOS

Configuring and using low-power modes in FreeRTOS involves several steps, including

configuring the low-power mode, setting up the tickless idle mode, and using the appropriate API

functions to enter and exit low-power mode.

Configuring the low-power mode:

To configure the low-power mode, you need to first determine which low-power mode is available

on your hardware platform. This can usually be done by consulting the documentation provided

by the manufacturer. Once you have determined which low-power mode to use, you need to

configure the necessary settings, such as the clock frequency, power domains, and wakeup sources.

This typically involves writing to hardware-specific registers.

Setting up the tickless idle mode:

The tickless idle mode is a feature in FreeRTOS that allows the system to enter low-power mode

during idle periods. To set up the tickless idle mode, you need to enable the feature by defining

the configUSE_TICKLESS_IDLE configuration setting in your FreeRTOS configuration file. You

also need to implement the vPortSuppressTicksAndSleep function, which is called by FreeRTOS

during idle periods to enter low-power mode. This function typically disables interrupts, enters the

low-power mode, and then re-enables interrupts when the system wakes up.

378 | P a g e

Using the appropriate API functions to enter and exit low-power mode:

To enter low-power mode, you can use the vTaskSuspendAll function to suspend all tasks and

then call the appropriate API function to enter the low-power mode. To exit low-power mode, you

can call the appropriate API function to exit the low-power mode and then call the

xTaskResumeAll function to resume all tasks.

Here is an example of how to configure and use low-power modes in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

// Define low-power mode settings

#define LOW_POWER_MODE 2

#define LOW_POWER_CLOCK_FREQUENCY 1000000

#define LOW_POWER_WAKEUP_SOURCE 0

// Define tickless idle mode settings

#define configUSE_TICKLESS_IDLE 1

void vTaskFunction(void *pvParameters)

{

 // Do some work here

 vTaskDelay(1000 / portTICK_PERIOD_MS);

 // Request to enter low-power mode

 vTaskSuspendAll();

 enter_low_power_mode();

 xTaskResumeAll();

 vTaskDelete(NULL);

}

int main(void)

379 | P a g e

{

 // Configure low-power mode

 configure_low_power_mode(LOW_POWER_MODE,

LOW_POWER_CLOCK_FREQUENCY, LOW_POWER_WAKEUP_SOURCE);

 // Create task

 xTaskCreate(vTaskFunction, "Task 1",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

 // Start FreeRTOS scheduler

 vTaskStartScheduler();

 // Should never reach here

 return 0;

}

In this example, the configure_low_power_mode function is used to configure the low-power

mode settings, and the enter_low_power_mode function is used to enter the low-power mode.

These functions are hardware-specific and must be implemented according to the documentation

provided by the manufacturer.

By configuring and using low-power modes in FreeRTOS, you can significantly reduce the power

consumption of your embedded system, leading to longer battery life and improved energy

efficiency.

Best practices for power management in FreeRTOS

Power management is an important aspect of embedded systems design, and FreeRTOS provides

several features to help manage power consumption. Here are some best practices for power

management in FreeRTOS:

Use tickless idle mode:

Tickless idle mode is a feature in FreeRTOS that allows the system to enter a low-power state

during idle periods, which can significantly reduce power consumption. To use tickless idle mode,

you should enable the configUSE_TICKLESS_IDLE configuration setting in your FreeRTOS

configuration file and implement the vPortSuppressTicksAndSleep function to enter low-power

mode during idle periods.

380 | P a g e

Use low-power modes:

FreeRTOS provides API functions to enter and exit low-power modes, such as vTaskSuspendAll,

vTaskResumeAll, and portENTER_CRITICAL. You should use these functions to minimize

power consumption when possible. Additionally, you should configure the low-power mode

settings, such as clock frequency and wakeup sources, according to the documentation provided

by the manufacturer.

Minimize task switching:

Task switching can increase power consumption, so you should minimize task switching as much

as possible. This can be achieved by using task priorities effectively and minimizing the use of

blocking functions such as vTaskDelay and vTaskDelayUntil.

Use software timers instead of hardware timers:

Hardware timers can consume a significant amount of power, so you should use software timers

instead when possible. FreeRTOS provides API functions for software timers, such as

xTimerCreate, xTimerStart, and xTimerStop.

Use event flags and message queues:

Event flags and message queues can be used to signal tasks and avoid unnecessary polling, which

can reduce power consumption. FreeRTOS provides API functions for event flags and message

queues, such as xEventGroupSetBits, xEventGroupWaitBits, xQueueSend, and xQueueReceive.

Here is an example of how to implement some of these best practices in FreeRTOS:

#include "FreeRTOS.h"

#include "task.h"

#include "timers.h"

#include "event_groups.h"

#include "queue.h"

// Define low-power mode settings

#define LOW_POWER_MODE 2

#define LOW_POWER_CLOCK_FREQUENCY 1000000

#define LOW_POWER_WAKEUP_SOURCE 0

// Define software timer settings

381 | P a g e

#define TIMER_PERIOD pdMS_TO_TICKS(500)

#define TIMER_AUTORELOAD pdTRUE

// Define event flag settings

#define EVENT_FLAG_ALL_BITS 0xFFFFFFFF

// Define message queue settings

#define QUEUE_LENGTH 10

#define QUEUE_ITEM_SIZE sizeof(uint32_t)

// Define task priorities

#define HIGH_PRIORITY 3

#define LOW_PRIORITY 2

EventGroupHandle_t eventGroup;

QueueHandle_t queue;

TimerHandle_t timer;

void highPriorityTask(void *pvParameters)

{

 while(1)

 {

 // Wait for event flag bit 0 to be set

 xEventGroupWaitBits(eventGroup, 1, pdTRUE,

pdTRUE, portMAX_DELAY);

 // Do some work here

 }

}

void lowPriorityTask(void *pvParameters)

{

382 | P a g e

 while(1)

 {

 uint32_t data;

 // Receive data from message queue

 xQueueReceive(queue, &data, portMAX_DELAY);

 // Do some work here

 }

}

void timerCallback(TimerHandle_t xTimer)

{

 // Set event flag bit 0

 xEventGroupSetBits(eventGroup, 1);

 // Send data to message queue

 uint32_t data = 1234;

 xQueueSend(queue, &data, portMAX_DELAY);

}

Task debugging and profiling with SEGGER

tools

Debugging and profiling techniques for FreeRTOS tasks

Debugging and profiling techniques are essential in identifying and resolving issues with

FreeRTOS tasks. These techniques help in monitoring the behavior of tasks and detecting potential

bugs or performance bottlenecks. In this subtopic, we will discuss some of the commonly used

debugging and profiling techniques for FreeRTOS tasks.

383 | P a g e

Debugging techniques:

a. Debug prints: Debug prints are the simplest and most widely used debugging technique. It

involves printing debug information to the console or serial port. In FreeRTOS, we can use the

printf function to print debug information. However, printing too much debug information can

slow down the system.

b. Task tracing: Task tracing involves tracking the execution of tasks and recording their state

transitions. This can be done using software tools such as Tracealyzer, which provides a graphical

representation of the task execution.

c. Breakpoints: Breakpoints are used to pause the execution of the program at a particular point.

In FreeRTOS, we can set breakpoints in the code using the debugger.

Profiling techniques:

a. Task profiling: Task profiling involves measuring the execution time of each task. This can be

done using software tools such as FreeRTOS+Trace or Percepio Tracealyzer. These tools provide

a graphical representation of the task execution time, which helps in identifying performance

bottlenecks.

b. Interrupt profiling: Interrupt profiling involves measuring the time spent in interrupt service

routines. This can be done using hardware tools such as an oscilloscope or logic analyzer.

c. Memory profiling: Memory profiling involves monitoring the memory usage of the system. This

can be done using software tools such as HeapAnalyzer or FreeRTOS+Trace. These tools provide

a graphical representation of the memory usage, which helps in identifying memory leaks and

optimizing the memory usage.

Here is an example of using debug prints in FreeRTOS:

#include <stdio.h>

#include "FreeRTOS.h"

#include "task.h"

void vTask1(void *pvParameters)

{

 int i = 0;

 while (1) {

 printf("Task 1 count: %d\n", i++);

 vTaskDelay(pdMS_TO_TICKS(1000));

384 | P a g e

 }

}

void vTask2(void *pvParameters)

{

 int i = 0;

 while (1) {

 printf("Task 2 count: %d\n", i++);

 vTaskDelay(pdMS_TO_TICKS(500));

 }

}

int main(void)

{

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 vTaskStartScheduler();

 return 0;

}

In this example, we have two tasks vTask1 and vTask2. We use printf to print the task count to the

console. This helps us monitor the execution of the tasks and detect any issues.

Debugging and profiling techniques are essential in identifying and resolving issues with

FreeRTOS tasks. By using these techniques, we can monitor the behavior of tasks and detect

potential bugs or performance bottlenecks.

Using SEGGER tools for task profiling and analysis

SEGGER is a company that provides tools and software for embedded systems development. One

of their popular tools is SystemView, which is used for real-time tracing and visualization of events

385 | P a g e

in an embedded system. In this note, we will discuss how to use SystemView to profile and analyze

FreeRTOS tasks.

SystemView is a software that runs on a host computer and communicates with the target

embedded system through a debugging interface such as J-Link. It provides a graphical user

interface that displays the timeline of events in the system, allowing the developer to identify and

analyze the behavior of tasks, interrupts, and other system events.

To use SystemView with FreeRTOS, we need to instrument the FreeRTOS kernel with SEGGER's

trace recorder library. This library provides a set of functions that can be used to record events

such as task switches, semaphore acquisitions and releases, and timer expirations. We need to add

calls to these functions at appropriate points in our code to record the events of interest.

Here's an example of how to use the trace recorder library to record task switch events in

FreeRTOS:

First, we need to include the trace recorder library header file:

#include "SEGGER_SYSVIEW.h"

Next, we need to initialize the trace recorder library:

SEGGER_SYSVIEW_Conf();

SEGGER_SYSVIEW_Start();

These functions should be called at the beginning of our program, after the FreeRTOS kernel has

been initialized.

Finally, we need to insert calls to the trace recorder library functions in the FreeRTOS task switch

hook:

void vApplicationTaskSwitchHook(void) {

 SEGGER_SYSVIEW_RecordEnterISR();

 SEGGER_SYSVIEW_RecordExitISR();

}

These functions record the entry and exit of the task switch interrupt, which allows SystemView

to display the task switching events on the timeline.

386 | P a g e

Once we have instrumented our code with the trace recorder library calls, we can connect

SystemView to our target system and start tracing. SystemView will display the timeline of events

in the system, and we can zoom in and out to focus on specific events of interest.

In addition to task switching events, we can also record other events such as semaphore

acquisitions and releases, timer expirations, and interrupt service routines. This allows us to get a

comprehensive view of the behavior of our system and identify performance bottlenecks and other

issues.

Using SEGGER's SystemView tool with FreeRTOS can provide valuable insights into the

behavior of our system and help us optimize its performance. By instrumenting our code with the

trace recorder library calls and analyzing the timeline of events in SystemView, we can identify

and address issues in our code and improve the overall performance and reliability of our system.

Troubleshooting common task-related issues

FreeRTOS is a powerful real-time operating system that provides many features for multitasking

and synchronization of tasks. However, with these features comes the potential for issues and bugs

that can be difficult to diagnose and fix. In this note, we will discuss some common task-related

issues in FreeRTOS and how to troubleshoot them.

Task Stack Overflow:

Task stack overflow occurs when a task's stack size is too small and the task writes beyond the end

of the stack, causing memory corruption and other issues. To diagnose and fix this issue, we can

use FreeRTOS's stack overflow detection feature. This feature is enabled by defining the

configCHECK_FOR_STACK_OVERFLOW macro in FreeRTOSConfig.h.

#define configCHECK_FOR_STACK_OVERFLOW 2

This will cause FreeRTOS to check for stack overflow on every context switch. If a stack overflow

is detected, FreeRTOS will enter the vApplicationStackOverflowHook() function, where we can

take appropriate action, such as resetting the system or printing an error message.

void vApplicationStackOverflowHook(TaskHandle_t xTask,

char *pcTaskName) {

 printf("Stack overflow in task %s\n", pcTaskName);

 // Reset system or take other appropriate action

}

387 | P a g e

Task Priority Inversion:

Task priority inversion occurs when a low-priority task holds a resource needed by a high-priority

task, causing the high-priority task to be blocked and its priority to be effectively lowered. To

diagnose and fix this issue, we can use FreeRTOS's priority inheritance feature. This feature is

enabled by defining the configUSE_MUTEXES macro in FreeRTOSConfig.h.

#define configUSE_MUTEXES 1

This will cause FreeRTOS to implement priority inheritance for mutexes. When a high-priority

task blocks on a mutex held by a low-priority task, the priority of the low-priority task will be

temporarily raised to the priority of the high-priority task, preventing priority inversion.

Task Deadlock:

Task deadlock occurs when two or more tasks are blocked waiting for resources held by each

other, causing a circular dependency that prevents any task from making progress. To diagnose

and fix this issue, we can use FreeRTOS's deadlock detection feature. This feature is enabled by

defining the configUSE_TRACE_FACILITY macro in FreeRTOSConfig.h.

#define configUSE_TRACE_FACILITY 1

This will cause FreeRTOS to record a trace of task and resource events, which can be analyzed

using a tool such as SEGGER SystemView. SystemView provides a timeline view of the system

events, allowing us to identify and analyze potential deadlock scenarios.

Task Synchronization Issues:

Task synchronization issues occur when tasks are not properly synchronized, leading to race

conditions, data corruption, and other issues. To diagnose and fix this issue, we can use

FreeRTOS's debugging features such as task notifications and trace recording. Task notifications

allow tasks to send signals to each other and synchronize their actions.

void task1(void *pvParameters) {

 // Wait for a notification from task2

 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);

 // Do task1 work

}

388 | P a g e

void task2(void *pvParameters) {

 // Do task2 work

 // Send a notification to task1

 xTaskNotifyGive(task1_handle);

}

Trace recording allows us to record a trace of task and resource events and analyze them using a

tool such as SEGGER SystemView.

FreeRTOS security and safety

considerations

Overview of security and safety considerations in FreeRTOS

FreeRTOS is designed to be a reliable and secure operating system for embedded devices. It offers

features like task isolation, memory protection, and cryptographic libraries to provide enhanced

security to the system. However, in complex systems, security and safety considerations can

become crucial. Therefore, it is important to understand the basics of security and safety and how

they relate to FreeRTOS.

Security refers to the protection of the system against unauthorized access, modification, or

destruction. Safety, on the other hand, refers to the protection of the system against accidental or

intentional errors or faults that may cause harm or damage.

Some of the security and safety considerations that should be taken into account while using

FreeRTOS are:

Task isolation: Tasks in FreeRTOS are isolated from each other, which means that they cannot

access each other's data or resources. This isolation helps in preventing unauthorized access to

critical system resources.

Memory protection: FreeRTOS provides memory protection by using memory management units

(MMUs) and memory protection units (MPUs). These units help in preventing tasks from

accessing memory regions that they are not authorized to access.

Cryptographic libraries: FreeRTOS comes with built-in cryptographic libraries that can be used

for secure communication between tasks or for encryption and decryption of sensitive data.

389 | P a g e

Authentication and authorization: Authentication and authorization mechanisms can be used to

control access to system resources. For example, a task may require a username and password to

access a particular resource.

Error handling and fault tolerance: Error handling and fault tolerance mechanisms can be used to

detect and recover from errors or faults in the system. This can prevent the system from crashing

or causing harm to the user.

Here's an example code snippet that shows how to use FreeRTOS cryptographic libraries for secure

communication between tasks:

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "FreeRTOS_IP.h"

#include "FreeRTOS_Sockets.h"

#include "mbedtls/aes.h"

#define BUFFER_SIZE 1024

void vTask1(void *pvParameters)

{

 mbedtls_aes_context aes_context;

 unsigned char key[32] = {0x00, 0x01, 0x02, ...,

0x1F};

 unsigned char iv[16] = {0x00, 0x01, 0x02, ...,

0x0F};

 unsigned char buffer[BUFFER_SIZE];

 // Initialize AES context

 mbedtls_aes_init(&aes_context);

 // Set AES key and IV

 mbedtls_aes_setkey_enc(&aes_context, key, 256);

390 | P a g e

 mbedtls_aes_crypt_cbc(&aes_context,

MBEDTLS_AES_ENCRYPT, BUFFER_SIZE, iv, buffer, buffer);

 // Send encrypted data to Task2

 xQueueSend(xQueue, buffer, 0);

 // Cleanup

 mbedtls_aes_free(&aes_context);

}

void vTask2(void *pvParameters)

{

 mbedtls_aes_context aes_context;

 unsigned char key[32] = {0x00, 0x01, 0x02, ...,

0x1F};

 unsigned char iv[16] = {0x00, 0x01, 0x02, ...,

0x0F};

 unsigned char buffer[BUFFER_SIZE];

 // Initialize AES context

 mbedtls_aes_init(&aes_context);

 // Set AES key and IV

 mbedtls_aes_setkey_dec(&aes_context, key, 256);

 // Receive encrypted data from Task1

 xQueueReceive(xQueue, buffer, 0);

 // Decrypt data

 mbedtls_aes_crypt_cbc(&aes_context,

MBEDTLS_AES_DECRYPT, BUFFER_SIZE, iv, buffer, buffer);

391 | P a g e

Threat modeling and risk assessment in FreeRTOS projects

Threat modeling and risk assessment are crucial steps in ensuring the security and safety of

FreeRTOS projects. These steps help to identify potential vulnerabilities and threats to the system,

and prioritize their remediation based on their severity.

Threat modeling is the process of identifying and analyzing potential threats and vulnerabilities to

the system. It involves considering all possible entry points for attackers, such as network

interfaces, APIs, user inputs, and system services. Once potential threats are identified, risk

assessment is used to prioritize the identified threats based on their likelihood of occurrence and

potential impact on the system.

In FreeRTOS, the following steps can be taken to perform threat modeling and risk assessment:

Identify the assets and their importance: The first step in threat modeling is to identify the assets

in the system and their importance. Assets may include sensitive data, system resources, and

critical processes.

Identify potential threats: Once the assets are identified, potential threats should be identified.

Threats can come from internal or external sources, and may include attacks on network interfaces,

data breaches, and unauthorized access to sensitive data.

Determine the likelihood of threats: The next step is to assess the likelihood of each identified

threat. This involves considering factors such as the complexity of the system, the level of security

measures in place, and the potential motivation of attackers.

Determine the impact of threats: The next step is to assess the potential impact of each identified

threat. This involves considering factors such as the loss of data, system downtime, and financial

losses.

Prioritize threats: Finally, the identified threats should be prioritized based on their likelihood and

potential impact. High priority threats should be addressed first, followed by lower priority threats.

Here is an example code snippet that demonstrates how to perform a basic threat modeling and

risk assessment process in a FreeRTOS project:

// Step 1: Identify assets and their importance

#define SENSITIVE_DATA 0

#define SYSTEM_RESOURCES 1

#define CRITICAL_PROCESS 2

// Step 2: Identify potential threats

392 | P a g e

#define NETWORK_ATTACK 0

#define DATA_BREACH 1

#define UNAUTHORIZED_ACCESS 2

// Step 3: Determine likelihood of threats

int likelihood[3] = {3, 2, 1}; // High, medium, low

// Step 4: Determine impact of threats

int impact[3] = {3, 2, 1}; // High, medium, low

// Step 5: Prioritize threats

int priority[3] = {0, 1, 2}; // Network attack, data

breach, unauthorized access

Threat modeling and risk assessment are essential steps in ensuring the security and safety of

FreeRTOS projects. By identifying potential vulnerabilities and prioritizing their remediation,

developers can ensure that their systems are protected from potential attacks and maintain their

integrity.

Security and safety mechanisms in

FreeRTOS

Memory protection and isolation techniques

Memory protection and isolation are critical techniques in embedded systems, particularly in real-

time operating systems like FreeRTOS, to prevent tasks from interfering with each other and to

ensure the overall system's stability and security. In this note, we will provide an overview of

memory protection and isolation techniques commonly used in FreeRTOS.

FreeRTOS provides two primary memory protection and isolation techniques: task stack overflow

protection and memory partitioning.

Task Stack Overflow Protection:

In FreeRTOS, the task stacks are created by the kernel dynamically. It is possible that the stack

may overflow and overwrite other parts of the memory, leading to system crashes or undefined

393 | P a g e

behavior. To protect against this, FreeRTOS provides a stack overflow protection mechanism that

triggers an exception when a task's stack reaches its limit. The exception handler can then handle

the situation by either terminating the offending task or freeing up memory to prevent a crash.

Here is an example code for enabling stack overflow protection for a task:

TaskHandle_t xTaskHandle;

void vTaskCode(void * pvParameters)

{

 /* Task code goes here. */

}

void vApplicationStackOverflowHook(TaskHandle_t xTask,

char *pcTaskName)

{

 /* Stack overflow detected for task xTask */

}

void main(void)

{

 /* Create the task with stack overflow protection

enabled */

 xTaskCreate(vTaskCode, "TaskName",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

&xTaskHandle);

 configASSERT(xTaskHandle);

 vTaskStartScheduler();

}

In the code above, the vApplicationStackOverflowHook function is a callback function that will

be called if a stack overflow is detected. The configASSERT macro is used to check whether the

task creation was successful.

394 | P a g e

Memory Partitioning:

Memory partitioning is the process of dividing the memory space into multiple isolated partitions.

Each partition can be allocated to a specific task, and the task can access only its partitioned

memory. This technique helps to prevent tasks from interfering with each other and improves the

overall system's safety and security.

FreeRTOS provides two primary memory partitioning techniques: static memory partitioning and

dynamic memory partitioning.

Static memory partitioning involves defining fixed-size memory partitions during system

initialization. Each partition can be allocated to a specific task during task creation.

Here is an example code for static memory partitioning:

/* Define the memory partitions */

uint8_t ucMemoryPartition1[1024];

uint8_t ucMemoryPartition2[512];

void vTaskCode1(void * pvParameters)

{

 /* Allocate and use memory partition 1 */

}

void vTaskCode2(void * pvParameters)

{

 /* Allocate and use memory partition 2 */

}

void main(void)

{

 /* Create the tasks with memory partitions allocated

*/

 xTaskCreate(vTaskCode1, "Task1",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL

);

395 | P a g e

 xTaskCreate(vTaskCode2, "Task2",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL

);

 vTaskStartScheduler();

}

In the code above, ucMemoryPartition1 and ucMemoryPartition2 are two static memory partitions

defined during system initialization. Each task can access only its allocated partition.

Dynamic memory partitioning involves creating and managing memory partitions dynamically

during runtime. This technique provides more flexibility than static memory partitioning, but it

can be more challenging to implement.

Hardening the FreeRTOS kernel and application code

Hardening the FreeRTOS kernel and application code refers to the process of making them more

secure and less prone to vulnerabilities and attacks. This involves a combination of security

measures, such as implementing secure coding practices, performing threat modeling and risk

assessments, applying security patches and updates, and using security tools and technologies.

Here are some best practices for hardening the FreeRTOS kernel and application code:

Secure coding practices: Use secure coding practices, such as input validation, buffer overflow

protection, and proper error handling, to prevent common types of vulnerabilities. This can help

to ensure that the code is resistant to attacks and exploits.

Threat modeling and risk assessments: Perform a thorough threat modeling and risk assessment to

identify potential vulnerabilities and risks. This can help to determine the best security measures

to implement, such as encryption, access controls, and auditing.

Use security patches and updates: Keep the FreeRTOS kernel and application code up to date with

the latest security patches and updates. This can help to address known vulnerabilities and protect

against new threats.

Apply security standards: Follow security standards, such as the OWASP Top Ten, to ensure that

the code meets the necessary security requirements. This can help to reduce the likelihood of

security breaches and attacks.

Use security tools and technologies: Use security tools and technologies, such as firewalls,

intrusion detection systems, and vulnerability scanners, to detect and prevent security threats. This

can help to identify and respond to security threats in a timely manner.

Here is an example of implementing secure coding practices in FreeRTOS:

396 | P a g e

void vTaskFunction(void *pvParameters)

{

 char buffer[10];

 int value;

 // Get user input

 scanf("%s", buffer);

 // Convert input to integer

 value = atoi(buffer);

 // Validate input

 if (value < 0 || value > 100) {

 printf("Invalid input\n");

 return;

 }

 // Perform task with validated input

 // ...

}

In this example, the task performs input validation to ensure that the user input is within the

expected range. This helps to prevent buffer overflows and other vulnerabilities that could be

exploited by an attacker.

Overall, hardening the FreeRTOS kernel and application code is essential for ensuring the security

and safety of embedded systems. By following best practices and implementing security measures,

developers can help to protect against potential threats and attacks.

Best practices for security and safety in FreeRTOS

FreeRTOS is designed to be a secure and safe real-time operating system, but ensuring security

and safety in any system requires careful consideration of potential risks and threats. Here are some

best practices for ensuring security and safety in FreeRTOS:

397 | P a g e

Use the latest version of FreeRTOS: It's always important to keep the operating system up to date,

as new versions often contain security and safety improvements. Be sure to check for any security

advisories related to the version you're using and apply any necessary patches.

Use memory protection and isolation techniques: FreeRTOS offers several features for memory

protection and isolation, such as memory protection units (MPUs) and task isolation. Use these

features to prevent unauthorized access to critical data and ensure that tasks don't interfere with

each other.

Follow secure coding practices: Avoid using insecure coding practices, such as buffer overflows,

unvalidated inputs, and unchecked error conditions. Always validate inputs and error conditions,

and limit the use of dangerous functions like strcpy and strcat.

Use secure communication protocols: Ensure that any communication between tasks, devices, or

networks is secure. Use encryption and authentication protocols like SSL/TLS, SSH, and IPsec to

protect against eavesdropping, tampering, and data theft.

Implement threat modeling and risk assessment: Identify potential threats and risks to your system

and prioritize them based on their likelihood and potential impact. Use this information to develop

a security plan that addresses the most critical risks.

Apply defense in depth: Implement multiple layers of security to protect against different types of

attacks. For example, use a combination of firewalls, intrusion detection systems, and access

controls to prevent unauthorized access.

Here is an example of using FreeRTOS memory protection and isolation techniques:

#include "FreeRTOS.h"

#include "task.h"

/* Create two tasks with different privileges */

void vTask1(void *pvParameters)

{

 /* Task1 runs with privileged access */

 while(1)

 {

 /* Perform privileged operation */

 vTaskDelay(1000);

 }

}

398 | P a g e

void vTask2(void *pvParameters)

{

 /* Task2 runs without privileged access */

 while(1)

 {

 /* Attempt to perform privileged operation */

 vTaskDelay(1000);

 }

}

int main(void)

{

 /* Create Task1 with privileged access */

 xTaskCreate(vTask1, "Task1",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 /* Create Task2 without privileged access */

 xTaskCreate(vTask2, "Task2",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1,

NULL);

 /* Start the scheduler */

 vTaskStartScheduler();

 /* Should never reach here */

 return 0;

}

In this example, Task1 runs with privileged access and is able to perform a privileged operation

using vTaskDelay. Task2 does not have privileged access and is not able to perform the same

operation. This ensures that only authorized tasks can perform critical operations.

399 | P a g e

Integration with other software components

Overview of integrating FreeRTOS with other software components

FreeRTOS is an open-source real-time operating system designed for embedded systems. It

provides a range of functionalities for task management, synchronization, memory management,

and more. To fully utilize the capabilities of FreeRTOS, it is often necessary to integrate it with

other software components, such as device drivers, middleware, and libraries.

There are several ways to integrate FreeRTOS with other software components. One common

approach is to use a software abstraction layer (SAL) that provides a uniform interface for the

underlying hardware and software components. This approach simplifies the integration process

and improves portability across different platforms.

Another approach is to use a middleware framework that provides a set of reusable components

for common tasks, such as networking, file system access, and graphical user interface (GUI)

development. Many middleware frameworks are compatible with FreeRTOS, including lwIP,

FatFS, and uGFX.

When integrating FreeRTOS with other software components, it is important to consider the

impact on system performance and resource usage. The following are some best practices for

integrating FreeRTOS with other software components:

Choose software components carefully: Select software components that are well-designed, well-

tested, and have a good track record in terms of performance and reliability.

Minimize resource usage: Optimize the use of system resources, such as memory and CPU cycles,

to avoid excessive resource usage that could affect system performance or stability.

Use efficient communication mechanisms: Choose communication mechanisms that are efficient

and suitable for the task at hand, such as message passing, shared memory, or interrupts.

Prioritize tasks and events: Prioritize tasks and events based on their criticality and importance to

ensure that high-priority tasks are executed in a timely manner.

Here's an example of integrating FreeRTOS with a device driver for a simple LED:

#include "FreeRTOS.h"

#include "task.h"

#include "gpio.h"

#define LED_PORT GPIOB

#define LED_PIN GPIO_PIN_5

400 | P a g e

void led_task(void *pvParameters)

{

 for (;;) {

 // Toggle LED

 HAL_GPIO_TogglePin(LED_PORT, LED_PIN);

 // Delay for 500 ms

 vTaskDelay(pdMS_TO_TICKS(500));

 }

}

int main(void)

{

 // Initialize GPIO

 __HAL_RCC_GPIOB_CLK_ENABLE();

 GPIO_InitTypeDef gpio_init = {

 .Pin = LED_PIN,

 .Mode = GPIO_MODE_OUTPUT_PP,

 .Pull = GPIO_NOPULL,

 .Speed = GPIO_SPEED_FREQ_LOW

 };

 HAL_GPIO_Init(LED_PORT, &gpio_init);

 // Create LED task

 xTaskCreate(led_task, "LED Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

 // Start scheduler

 vTaskStartScheduler();

401 | P a g e

 // Should never reach here

 while (1) {

 }

}

In this example, a task is created to toggle an LED every 500 ms. The GPIO driver is initialized

using the HAL library provided by the device manufacturer. The FreeRTOS vTaskDelay()

function is used to introduce a delay between toggling the LED. The task is created using the

xTaskCreate() function provided by FreeRTOS.

Integrating FreeRTOS with other software components is a common requirement in embedded

systems development. By following best practices and selecting suitable software components, it

is possible to achieve a highly functional and efficient system.

Interfacing with peripheral drivers and libraries

Interfacing with peripheral drivers and libraries is a common task in embedded systems

development, and FreeRTOS provides mechanisms for integrating with such drivers and libraries.

In this subtopic, we will discuss the basics of interfacing FreeRTOS with peripheral drivers and

libraries and explore some suitable codes.

FreeRTOS provides various mechanisms for interfacing with peripheral drivers and libraries,

including Direct to Task Notifications, Semaphores, and Queues. These mechanisms allow tasks

to communicate with drivers and libraries asynchronously and synchronously, depending on the

requirements of the task.

Direct to Task Notifications allow tasks to be notified directly by interrupt service routines (ISRs)

without the need for intermediate structures such as semaphores or queues. This mechanism

provides an efficient way of signaling a task to start processing data or event. Here's an example

of using Direct to Task Notifications to signal a task when data is ready to be processed:

// Define the notification handle

TaskHandle_t xTaskToNotify = NULL;

// Define the ISR

void vDataReadyISR(void)

{

 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

 vTaskNotifyGiveFromISR(xTaskToNotify,

&xHigherPriorityTaskWoken);

 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

402 | P a g e

}

// Create the task

void vTask(void *pvParameters)

{

 for(;;)

 {

 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);

 // Process the data

 }

}

int main(void)

{

 // Initialize the hardware and create the task

 xTaskCreate(vTask, "Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL

);

 // Attach the ISR

 attachInterrupt(vDataReadyISR);

 // Set the notification handle

 xTaskToNotify = xTaskGetCurrentTaskHandle();

 // Start the scheduler

 vTaskStartScheduler();

 return 0;

}

403 | P a g e

In the above code, the ISR vDataReadyISR signals a task with Direct to Task Notifications by

calling vTaskNotifyGiveFromISR(). The task vTask waits for the notification using

ulTaskNotifyTake(), which will block the task until the notification is received.

Semaphores provide a mechanism for synchronizing tasks and for providing mutual exclusion

between tasks that access shared resources. Here's an example of using Semaphores to control

access to a shared resource:

// Define the semaphore handle

SemaphoreHandle_t xSemaphore = NULL;

// Create the task that uses the shared resource

void vTask(void *pvParameters)

{

 for(;;)

 {

 xSemaphoreTake(xSemaphore, portMAX_DELAY);

 // Access the shared resource

 xSemaphoreGive(xSemaphore);

 }

}

int main(void)

{

 // Initialize the hardware and create the task

 xTaskCreate(vTask, "Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL

);

 // Create the semaphore

 xSemaphore = xSemaphoreCreateMutex();

 // Start the scheduler

 vTaskStartScheduler();

404 | P a g e

 return 0;

}

In the above code, the task vTask accesses a shared resource using a semaphore. The semaphore

is created using xSemaphoreCreateMutex(), and the task waits for the semaphore to become

available using xSemaphoreTake(). Once the task has finished accessing the shared resource, it

releases the semaphore using xSemaphoreGive().

Integration with third-party software components

FreeRTOS is a flexible and versatile real-time operating system that can be easily integrated with

third-party software components, such as libraries, device drivers, and middleware. This allows

developers to extend the functionality of FreeRTOS and create more complex and sophisticated

systems. In this subtopic, we will provide an overview of the integration process with third-party

software components and provide some examples of how to interface with these components in

FreeRTOS.

The integration of third-party software components into FreeRTOS involves several steps. First,

the developer must understand the interface requirements of the component, such as the data

structures and functions used by the component. Next, the developer must identify the appropriate

interface points in the FreeRTOS code, such as the hooks, queues, or tasks that will interact with

the component. Finally, the developer must implement the interface between the FreeRTOS code

and the third-party component, ensuring that the two systems work together seamlessly.

One common use case for integrating third-party software components with FreeRTOS is

interfacing with peripheral drivers. Peripheral drivers are software components that provide an

interface between the microcontroller and external devices, such as sensors, motors, or displays.

These drivers typically have their own API that exposes the functionality of the device to the

application code.

To interface with peripheral drivers in FreeRTOS, the developer must first initialize the driver and

configure it to communicate with the device. This can typically be done using the driver's API,

which provides functions for initializing the device, setting parameters, and starting

communication. Once the driver is initialized, the developer can then create a task or queue that

interacts with the driver. The task or queue can send and receive data from the driver using the

driver's API functions.

Here is an example of how to interface with a hypothetical driver for a temperature sensor in

FreeRTOS:

#include "temperature_driver.h"

#include "FreeRTOS.h"

#include "task.h"

405 | P a g e

// Define a task that reads the temperature sensor

void temperature_task(void *pvParameters)

{

 float temperature;

 // Initialize the temperature sensor driver

 temperature_driver_init();

 while (1)

 {

 // Read the temperature from the sensor

 temperature = temperature_driver_read();

 // Do something with the temperature value

 ...

 // Wait for some time before reading again

 vTaskDelay(pdMS_TO_TICKS(1000));

 }

}

int main()

{

 // Create the temperature task

 xTaskCreate(temperature_task, "Temperature Task",

configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY,

NULL);

 // Start the FreeRTOS scheduler

 vTaskStartScheduler();

406 | P a g e

 // Should never get here

 return 0;

}

In this example, we define a task called temperature_task that reads the temperature from the

sensor using the temperature_driver_read() function. The temperature_driver_init() function is

called once to initialize the driver before the task starts running. The task waits for one second

between temperature readings using the vTaskDelay() function.

Another common use case for integrating third-party software components with FreeRTOS is

interfacing with libraries or middleware. Libraries and middleware are software components that

provide additional functionality, such as networking, file systems, or graphics. These components

typically have their own API that the application code can use to access the functionality.

To interface with libraries or middleware in FreeRTOS, the developer must first initialize the

component and configure it to communicate with the system. This can typically be done using the

component's API, which provides functions for initializing the component, setting parameters, and

starting communication. Once the component is initialized, the developer can then use the

component's API to access its functionality.

Real-world project examples

Overview of real-world projects using FreeRTOS and STM32 MCUs

FreeRTOS is a popular real-time operating system (RTOS) used in various embedded systems,

including those based on STM32 microcontrollers. Several real-world projects have been

developed using FreeRTOS and STM32 MCUs, showcasing the versatility and flexibility of the

system.

One such project is the STM32F7 Discovery board, which features an STM32F746NGH6 MCU

with an ARM Cortex-M7 core. The board is designed for advanced applications requiring high

performance and high memory density. FreeRTOS can be easily integrated with the board's

firmware using the STM32CubeMX tool.

Another project that uses FreeRTOS and STM32 MCUs is the STM32L4 Discovery kit IoT node,

which features an STM32L475VG MCU with an ARM Cortex-M4 core. The kit is designed for

low-power applications and includes various sensors and wireless connectivity options. FreeRTOS

can be used to manage the tasks and power modes of the kit, allowing for efficient use of resources

and extended battery life.

A third project that showcases the use of FreeRTOS and STM32 MCUs is the STM32 Nucleo-144

board, which features an STM32F767ZI MCU with an ARM Cortex-M7 core. The board is

407 | P a g e

designed for rapid prototyping and includes various expansion boards and interfaces. FreeRTOS

can be used to manage the board's tasks and peripherals, enabling developers to focus on

application development rather than low-level hardware interaction.

In each of these projects, FreeRTOS provides a robust and reliable foundation for managing tasks

and resources in a real-time embedded system. Its flexibility and ease of use make it a popular

choice for developers working with STM32 MCUs.

Here is an example code snippet demonstrating how to use FreeRTOS on an STM32 MCU:

#include "stm32f4xx.h"

#include "FreeRTOS.h"

#include "task.h"

TaskHandle_t xTaskHandle;

void vTask1(void *pvParameters)

{

 while(1)

 {

 /* Task code here */

 }

}

void vTask2(void *pvParameters)

{

 while(1)

 {

 /* Task code here */

 }

}

int main(void)

{

408 | P a g e

 /* MCU initialization code here */

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, 1, &xTaskHandle);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, 1, &xTaskHandle);

 vTaskStartScheduler();

 while(1);

}

In this example, two tasks are created using the xTaskCreate function, and the FreeRTOS

scheduler is started using the vTaskStartScheduler function. The tasks are executed in an infinite

loop, and their code can be defined within the vTask1 and vTask2 functions.

Case studies and use cases of FreeRTOS and STM32 MCUs

FreeRTOS is a popular real-time operating system used in a wide range of applications, including

those using STM32 MCUs. In this subtopic, we will explore some case studies and use cases of

FreeRTOS and STM32 MCUs.

Smart Thermostat:

One use case of FreeRTOS and STM32 MCUs is in smart thermostats. Smart thermostats require

real-time response to user input and environmental changes. FreeRTOS provides an ideal platform

for implementing the necessary task scheduling and prioritization, while the STM32 MCU

provides low power consumption and a wide range of communication protocols.

Industrial Automation:

Another use case for FreeRTOS and STM32 MCUs is in industrial automation. Real-time control

is essential in industrial automation to ensure that machines operate safely and efficiently.

FreeRTOS provides a stable and reliable platform for task scheduling and prioritization, while the

STM32 MCU provides fast and accurate I/O control.

IoT Applications:

FreeRTOS and STM32 MCUs are also widely used in IoT applications. The STM32 MCU

provides low power consumption and a range of communication protocols, making it an ideal

platform for IoT devices. FreeRTOS provides task scheduling and prioritization, as well as support

for communication protocols such as MQTT and TCP/IP.

409 | P a g e

Medical Devices:

FreeRTOS and STM32 MCUs are also used in medical devices, such as patient monitors and

insulin pumps. These devices require real-time response and reliability, making FreeRTOS an

ideal platform. The STM32 MCU provides low power consumption and a range of communication

protocols, making it suitable for portable medical devices.

Example Code:

Here is an example of FreeRTOS code running on an STM32 MCU:

#include "stm32f4xx.h"

#include "FreeRTOS.h"

#include "task.h"

#define TASK1_PRIORITY 1

#define TASK2_PRIORITY 2

TaskHandle_t xTask1Handle;

TaskHandle_t xTask2Handle;

void vTask1(void *pvParameters)

{

 while (1)

 {

 // Task 1 code here

 vTaskDelay(1000 / portTICK_PERIOD_MS);

 }

}

void vTask2(void *pvParameters)

{

 while (1)

 {

410 | P a g e

 // Task 2 code here

 vTaskDelay(2000 / portTICK_PERIOD_MS);

 }

}

int main(void)

{

 // Initialize hardware and peripherals here

 // Create tasks

 xTaskCreate(vTask1, "Task 1",

configMINIMAL_STACK_SIZE, NULL, TASK1_PRIORITY,

&xTask1Handle);

 xTaskCreate(vTask2, "Task 2",

configMINIMAL_STACK_SIZE, NULL, TASK2_PRIORITY,

&xTask2Handle);

 // Start FreeRTOS scheduler

 vTaskStartScheduler();

 while (1);

}

In this code, two tasks are created using xTaskCreate(), with different priorities. Task 1 has a lower

priority than Task 2. The tasks run indefinitely using a while loop and use vTaskDelay() to

introduce a delay between iterations. The vTaskStartScheduler() function is called to start the

FreeRTOS scheduler, which then runs the tasks according to their priorities.

Best practices and lessons learned from real-world projects

Best practices and lessons learned from real-world projects of FreeRTOS and STM32 MCUs can

help developers understand common mistakes and best practices that can improve the reliability,

efficiency, and security of their projects. Here are some of the key best practices and lessons

learned:

Keep the system simple: When designing a system with FreeRTOS and STM32 MCUs, it's

important to keep the system as simple as possible. This means using only the features that are

411 | P a g e

necessary for the project and avoiding unnecessary complexity. This will help reduce the risk of

errors and make it easier to debug and maintain the system.

Use the latest version of FreeRTOS: The latest version of FreeRTOS includes many bug fixes and

new features that can improve the performance and security of your system. It's important to keep

up-to-date with the latest version of FreeRTOS to take advantage of these improvements.

Use hardware resources efficiently: When designing a system with FreeRTOS and STM32 MCUs,

it's important to use hardware resources efficiently. This means using DMA to transfer data

between peripherals and memory, and using interrupt-driven I/O to minimize CPU usage.

Avoid dynamic memory allocation: Dynamic memory allocation can cause memory fragmentation

and other problems. It's best to avoid dynamic memory allocation as much as possible and use

statically allocated memory instead.

Use debugging tools: Debugging tools such as a debugger or a logic analyzer can be very useful

when debugging a system with FreeRTOS and STM32 MCUs. These tools can help you identify

and fix problems quickly.

Test the system thoroughly: Testing is a crucial part of developing a reliable and robust system.

It's important to test the system thoroughly before deploying it in the field. This includes unit

testing, integration testing, and system testing.

Use code reviews: Code reviews can help identify potential problems and improve the quality of

the code. It's important to include code reviews as part of the development process.

Implement security measures: Security should be considered from the beginning of the

development process. Implementing security measures such as encryption, authentication, and

access control can help protect the system from attacks.

Here's an example of a code snippet that demonstrates the use of DMA to transfer data between a

peripheral and memory:

#include "stm32f4xx.h"

#define BUFFER_SIZE 256

uint8_t buffer[BUFFER_SIZE];

DMA_InitTypeDef DMA_InitStruct;

void configure_dma(void)

{

412 | P a g e

 // Enable DMA1 clock

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1,

ENABLE);

 // Configure DMA channel 1

 DMA_InitStruct.DMA_Channel = DMA_Channel_1;

 DMA_InitStruct.DMA_PeripheralBaseAddr =

(uint32_t)&USART1->DR;

 DMA_InitStruct.DMA_Memory0BaseAddr =

(uint32_t)buffer;

 DMA_InitStruct.DMA_DIR =

DMA_DIR_PeripheralToMemory;

 DMA_InitStruct.DMA_BufferSize = BUFFER_SIZE;

 DMA_InitStruct.DMA_PeripheralInc =

DMA_PeripheralInc_Disable;

 DMA_InitStruct.DMA_MemoryInc =

DMA_MemoryInc_Enable;

 DMA_InitStruct.DMA_PeripheralDataSize =

DMA_PeripheralDataSize_Byte;

 DMA_InitStruct.DMA_MemoryDataSize =

DMA_MemoryDataSize_Byte;

 DMA_InitStruct.DMA_Mode = DMA_Mode_Normal;

 DMA_InitStruct.DMA_Priority = DMA_Priority_High;

 DMA_InitStruct.DMA_FIFOMode = DMA_FIFOMode_Disable;

 DMA_InitStruct.DMA_FIFOThreshold =

DMA_FIFOThreshold_HalfFull;

 DMA_InitStruct.DMA_MemoryBurst =

DMA_MemoryBurst_Single;

 DMA_InitStruct.DMA_PeripheralBurst =

DMA_PeripheralBurst_Single;

413 | P a g e

Future directions and trends in RTOS and

microcontroller technology

Emerging trends and innovations in RTOS and microcontroller technology

RTOS and microcontroller technology are constantly evolving, and there are several emerging

trends and innovations that are shaping the future of embedded systems development. Here are

some of the key trends and innovations:

Integration with cloud services: As more and more embedded systems are connected to the

internet, there is a growing need to integrate them with cloud services such as AWS IoT, Azure

IoT, and Google Cloud IoT. This integration enables developers to build sophisticated IoT

applications that can leverage the scalability, security, and analytics capabilities of cloud

platforms.

AI and machine learning: AI and machine learning are rapidly becoming mainstream technologies

in the embedded systems domain. With the increasing availability of low-power, high-performance

microcontrollers, developers can now build intelligent and autonomous systems that can make

decisions based on real-time data.

Edge computing: Edge computing is another trend that is gaining traction in the RTOS and

microcontroller space. Edge computing involves processing data at the edge of the network, closer

to where it is generated, rather than in the cloud. This approach enables faster response times,

reduces latency, and enhances the security and privacy of data.

Low-power wireless connectivity: Low-power wireless connectivity technologies such as

Bluetooth Low Energy (BLE), Zigbee, and LoRa are enabling the development of energy-efficient

and cost-effective IoT applications. These technologies allow devices to communicate wirelessly

with each other, without the need for power-hungry Wi-Fi or cellular connectivity.

Open-source hardware and software: Open-source hardware and software are becoming

increasingly popular in the RTOS and microcontroller space. Platforms such as Arduino,

Raspberry Pi, and BeagleBoard provide developers with affordable and flexible development

boards, while open-source software such as FreeRTOS and Zephyr provide robust and feature-rich

RTOS solutions.

As for suitable codes, it's difficult to provide a code example for emerging trends and innovations

as they are constantly evolving and changing. However, developers can leverage open-source

platforms and libraries to implement these trends and innovations in their projects. For example,

the Arduino platform provides a wide range of libraries for integrating with cloud services, AI and

machine learning frameworks, and low-power wireless connectivity technologies. Similarly, open-

source RTOS solutions such as FreeRTOS and Zephyr provide support for edge computing and

other emerging trends.

414 | P a g e

Predictions and expectations for the future of RTOS and microcontroller technology

 RTOS and microcontroller technology have been evolving rapidly, and there are several

predictions and expectations for the future of this field. Here are some possible developments:

Increased use of machine learning and artificial intelligence (AI) in RTOS and microcontroller

applications, such as predictive maintenance and autonomous vehicles.

More focus on security and safety in RTOS and microcontroller systems, with the integration of

hardware and software security features to prevent cyber-attacks and ensure safety-critical

operations.

Advancements in power management and low-power modes, including the use of energy

harvesting and wireless charging to extend battery life and reduce the need for manual charging.

Development of new programming languages and software frameworks specifically for RTOS and

microcontroller systems, such as Rust and Zephyr.

Integration of RTOS and microcontroller systems with cloud computing and IoT platforms to

enable remote monitoring and management of devices and data.

Adoption of open-source hardware and software for RTOS and microcontroller systems, which

can facilitate collaboration and accelerate innovation.

Development of more compact and efficient microcontrollers that can handle increasingly complex

tasks while using less power.

RTOS and microcontroller technology are poised to play a significant role in the growth of various

industries in the coming years, and we can expect to see many exciting innovations and

advancements in this field.

As an AI language model, I am not able to provide suitable codes for future predictions and

expectations as they are subject to change with advancements in technology and research.

Implications for developers and engineers in the RTOS and microcontroller space

The field of real-time operating systems (RTOS) and microcontrollers is constantly evolving with

the advancement of technology. As new features and capabilities are added to microcontrollers,

RTOS must also evolve to take advantage of them. Developers and engineers working in this space

must stay up-to-date with these changes and adapt their skills and practices accordingly.

One of the major trends in this space is the integration of more complex and advanced features

into microcontrollers, such as machine learning, artificial intelligence, and advanced security

features. As a result, RTOS must be able to handle these new features and provide the necessary

level of performance and efficiency.

415 | P a g e

Another trend is the increasing use of open-source software in the RTOS and microcontroller

space. This allows for greater collaboration and innovation among developers and can lead to the

creation of more robust and reliable systems.

Furthermore, the emergence of the Internet of Things (IoT) has also had a significant impact on

the RTOS and microcontroller space. RTOS must be able to handle the large amounts of data

generated by IoT devices and provide efficient and secure communication between devices.

In terms of future expectations, it is likely that there will be an increasing demand for low-power,

high-performance microcontrollers and RTOS that can handle the demands of the IoT and other

emerging technologies. Additionally, the use of artificial intelligence and machine learning in

RTOS is likely to become more prevalent, leading to more advanced and intelligent systems.

For developers and engineers working in this space, it is important to stay up-to-date with the latest

trends and innovations and adapt their skills and practices accordingly. This may involve learning

new programming languages, integrating open-source software, or developing new techniques for

handling complex systems.

Overall, the RTOS and microcontroller space is constantly evolving, and it is important for

developers and engineers to stay ahead of the curve to ensure that their systems are reliable,

efficient, and secure.

416 | P a g e

 THE END

